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Abstract. Let b ≥ 2 be a fixed positive integer. We show for a wide variety
of sequences {an}∞n=1 that for most n the sum of the digits of an in base b is
at least cb log n, where cb is a constant depending on b and on the sequence.
Our approach covers several integer sequences arising from number theory and
combinatorics.

1. Introduction

For a positive integer b ≥ 2 let us denote by sb(m) the sum of the digits of the
positive integer m when written in base b. Lower bounds for sb(m) when m runs
through the members of a sequence with some interesting combinatorial meaning
have been investigated before. For example, it follows from a result of Stewart ([14];
see also [9] for a slightly more general result), that in the case of Fibonacci numbers
(namely, the sequence defined by F0 := 0, F1 := 1 and Fn+2 := Fn+1 + Fn for all
n ≥ 0) the inequality

sb(Fn) > c1
log n

log log n

holds for all n ≥ 3 for some positive constant c1 := c1(b) depending on b. In [10],
it is shown that the inequality

sb(n!) > c2 log n

holds for all n ≥ 1, where c2 := c2(b) is some positive constant depending on

b. In [12], it was shown that if we put Cn :=
1

n + 1

(
2n

n

)
and Dn :=

(
2n

n

)
for

the Catalan number and the middle binomial coefficient, respectively, then both
inequalities

(1) sb(Cn) > ε(n)
√

log n and sb(Dn) ≥ ε(n)
√

log n

hold on a set of n of asymptotic density equal to 1, where ε(n) is any function
tending to zero when n tends to infinity. In [13], it was shown that there is some
positive constant c3 := c3(b) depending on b such that if we put

An :=
n∑

k=0

(
n

k

)2(
n + k

k

)2

for the nth Apéry number, then the inequality

(2) sb(An) > c3

(
log n

log log n

)1/4

holds on a set of n of asymptotic density 1. Some of the above results were
superseded by the results from the recent paper [8], where it is shown that if
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r := (r0, r1, . . . , rm) is a fixed vector of nonnegative integers integers with r0 > 0
and if we put

Sn(r) :=
n∑

k=0

(
n

k

)r0
(

n + k

k

)r1

· · ·
(

n + km

k

)rm

for n = 0, 1, . . . ,

then for r 6= (1) there exists a positive constant c4 := c4(b, r) depending on both b
and r such that the inequality

(3) sb (Sn(r)) > c4
log n

log log n

holds for almost all n. Note that inequality (3) improves (1) for the case of the
middle binomial coefficients Bn because Cn = Sn(r) for r = (2), as well as inequality
(2) for the case of the Apéry numbers An because An = Sn(r) for r = (2, 2).

In [11], it is shown that if Pn is the partition function of n, then the inequality

sb(Pn) >
log n

7 log log n

holds for almost all positive integers n.

The proofs of such results use a variety of methods from number theory, such as
elementary methods, sieve methods, linear forms in logarithms and the subspace
theorem of Evertse–Schlickewei–Schmidt [3].

In this work we focus on sequences {an}∞n=1 of positive integers with a certain
growth, and show, independently of the combinatorial properties of the sequence,
that sb(an) > cb log n for almost every element in the sequence, where cb is a positive
number depending both on b as well as on the sequence {an}∞n=1. In particular, we
concentrate on sequences satisfying the asymptotic behavior

an = ef(n)
(
1 + O

(
n−α

))
, α > 0,

where f(x) is a two times differentiable function satisfying f ′′(x) ³ 1
x for large x.

Many sequences arising in number theory and combinatorics fit into this scheme.
The most basic one, the number of permutations of a set of n elements is clearly a
sequence of this kind, since from Stirling’s approximation formula we have

(4) n! = en log n−n+log n+ 1
2 log 2π

(
1 + O

(
n−1

))
.

The sequence an =
∏n

k=1(k
2+1) also has similar behavior: an = c6n!2(1+O(n−1)).

It was proved in [2] that an is an square only when n = 3.

Other interesting sequences arising from combinatorics have more involved expres-
sions, but they also fit into these hypothesis (see [4] for further details). Examples
of them are the Bell numbers (that count the number of partitions of sets), involu-
tions (that count the number of permutations of n elements with either fixed points
or cycles of length 2) and fragmented permutations (namely, unordered collections
of permutations; in other words, fragments are obtained by breaking a permutation
into pieces).

