DENSE INFINITE B_{h} SEQUENCES

JAVIER CILLERUELO AND RAFAEL TESORO

$$
\begin{aligned}
& \text { Abstract. For } h=3 \text { and } h=4 \text { we prove the existence of infinite } B_{h} \text { se- } \\
& \text { quences } \mathcal{B} \text { with counting function } \\
& \qquad \mathcal{B}(x)=x^{\sqrt{(h-1)^{2}+1}}-(h-1)+o(1) \\
& \text { This result extends a construction of I. Ruzsa for } B_{2} \text { sequences. }
\end{aligned}
$$

1. Introduction

Let $h \geq 2$ be an integer. We say that a sequence \mathcal{B} of positive integers is a B_{h} sequence if all the sums

$$
b_{1}+\cdots+b_{h}, \quad\left(b_{k} \in \mathcal{B}, 1 \leq k \leq h\right)
$$

are distinct subject to $b_{1} \leq b_{2} \leq \ldots \leq b_{h}$. The study of the size of finite B_{h} sets (or the growing of the counting function of infinite B_{h} sequences) is a classic topic in combinatorial number theory. We define

$$
F_{h}(n)=\max \left\{|\mathcal{B}|: \mathcal{B} \text { is } B_{h}, \mathcal{B} \subset[1, n]\right\} .
$$

A trivial counting argument proves that $F_{h}(n) \leq\left(C_{h}+o(1)\right) n^{1 / h}$ for a constant C_{h} (see [3] and [7] for non trivial upper bounds for C_{h}) and consequently that $\mathcal{B}(x) \ll x^{1 / h}$ when \mathcal{B} is an infinite B_{h} sequence.

There are three algebraic constructions (2], 12] and [6]) of finite B_{h} sets showing that $F_{h}(n) \geq n^{1 / h}(1+o(1))$. It is probably true that $F_{h}(n) \sim n^{1 / h}$ but this is an open problem, except for the case $h=2$ for which Erdős and Turan [5] did prove that $F_{2}(n) \sim n^{1 / 2}$. It is unknown whether $\lim _{n \rightarrow \infty} F_{h}(n) / n^{1 / h}$ exists for $h \geq 3$. For further information about B_{h} sequences see [8, § II.2] or [10.

Erdős conjectured for all $\epsilon>0$ the existence of an infinite B_{h} sequence \mathcal{B} with counting function $\mathcal{B}(x) \gg x^{1 / h-\epsilon}$. It is believed that ϵ cannot be removed from the last exponent, however this has only been proved for h even. On the other hand, the greedy algorithm produces an infinite B_{h} sequence \mathcal{B} with

$$
\begin{equation*}
\mathcal{B}(x) \gg x^{\frac{1}{2 h-1}} \quad(h \geq 2) \tag{1.1}
\end{equation*}
$$

Until now the exponent $1 /(2 h-1)$ has been the largest known for the growth of a B_{h} sequence when $h \geq 3$. For the case $h=2$, Atjai, Komlós and Szemerédi [1] proved that there exists a B_{2} sequence (also called a Sidon sequence) with $\mathcal{B}(x) \gg(x \log x)^{1 / 3}$, improving by a power of logarithm the lower bound 1.1). So
far the highest improvement of (1.1) for the case $h=2$ was achieved by Ruzsa ([11]). He constructed, in a clever way, an infinite Sidon sequence \mathcal{B} satisfying

$$
\mathcal{B}(x)=x^{\sqrt{2}-1+o(1)}
$$

Our aim is to adapt Ruzsa's ideas to build dense infinite B_{3} and B_{4} sequences and so improve the lower bound $\sqrt{1.1}$ for $h=3$ and $h=4$.

Theorem 1.1. For $h=2,3,4$ there is an infinite B_{h} sequence \mathcal{B} with counting function

$$
\mathcal{B}(x)=x^{\sqrt{(h-1)^{2}+1}-(h-1)+o(1)} .
$$

The starting point in Ruzsa's construction were the numbers $\log p, p$ prime, which form an infinite Sidon set of real numbers. Instead we part from the arguments of the Gaussian primes, which also have the same B_{h} property with the additional advantage of being a bounded sequence. This idea was suggested in [4] to simplify the original construction of Ruzsa and was written in detail for B_{2} sequences in 9.

We believe that the theorem can be extended to all h, but we have not found yet a proof. Indeed we have written the core of the proof for all $h \geq 2$ except for Lemma 3.3 where we have considered only the cases $h=2,3,4$ since the technical difficulties become significantly more involved as h increases.

2. The Gaussian arguments

For each rational prime $p \equiv 1(\bmod 4)$ we consider the Gaussian prime \mathfrak{p} of $\mathbb{Z}[i]$ such that

$$
\mathfrak{p}:=a+b i, \quad p=a^{2}+b^{2}, \quad a>b>0,
$$

so the argument of \mathfrak{p} defined by $\mathfrak{p}=\sqrt{p} e^{2 \pi i \theta(\mathfrak{p})}$ is a real number in the interval $(0,1 / 8)$. We will use several times through the paper the following lemma that can be seen as a measure of the quality of the B_{h} property of this sequence of real numbers.

Lemma 2.1. Let $\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{h}, \mathfrak{p}_{1}^{\prime}, \cdots, \mathfrak{p}_{h}^{\prime}$ be distinct Gaussian primes satisfying $0<\theta\left(\mathfrak{p}_{r}\right), \theta\left(\mathfrak{p}_{r}^{\prime}\right)<1 / 8, r=1, \cdots, h$. The following inequality holds:

$$
\left|\sum_{r=1}^{h}\left(\theta\left(\mathfrak{p}_{r}\right)-\theta\left(\mathfrak{p}_{r}^{\prime}\right)\right)\right|>\frac{1}{7\left|\mathfrak{p}_{1} \cdots \mathfrak{p}_{h} \mathfrak{p}_{1}^{\prime} \cdots \mathfrak{p}_{h}^{\prime}\right|}
$$

Proof. It is clear that

$$
\begin{equation*}
\sum_{r=1}^{h}\left(\theta\left(\mathfrak{p}_{r}\right)-\theta\left(\mathfrak{p}_{r}^{\prime}\right)\right) \equiv \theta\left(\mathfrak{p}_{1} \cdots \mathfrak{p}_{h} \overline{\mathfrak{p}_{1}^{\prime} \cdots \mathfrak{p}_{h}^{\prime}}\right) \quad(\bmod 1) \tag{2.1}
\end{equation*}
$$

Since $\mathbb{Z}[i]$ is a unique factorization domain, all the primes are in the first octant and are all distinct, the Gaussian integer $\mathfrak{p}_{1} \cdots \mathfrak{p}_{h} \overline{\mathfrak{p}_{1}^{\prime} \cdots \mathfrak{p}_{h}^{\prime}}$ cannot be a real integer.

Using this fact and the inequality $\arctan (1 / x)>0.99 / x$ for $x \geq \sqrt{5 \cdot 13}$ we have

$$
\begin{align*}
\left|\theta\left(\mathfrak{p}_{1} \cdots \mathfrak{p}_{h} \overline{\mathfrak{p}_{1}^{\prime} \cdots \mathfrak{p}_{h}^{\prime}}\right)\right| & \geq \| \theta\left(\mathfrak{p}_{1} \cdots \mathfrak{p}_{h} \overline{\left.\overline{\mathfrak{p}_{1}^{\prime} \cdots \mathfrak{p}_{h}^{\prime}}\right) \|}\right. \tag{2.2}\\
& \geq \frac{1}{2 \pi} \arctan \left(\frac{1}{\left|\mathfrak{p}_{1} \cdots \mathfrak{p}_{h} \overline{\mathfrak{p}_{1}^{\prime}} \cdots \overline{\mathfrak{p}_{h}^{\prime}}\right|}\right) \\
& >\frac{1}{7 \mid \mathfrak{p}_{1} \cdots \mathfrak{p}_{h} \overline{\mathfrak{p}_{1}^{\prime} \cdots \overline{\mathfrak{p}_{h}^{\prime}}},}
\end{align*}
$$

where $\|\cdot\|$ means the distance to \mathbb{Z}. The lemma follows from 2.1 and 2.2 .

We illustrate the B_{h} property of the arguments of the Gaussian primes with a quick construction, based on them, of a finite B_{h} set which is only a $\log x$ factor below the optimal bound.

Theorem 2.2. The set $\mathcal{A}=\left\{\lfloor x \theta(\mathfrak{p})\rfloor,|\mathfrak{p}| \leq\left(\frac{x}{7 h}\right)^{\frac{1}{2 h}}\right\} \subset[1, x]$ is a B_{h} set with $|\mathcal{A}| \gg x^{1 / h} / \log x$.