In graph enumeration, many important families also follow these asymptotic ex-
pressions: the number of labelled trees (Cayley trees) with n vertices is equal to
nn−1. More generally, it is shown in [4] that families of labelled trees with degree
constraints satisfy asymptotic formulas of the form

cT n−3/2γn
T · n!

(
1 + O(n−1)

)
= efT (n)

(
1 + O(n−1)

)
,
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where the subindex T indicates the considered constraint and the function fT is
given by

fT (n) = n log n− n− log n + n log γT + log cT +
1
2

log 2π.

Very recently, many authors have shown that several families of labelled graphs
satisfies similar formulas: Giménez and Noy [6] (see also [7]) proved that the number
of labelled planar graphs with n vertices follows an asymptotic formula of the form

c0n
−7/2γn · n!

(
1 + O

(
n−1

))
,

where γ ' 27.22687. More generally, as it is shown in [5] (see also [1]), the number
of labelled graphs which can be embedded in a surface of genus g satisfies a very
similar formula (with the same growth factor). See Table 1 for the asymptotics of
these sequences.

Sequence Asymptotic
Permutations n!∏n

k=1(k
2 + 1) cn!2

(
1 + O(n−1)

)
Involutions 1

2
√

π
n−1/2en/2−1/4n−n/2 · n!

(
1 + O

(
n−1/5

))

Bell numbers eer−1

rn
√

2πr(r+1)er
· n!

(
1 + O

(
e−r/5

))
, rer = n + 1

Fragmented permutations 1
2
√

π
n−3/4e−1/2+2

√
n · n!

(
1 + O

(
n−3/4

))

Cayley trees 1√
2π

n−3/2en · n!
(
1 + O

(
n−1

))

Labelled trees cT n−3/2γn
T · n!

(
1 + O

(
n−1

))
Graphs on surfaces cgn

5(g−1)/2−1γn · n!
(
1 + O

(
n−1

))

Table 1. Combinatorial families and their enumerative asymp-
totic behavior.

Our main result gives a lower bound for sb(an) for sequences of controlled growth
described before.

Theorem 1. Let {an}∞n=1 be a sequence of positive integers with asymptotic behav-
ior

(5) an = ef(n)
(
1 + O(n−α)

)
, with f ′′(x) ³ 1

x
,

for some α > 0 and a two times differentiable function f . For any base b ≥ 2, the
inequality

sb(an) >
β log n

10 log b
, β = min

{
α,

2
3

}

holds on a set of positive integers n of asymptotic density 1.

It is a straightforward calculation to check that condition (5) holds for all the
sequences in Table 1, except for the Bell numbers which should be studied carefully.
We denote by Bn the nth Bell number. In this case, the asymptotic estimate for
Bn is given in terms of an implicit function r = r(n) so the analysis of this concrete
case should be made in detail. More concretely, we obtain the following corollary,
which will be proved in detail in Section 3:

Corollary 2. Let Bn denote the nth Bell number. For any base b ≥ 2, the inequality

sb(Bn) >
log n

60 log b

holds on a set of positive integers n of asymptotic density 1.
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1.1. Notation. We use Landau’s symbol O and o as well as the Vinogradov’s
symbols ¿, À and ³ with their usual meanings. Recall that A = O(B), A ¿ B
and B À A are all equivalent to the fact that the inequality |A| ≤ cB holds with
some constant c. The constants implied by these symbols in our arguments might
depend in the number b. Furthermore, A ³ B means that both A ¿ B and B ¿ A
hold. We use c1, c2, . . . for positive constants depending on the number b and the
sequence {an}∞n=1.

2. Proof of Theorem 1

Consider the following set of positive integers:

Nb(x) :=
{

n ∈ [x/2, x) : sb(an) <
β log n

10 log b

}
,

where β ≤ α will be chosen later. We need to show that #Nb(x) = o(x) as x →∞,
since afterwards the conclusion of Theorem 1 will follow by replacing x by x/2,
then by x/4, and so on, and summing up the resulting estimates.