Proof. If

$$
\left\lfloor x \theta\left(\mathfrak{p}_{1}\right)\right\rfloor+\cdots+\left\lfloor x \theta\left(\mathfrak{p}_{h}\right)\right\rfloor=\left\lfloor x \theta\left(\mathfrak{p}_{1}^{\prime}\right)\right\rfloor+\cdots+\left\lfloor x \theta\left(\mathfrak{p}_{h}^{\prime}\right)\right\rfloor
$$

then

$$
x\left|\theta\left(\mathfrak{p}_{1}\right)+\cdots+\theta\left(\mathfrak{p}_{h}\right)-\theta\left(\mathfrak{p}_{1}^{\prime}\right)-\cdots-\theta\left(\mathfrak{p}_{h}^{\prime}\right)\right| \leq h .
$$

If the Gaussian primes are distinct then Lemma 2.1 implies that

$$
\left|\theta\left(\mathfrak{p}_{1}\right)+\cdots+\theta\left(\mathfrak{p}_{h}\right)-\theta\left(\mathfrak{p}_{1}^{\prime}\right)-\cdots-\theta\left(\mathfrak{p}_{h}^{\prime}\right)\right|>\frac{1}{7\left|\mathfrak{p}_{1} \cdots \mathfrak{p}_{h} \mathfrak{p}_{1}^{\prime} \cdots \mathfrak{p}_{h}^{\prime}\right|} \geq h / x
$$

which is a contradiction.

3. Proof of Theorem 1.1

We start following the lines of [11] with several adjustments. In the sequel we will write \mathfrak{p} for a Gaussian prime in the first octant $(0<\theta(\mathfrak{p})<1 / 8)$.

We fix a number $c_{h}>h$ which will determine the growth of the sequence we construct. Indeed we will take $c_{h}=\sqrt{(h-1)^{2}+1}+(h-1)$.
3.1. The construction. We will construct for each $\alpha \in[1,2]$ a sequence of positive integers indexed with the Gaussian primes

$$
\mathcal{B}_{\alpha}:=\left\{b_{\mathfrak{p}}\right\}
$$

where each $b_{\mathfrak{p}}$ will be built using the development to base 2 of $\alpha \theta(\mathfrak{p})$:

$$
\alpha \theta(\mathfrak{p})=\sum_{i=1}^{\infty} \delta_{i \mathfrak{p}} 2^{-i} \quad\left(\delta_{i \mathfrak{p}} \in\{0,1\}\right)
$$

The role of the parameter α will be clear at a later stage, for the moment it is enough to note that the set $\{\alpha \theta(\mathfrak{p})\}$ obviously keeps the same B_{h} property of the set $\{\theta(\mathfrak{p})\}$.

To organize the construction we describe the sequence \mathcal{B}_{α} as a union of finite sets according with the sizes of the indexes:

$$
\mathcal{B}_{\alpha}=\bigcup_{K} \mathcal{B}_{\alpha, K}
$$

where

$$
\mathcal{B}_{\alpha, K}=\left\{b_{\mathfrak{p}}: \mathfrak{p} \in P_{K}\right\}
$$

and

$$
P_{K}:=\left\{\mathfrak{p}: 2^{\frac{(K-2)^{2}}{c_{h}}} \leq|\mathfrak{p}|^{2}<2^{\frac{(K-1)^{2}}{c_{h}}}\right\} .
$$

Now we build the positive integers $b_{\mathfrak{p}} \in \mathcal{B}_{\alpha, K}$. For any $\mathfrak{p} \in P_{K}$ we define $\widehat{\alpha \theta(\mathfrak{p})}$ the truncated series of $\alpha \theta(\mathfrak{p})$ at the K^{2}-place:

$$
\begin{equation*}
\widehat{\alpha \theta(\mathfrak{p})}:=\sum_{i=1}^{K^{2}} \delta_{i \mathfrak{p}} 2^{-i} \tag{3.1}
\end{equation*}
$$

and combine the digits at places $(j-1)^{2}+1, \cdots, j^{2}$ into a single number

$$
\Delta_{j \mathfrak{p}}=\sum_{i=(j-1)^{2}+1}^{j^{2}} \delta_{i \mathfrak{p}} 2^{j^{2}-i} \quad(j=1, \cdots, K)
$$

so that we can write

$$
\begin{equation*}
\widehat{\alpha \theta(\mathfrak{p})}=\sum_{j=1}^{K} \Delta_{j \mathfrak{p}} 2^{-j^{2}} \tag{3.2}
\end{equation*}
$$

We observe that if $\mathfrak{p} \in P_{K}$ then

$$
\begin{equation*}
|\widehat{\alpha \theta(\mathfrak{p})}-\alpha \theta(\mathfrak{p})| \leq 2^{-K^{2}} \tag{3.3}
\end{equation*}
$$