For n ∈ Nb(x), we write

(6) an = dk1b
k1 + dk2b

k2 + · · ·+ dksb
ks ,

where dk1 , . . . , dks ∈ {1, . . . , b − 1} and k1 > k2 > · · · > ks. Observe that for
i = 1, . . . , s we have

an = dk1b
k1 + · · ·+ dkib

ki (1 + Ei(n)) ,

where Ei(n) = 0, if i = s, and

Ei(n) =
dki+1b

ki+1 + · · ·+ dksb
ks

dk1b
k1 + · · ·+ dkib

ki
= O

(
bki+1−k1

)
,

if i < s. We choose k(n) to be the smallest ki such that bki−k1 > n−β .

From the definition of k(n), we immediately see that

an =
(
dk1b

k1 + · · ·+ dk(n)b
k(n)

) (
1 + O

(
n−β

))
= bk(n)D(n)

(
1 + O

(
n−β

))
,(7)

where D(n) = dk1b
k1−k(n) + dk2b

k2−k(n) + · · ·+ dk(n).

Let Db(x) be the subset of all possible values for D(n), n ∈ Nb(x). Let us find an
upper bound for the cardinality of this set. First observe that

D(n) < bk1−k(n)+1 ≤ b(β log n/ log b)+1.

The positive integers D := D(n) bounded by the right hand side of the above
inequality have at most K := b(β log x/ log b) + 2c digits in base b. As n ∈ Nb(x),
the number of nonzero digits of D(n) is bounded by S := b(β log x/10 log b)c, and

#Db(x) ≤
S∑

i=0

(
K

i

)
(b− 1)i ≤ (S + 1)

(
K

S

)
(b− 1)S ≤ (S + 1)

(
(b− 1)eK

S

)S

≤
(

β log x

10 log b
+ 1

)
(10e(b− 1) + o(1))

β log x
10 log b = xδ+o(1)

as x →∞, where

δ :=
β log(10e(b− 1))

10 log b
.
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It can be checked that δ < β/2 for all integers b ≥ 2. Thus, we get that

(8) #Db(x) ≤ xδ+o(1) as x →∞.

Combining the fact that an = ef(n) (1 + O(n−α)) with relations (6) and (7) we have

ef(n) = bk(n)D(n)
(
1 + O

(
x−β

))
,

since n ∈ [x/2, x) and β ≤ α by hypothesis. Taking logarithms, we get that

f(n) = k(n) log b + log D(n) + O
(
x−β

)
.(9)

We now write
Nb(x) =

⋃

D∈Db(x)

Nb,D(x),

where
Nb,D(x) := {n ∈ Nb(x) : D(n) = D}.

Observe that, with this notation, we have

#Nb(x) ≤ #Db(x) max
D∈Db

#N b,D(x),

and we must now bound the number of elements lying in each Nb,D(x).

For a fixed D ∈ Db(x) and y depending on x, to be chosen later, we take a look at
the elements n ∈ Nb,D(x). We say that n is separated if [n, n + y]∩Nb,D(x) = {n}.
It is clear that there are at most x/2y+1 elements on Nb,D(x) which are separated.

Let us now count the non-separated elements n ∈ Nb,D(x). For such an n, there
exists 1 ≤ m ≤ y with n + m ∈ Nb,D(x). Taking the difference of the relations (9)
in n, n + m ∈ Nb,D(x) we get

(k(n + m)− k(n)) log b = (f(n + m)− f(n)) + O(x−β)

= mf ′(ζ) + O(x−β),

where ζ ∈ [n, n+m] is some point whose existence is guaranteed by the Intermediate
Value Theorem. It follows from condition (5), which in particular implies f ′(x) ³
log x, that k(n + m) 6= k(n) for large x (as x/2 < n < x) in the above estimate.
Thus, non-separated elements n in Nb,D(x) are characterized by their values k(n).
Denoting by [x] the closest integer to x, for a fixed m ≤ y, the differences

(10) k(m + n)− k(n) =
[
mf ′(ζ)
log b

]

take O(m) integer values, since for two elements n, n + ` ∈ Nb,D(x) we have by
condition (5)

m

log b
(f ′(ζn+`)− f ′(ζn)) ³ m`

x log b
= O(m).