The definition of $b_{\mathfrak{p}}$ is informally outlined as follows. We consider the sequence of blocks $\Delta_{1 \mathfrak{p}}, \cdots, \Delta_{K \mathfrak{p}}$ and re-arrange them opposite to the original left to right arrangement. Then we insert at the left of each $\Delta_{j p}$ an additional filling block of $2 d+1$ digits, with $d=\left\lceil\log _{2} h\right\rceil$. At the filling blocks the digits will be always 0 except for only one exception: in the middle of the first filling block (placed to the left of the Δ_{K} block) we put the digit 1 . This digit will mark which subset P_{K} the prime \mathfrak{p} belongs to.

$$
\alpha \theta(\mathfrak{p})=0.1 \overbrace{001}^{\Delta_{1}} \ldots \overbrace{1 \cdots \cdots 0}^{\Delta_{2}} \ldots \overbrace{01 \cdots \cdots \cdots 11}^{\Delta_{j}} \ldots \ldots
$$

$b_{\mathfrak{p}}=\underline{\mathbf{0} \cdot \mathbf{1} \cdot \mathbf{0}} \overbrace{01 \cdots \cdots \cdots 11}^{\Delta_{K}} \underline{\mathbf{0} \cdots \mathbf{0}} \cdots \underline{\mathbf{0} \cdots \mathbf{0}} \overbrace{1 \cdots \cdots 0}^{\Delta_{j}} \underline{\mathbf{0} \cdots \mathbf{0} \cdots \underline{0} \ldots \mathbf{0}} \overbrace{001}^{\Delta_{2}} \underline{\mathbf{0} \ldots \mathbf{0}}{ }^{\Delta_{1}}$,
The reason to add the blocks of zeroes and the value of d will be clarified just before Lemma 3.2

More formally, for $\mathfrak{p} \in P_{K}$ we define

$$
\begin{equation*}
t_{\mathfrak{p}}=2^{K^{2}+(2 d+1) K+(d+1)} \tag{3.4}
\end{equation*}
$$

and

$$
b_{\mathfrak{p}}=t_{\mathfrak{p}}+\sum_{j=1}^{K} \Delta_{j \mathfrak{p}} 2^{(j-1)^{2}+(2 d+1)(j-1)}
$$

Furthermore we define $\Delta_{j \mathfrak{p}}=0$ for $j>K$.
Remark 3.1. The construction at 11 was based on the numbers $\alpha \log p$, with p rational prime, hence the digits of their integral parts had to be included also in the corresponding integers b_{p}. Ruzsa solved that problem reserving fixed places for these digits. Since in our construction the integral part of $\alpha \theta(\mathfrak{p})$ is zero we don't need to care about this.

We observe that distinct primes $\mathfrak{p}, \mathfrak{q}$ provide distinct $b_{\mathfrak{p}}, b_{\mathfrak{q}}$. Indeed if $b_{\mathfrak{p}}=b_{\mathfrak{q}}$ then $\Delta_{i \mathfrak{p}}=\Delta_{i \mathfrak{q}}$ for all $i \leq K$. Also $t_{\mathfrak{p}}=t_{\mathfrak{q}}$ which means $\mathfrak{p}, \mathfrak{q} \in P_{K}$, and so

$$
|\theta(\mathfrak{p})-\theta(\mathfrak{q})|=\alpha^{-1} \cdot \sum_{j>K}\left(\Delta_{j \mathfrak{p}}-\Delta_{j \mathfrak{q}}\right)<2^{-K^{2}}
$$

Now if $\mathfrak{p} \neq \mathfrak{q}$ then Lemma 2.1 implies that $|\theta(\mathfrak{p})-\theta(\mathfrak{q})|>\frac{1}{7 \mid \mathfrak{p q |}}>2^{-\frac{1}{c}(K-1)^{2}-3}$. Combining both inequalities we have a contradiction for $K \geq h+1 \geq 3$. So we assume $K \geq h+1$ through all the paper.

Since all the integers $b_{\mathfrak{p}}$ are distinct, we have that

$$
\begin{equation*}
\left|\mathcal{B}_{\alpha, K}\right|=\left|P_{K}\right|=\pi\left(2^{\frac{(K-1)^{2}}{c_{h}}} ; 1,4\right)-\pi\left(2^{\frac{(K-2)^{2}}{c_{h}}} ; 1,4\right) \gg \frac{2^{\frac{K^{2}}{c_{h}}}}{K^{2}} \tag{3.5}
\end{equation*}
$$

We observe also that

$$
b_{\mathfrak{p}}<2^{K^{2}+(2 d+1) K+(d+1)+1} .
$$

Using these estimates we can easily prove that $\mathcal{B}_{\alpha}(x)=x^{\frac{1}{c_{h}}+o(1)}$. Indeed, if K is the integer such that $2^{K^{2}+(2 d+1) K+(d+1)+1}<x \leq 2^{(K+1)^{2}+(2 d+1)(K+1)+(d+1)+1}$ then we have

$$
\begin{equation*}
\mathcal{B}_{\alpha}(x) \geq\left|\mathcal{B}_{\alpha, K}\right|=2^{\frac{1}{c_{h}} K^{2}(1+o(1))}=x^{\frac{1}{c_{h}}+o(1)} \tag{3.6}
\end{equation*}
$$

For the upper bound we have

$$
\mathcal{B}_{\alpha}(x) \leq \#\left\{\mathfrak{p}:|\mathfrak{p}|^{2} \leq 2^{\frac{K^{2}}{c_{h}}}\right\} \leq 2^{\frac{K^{2}}{c_{h}}}=x^{\frac{1}{c_{h}}+o(1)}
$$

There is a compromise at the choice of a particular value of c_{h} for the construction. On one hand larger values of c_{h} capture more information from the Gaussian arguments which brings the sequence $\mathcal{B}_{\alpha}=\left\{b_{\mathfrak{p}}\right\}$ closer to being a B_{h} sequence. On the other hand smaller values of c_{h} provide higher growth of the counting function of \mathcal{B}_{α}.

Clearly \mathcal{B}_{α} would be a B_{h} sequence if for all $l=2, \cdots, h$ it does not contain $b_{\mathfrak{p}_{1}}, \cdots, b_{\mathfrak{p}_{l}}, b_{\mathfrak{p}_{1}^{\prime}}, \cdots, b_{\mathfrak{p}_{l}^{\prime}}$ satisfying

$$
\begin{align*}
& b_{\mathfrak{p}_{1}}+\cdots+b_{\mathfrak{p}_{l}}= \tag{3.7}\\
&\left\{b_{\mathfrak{p}_{1}^{\prime}}+\cdots+b_{l}^{\prime}\right. \\
&\left.b_{1}, \cdots, b_{l}\right\} \cap \quad\left\{b_{1}^{\prime}, \cdots, b_{l}^{\prime}\right\}=\emptyset \tag{3.8}\\
& b_{\mathfrak{p}_{1}} \geq \cdots \geq b_{\mathfrak{p}_{l}} \text { and } \quad \\
& b_{\mathfrak{p}_{1}^{\prime}} \geq \cdots \geq b_{\mathfrak{p}_{l}^{\prime}}
\end{align*}
$$

We say that $\left(\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{l}, \mathfrak{p}_{1}^{\prime}, \ldots, \mathfrak{p}_{l}^{\prime}\right)$ is a bad $2 l$-tuple if the equation 3.7 is satisfied by the corresponding $b_{\mathfrak{p}_{r}}$.

The sequence $\mathcal{B}_{\alpha}=\left\{b_{\mathfrak{p}}\right\}$ we have constructed is not properly a B_{h} sequence. Some repeated sums as in (3.7) will eventually appear, but the particular way to construct the elements $b_{\mathfrak{p}}$ will allow us to study these bad $2 l$-tuples and to prove that there are not too many repeated sums. Then removing the bad elements involved in these bad $2 l$-tuples we obtain a true B_{h} sequence.

Now we will see why blocks of zeroes were added to the binary development of $b_{\mathfrak{p}}$. We can identify each $b_{\mathfrak{p}}$ with a vector as follows:

$$
\begin{aligned}
b_{\mathfrak{p}_{1}}= & \left(\cdots, \mathbf{1}, \Delta_{K_{1} \mathfrak{p}_{1}}, 0, \cdots, 0, \Delta_{K_{2} \mathfrak{p}_{1}}, 0, \cdots, 0, \Delta_{K_{l} \mathfrak{p}_{1}}, 0, \cdots, 0, \Delta_{2 \mathfrak{p}_{1}}, 0, \Delta_{1 \mathfrak{p}_{1}}\right) \\
b_{\mathfrak{p}_{2}}= & \left(\cdots, 0, \cdots \cdots \cdots \cdots \cdots, \mathbf{1}, \Delta_{K_{2} \mathfrak{p}_{2}}, 0, \cdots, 0, \Delta_{K_{l} \mathfrak{p}_{2}}, 0, \cdots, 0, \Delta_{2 \mathfrak{p}_{2}}, 0, \Delta_{1 \mathfrak{p}_{2}}\right) \\
& \vdots \\
b_{\mathfrak{p}_{l}}= & \left(\cdots, 0, \cdots \cdots \cdots \cdots \cdots, 0, \cdots \cdots \cdots \cdots \cdots, \mathbf{1}, \Delta_{K_{l} \mathfrak{p}_{l}}, 0, \cdots, 0, \Delta_{2 \mathfrak{p}_{l}}, 0, \Delta_{1 \mathfrak{p}_{l}}\right),
\end{aligned}
$$