For a fixed difference in (10), say M , we must be able to count the number elements
n ∈ Nb,D(x) such that

k(n + m)− k(n) = M + O(n−β),

but it follows from the previous argument that
m

log b
(f ′(ζn+`)− f ′(ζn)) = O(x−β)

for at most O(1+x1−β/m) values of n. Thus, there are O(y2+yx1−β) non-separated
elements in Nb,D(x), for an arbitrary D ∈ Db(x). Setting y := xβ/2, we observe
that

#Nb,D(x) ¿ yx1−β + y2 +
x

y
+ 1 ¿ x1−β/2 + xβ ¿ x1−β/2,
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whenever β ≤ 2/3. Thus, if we choose β := min{α, 2/3} it follows from estimate (8)
that

#Nb(x) =
∑

D∈Db(x)

#Nb,D(x) ≤ x1−β/2#Db(x) < x1−β/2+δ+o(1) = o(x)

as x →∞, which is what we wanted to prove.

3. Proof of Corollary 2

The study of Bell numbers needs of a more detailed analysis. We start with the
following estimate for Bn (see formula (41) on page 562 in [4]).

Lemma 3. Let r := r(n), defined implicitly by

(11) rer = n + 1.

Then

(12) Bn =
n!eer−1

rn
√

2πr(r + 1)er

(
1 + O

(
e−r/5

))
.

The number r := r(n) given in (11) satisfies r = log n− log log n + o(1) as n →∞,
therefore

(13) e−r/5 =
(

log n

n

)1/5

(1 + o(1)) = O
(
n−1/6

)
as n →∞.

Combining Stirling’s formula (4) with formula (13) we can rewrite (12) as

Bn = ef(n)
(
1 + O

(
n−1/6

))
,

where

f(x) = x log x− x−
(

2x + 1
2

)
log r +

1
2

log x + er − r

2
− 1

2
log(r + 1)− 1,

and r := r(x) is defined for all real numbers x ≥ 1 by equation (11) (where n
is replaced by x). In particular, r(x) has a derivative for real x > 1. In fact,
differentiating relation (11) (with x instead of n) with respect to the variable x, we
have

r′er + rr′er = 1,

or equivalently

(14) r′er =
1

r + 1
,

and, since er = (x + 1)/r,

(15) r′ =
r

(x + 1)(r + 1)
.

We get the asymptotic behavior of the second derivative of f(x): observe that
differentiating we have

f ′(x) =
d

dx

(
x log x− x− 2x + 1

2
log r +

1
2

log x + er − r

2
− 1

2
log(r + 1)− 1

)

= log x− log r − (2x + 1)r′

2r
+

1
2x

+ r′er − r′

2
− r′

2(r + 1)

= log x− log r +
1
2x

− e−r

(
1

2(r + 1)2
+

1
r + 1

− 1
2r

)
,
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since, using equations (14) and (15), we note that

r′er − r′
(

(2x + 1)(r + 1) + r(r + 1) + r

2r(r + 1)

)
=

1
r + 1

− (2x + 1)(r + 1) + r(r + 2)
2(r + 1)2(x + 1)

= − r2 + r − 1
2(x + 1)(r + 1)2

= −e−r

(
1

2(r + 1)2
+

1
r + 1

− 1
2r

)
.(16)

Differentiating expression (16) we obtain

d

dx

[
−e−r

(
1

2(r + 1)2
+

1
r + 1

− 1
2r

)]
=

= r′e−r

(
1

(r + 1)3
+

3
2(r + 1)2

+
1

r + 1
− 1

2r2
− 1

2r

)

=
r2

(x + 1)3

(
1

2(r + 1)3
+

3
2(r + 1)2

+
1

r + 1
− 1

2r2
− 1

2r

)
= O(x−2),

therefore we can conclude that

f ′′(x) =
1
x

+
r′

r
+ O(x−2) =

1
x

+
1

(x + 1)(r + 1)
+ O(x−2) ³ 1

x
,

and we are under the assumptions of Theorem 1, and Corollary 2 holds.
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[12] Luca F., Shparlinski I. E., On the g-ary expansions of middle binomial coefficients and
Catalan numbers, Rocky Mountain J. Math., 41, 2011, 1291–1301.

[13] Luca F., Shparlinski I. E., On the g-ary expansions of Apéry, Motzkin and Schröder num-
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