where each comma represents one block of d zeroes. Note that the leftmost part of each vector is null. The value of $d=\left\lceil\log _{2} h\right\rceil$ has been chosen to prevent the propagation of the carry between any two consecutive coordinates separated by a comma in the above identification. So when we sum no more than h integers $b_{\mathfrak{p}}$ we can just sum the corresponding vectors coordinate-wise. This argument implies the following lemma.

Lemma 3.2. Let $\left(\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{l}, \mathfrak{p}_{1}^{\prime}, \cdots, \mathfrak{p}_{l}^{\prime}\right)$ be a bad $2 l$-tuple. Then there are integers $K_{1} \geq \cdots \geq K_{l}$ such that $\mathfrak{p}_{1}, \mathfrak{p}_{1}^{\prime} \in P_{K_{1}}, \cdots, \mathfrak{p}_{l}, \mathfrak{p}_{l}^{\prime} \in P_{K_{l}}$, and we have

$$
\begin{equation*}
\widehat{\alpha \theta\left(\mathfrak{p}_{1}\right)}+\cdots+\widehat{\alpha \theta\left(\mathfrak{p}_{l}\right)}=\widehat{\alpha \theta\left(\mathfrak{p}_{1}^{\prime}\right)}+\cdots+\widehat{\alpha \theta\left(\mathfrak{p}_{l}^{\prime}\right)} . \tag{3.9}
\end{equation*}
$$

Proof. Note that (3.7) implies $t_{\mathfrak{p}_{1}}+\cdots+t_{\mathfrak{p}_{l}}=t_{\mathfrak{p}_{1}^{\prime}}+\cdots+t_{\mathfrak{p}_{l}^{\prime}}$ and $\Delta_{j \mathfrak{p}_{1}}+\cdots+\Delta_{j \mathfrak{p}_{l}}=$ $\Delta_{j \mathfrak{p}_{1}^{\prime}}+\cdots+\Delta_{j \mathfrak{p}_{l}^{\prime}}$ for each j. Using (3.2) we conclude (3.9). As the bad $2 l$-tuple satisfies condition (3.8) we deduce that $\mathfrak{p}_{r}, \mathfrak{p}_{r}^{\prime}$ belongs to the same $P_{K_{r}}$ for all r.

According with the lemma above we will write $E_{2 l}\left(\alpha ; K_{1}, \cdots, K_{l}\right)$ for the set of $\operatorname{bad} 2 l$-tuples $\left(\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{l}^{\prime}\right)$ with $\mathfrak{p}_{r}, \mathfrak{p}_{r}^{\prime} \in P_{K_{r}}, 1 \leq r \leq l$ and

$$
E_{2 l}(\alpha ; K)=\bigcup_{K_{l} \leq \cdots \leq K_{1}=K} E_{2 l}\left(\alpha ; K_{1}, \cdots, K_{l}\right)
$$

where $K=K_{1}$. Also we define the set
$\operatorname{Bad}_{\alpha, K}=\left\{b_{\mathfrak{p}} \in \mathcal{B}_{\alpha, K}: b_{\mathfrak{p}}\right.$ is the largest element involved in some equation 3.7\}.
It is clear that $\sum_{l \leq h}\left|E_{2 l}(\alpha, K)\right|$ is an upper bound for $\left|\operatorname{Bad}_{\alpha, K}\right|$, the number of elements that we need to remove from each $\mathcal{B}_{\alpha, K}$ to get a B_{h} sequence.

We do know how to obtain a good upper bound for $\left|E_{2 l}(\alpha, K)\right|$ for a concrete α, but we can do it for almost α.

Lemma 3.3. For $l=2,3,4$ we have

$$
\int_{1}^{2}\left|E_{2 l}(\alpha, K)\right| \mathrm{d} \alpha \ll K^{m_{l}} 2\left(\frac{2(l-1)}{c_{h}}-1\right)(K-1)^{2}-2 K
$$

for some m_{l}.

The proof of Lemma 3.3 is involved and we postpone it to section $\S 4$. We think that Lemma 3.3 holds for any l but we have not found a proof.
3.2. Last step in the proof of the theorem. For $h=2,3,4$ we have that

$$
\begin{aligned}
\int_{1}^{2} \sum_{K} \frac{\left|\operatorname{Bad}_{\alpha, K}\right|}{\left|\mathcal{B}_{\alpha, K}\right|} \mathrm{d} \alpha & \ll \sum_{K} \frac{\sum_{l \leq h} \int_{1}^{2}\left|E_{2 l}(\alpha, K)\right| \mathrm{d} \alpha}{K^{-2} 2^{\frac{1}{c_{h}}(K-1)^{2}}} \\
& \ll \sum_{K} \frac{\sum_{l \leq h} K^{m_{l}} 2^{\left(\frac{2(l-1)}{c_{h}}-1\right)(K-1)^{2}-2 K}}{K^{-2} 2^{\frac{1}{c_{h}}(K-1)^{2}}} \\
& \ll \sum_{K} K^{m_{l}+2} 2\left(\frac{2(h-1)}{c_{h}}-1-\frac{1}{c_{h}}\right)(K-1)^{2}-2 K
\end{aligned} .
$$

The last sum is finite for $c_{h}=\sqrt{(h-1)^{2}+1}+(h-1)$ which is the largest number for which $\frac{2(h-1)}{c_{h}}-1-\frac{1}{c_{h}} \leq 0$. So for this c_{h} the sum $\sum_{K} \frac{\left|\operatorname{Bad}_{\alpha, K}\right|}{\left|\mathcal{B}_{\alpha, K}\right|}$ is convergent for almost all $\alpha \in[1,2]$. We take one of these α, say α_{0}, and consider the sequence

$$
\mathcal{B}=\bigcup_{K}\left(\mathcal{B}_{\alpha_{0}, K} \backslash \operatorname{Bad}_{\alpha_{0}, K}\right) .
$$

We claim that this sequence satisfies the condition of the theorem. It is clear that this sequence is a B_{h} sequence because we have destroyed all the repeated sums of h elements of $\mathcal{B}_{\alpha_{0}}$ removing all the bad elements from each $\mathcal{B}_{\alpha_{0}, K}$.

On the other hand, the convergence of $\sum_{K} \frac{\left|\operatorname{Bad}_{\alpha_{0}, K}\right|}{\left|\mathcal{B}_{\alpha, K}\right|}$ implies that $\left|\operatorname{Bad}_{\alpha_{0}, K}\right|=$ $o\left(\left|\mathcal{B}_{\alpha, K}\right|\right)$. We proceed as in (3.6) to estimate the counting function of \mathcal{B}. For any x let K the integer such that $2^{K^{2}+(2 d+1) K+(d+1)+1}<x \leq 2^{(K+1)^{2}+(2 d+1)(K+1)+(d+1)+1}$. We have

$$
\mathcal{B}(x) \geq\left|\mathcal{B}_{\alpha_{0}, K}\right|-\left|\operatorname{Bad}_{\alpha_{0}, K}\right|=\left|\mathcal{B}_{\alpha_{0}, K}\right|(1+o(1)) \gg K^{-2} 2^{\frac{1}{c_{h}} K^{2}}=x^{\frac{1}{c_{h}}+o(1)}
$$

For the upper bound, we have

$$
\mathcal{B}(x) \leq \mathcal{B}_{\alpha_{0}}(x)=x^{\frac{1}{c_{h}}+o(1)}
$$

Thus

$$
\mathcal{B}(x)=x^{\sqrt{(h-1)^{2}+1}-(h-1)+o(1)} .
$$

4. Proof of Lemma 3.3

The proof of Lemma 3.3 will be a consequence of Propositions 4.5, 4.6 and 4.7. Before proving these propositions we need to study some properties of the bad $2 l$-tuples and an auxiliary lemma about visible lattice points.
4.1. Some properties of the $2 l$-tuples. For any $2 l$-tuple $\left(\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{l}^{\prime}\right)$ we define the numbers $\omega_{s}=\omega_{s}\left(\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{l}^{\prime}\right)$ by

$$
\omega_{s}=\sum_{r=1}^{s}\left(\theta\left(\mathfrak{p}_{r}\right)-\theta\left(\mathfrak{p}_{r}^{\prime}\right)\right) \quad(s \leq l) .
$$

The next two lemmas contain several properties of the bad $2 l$-tuples.
Lemma 4.1. Let $\left(\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{l}, \mathfrak{p}_{1}^{\prime}, \cdots, \mathfrak{p}_{l}^{\prime}\right)$ be a bad $2 l$-tuple with $K_{1} \geq \cdots \geq K_{l}$ given by Lemma 3.2. We have
i) $\quad\left|\omega_{l}\right| \leq l 2^{-K_{l}^{2}}$,
ii) $\left|\omega_{l-1}\right| \geq 2^{-\frac{1}{c_{h}}\left(K_{l}-1\right)^{2}-4}$,
iii) $\left(K_{l}-1\right)^{2} \leq \frac{\left(K_{1}-1\right)^{2}+\cdots+\left(K_{l-1}-1\right)^{2}}{c_{h}-1}$.

Proof. i) This is a consequence of (3.9) and (3.3):

$$
\left|\omega_{l}\right|=\frac{1}{\alpha}\left|\sum_{r=1}^{l}\left(\alpha \theta\left(\mathfrak{p}_{r}\right)-\alpha \theta\left(\mathfrak{p}_{r}^{\prime}\right)\right)\right| \leq \frac{1}{\alpha}\left(2^{-K_{1}^{2}}+\cdots+2^{-K_{l}^{2}}\right) \leq l 2^{-K_{l}^{2}},
$$

since $\alpha \geq 1$.
ii) Lemma 2.1 implies

$$
\begin{equation*}
\left|\theta\left(\mathfrak{p}_{l}\right)-\theta\left(\mathfrak{p}_{l}^{\prime}\right)\right| \geq \frac{1}{7\left|\mathfrak{p}_{l} \mathfrak{p}_{l}^{\prime}\right|} \geq 2^{-3-\frac{1}{c_{h}}\left(K_{l}-1\right)^{2}} \tag{4.1}
\end{equation*}
$$

and so,

$$
\begin{aligned}
\left|\omega_{l-1}\right| & =\left|\omega_{l}+\theta\left(\mathfrak{p}_{l}^{\prime}\right)-\theta\left(\mathfrak{p}_{l}\right)\right| \geq\left|\theta\left(\mathfrak{p}_{l}^{\prime}\right)-\theta\left(\mathfrak{p}_{l}\right)\right|-\left|\omega_{l}\right| \\
& \geq 2^{-\frac{1}{c_{h}}\left(K_{l}-1\right)^{2}-3}-l 2^{-K_{l}^{2}} \geq 2^{-\frac{1}{c_{h}}\left(K_{l}-1\right)^{2}-4},
\end{aligned}
$$

since $K_{l} \geq h+1 \geq l+1$.
iii) Lema 2.1 implies also that

$$
\left|\omega_{l}\right|=\left|\sum_{r=1}^{l}\left(\theta\left(\mathfrak{p}_{r}\right)-\theta\left(\mathfrak{p}_{r}^{\prime}\right)\right)\right|>\frac{1}{7\left|\mathfrak{p}_{1} \cdots \mathfrak{p}_{l}^{\prime}\right|}>2^{-3-\frac{1}{c_{h}} \sum_{r=1}^{l}\left(K_{r}-1\right)^{2}}
$$

Combining this with i) we obtain

$$
\left(K_{l}-1\right)^{2} \leq \frac{1}{c_{h}-1}\left(\left(K_{1}-1\right)^{2}+\cdots+\left(K_{l-1}-1\right)^{2}\right)+\frac{\log _{2} l-2 K_{l}+4}{1-1 / c_{h}}
$$

The last term is negative because $K_{l} \geq h+1 \geq l+1$ and $l \geq 2$.
Lemma 4.2. Suppose that $\left(\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{l}, \mathfrak{p}_{1}^{\prime}, \cdots, \mathfrak{p}_{l}^{\prime}\right)$ is a bad 2l-tuple.
Then for any $\omega_{s}=\sum_{r=1}^{s}\left(\theta\left(\mathfrak{p}_{r}\right)-\theta\left(\mathfrak{p}_{r}^{\prime}\right)\right)$ with $1 \leq s \leq l-1$ we have

$$
\begin{equation*}
\left\|\alpha 2^{K_{s+1}^{2} \omega_{s}}\right\| \leq s 2^{K_{s+1}^{2}-K_{s}^{2}} \quad(s=1, \cdots, l-1) \tag{4.2}
\end{equation*}
$$

where $\|\cdot\|$ means the distance to the nearest integer.

Proof. Since $0 \leq \alpha \theta(\mathfrak{p})-\widehat{\alpha \theta(\mathfrak{p})} \leq 2^{-K^{2}}$ when $\mathfrak{p} \in P_{K}$, we can write

$$
2^{K_{s+1}^{2}} \alpha \sum_{r=1}^{s}\left(\theta\left(\mathfrak{p}_{r}\right)-\theta\left(\mathfrak{p}_{r}^{\prime}\right)\right)=2^{K_{s+1}^{2}} \sum_{r=1}^{s}\left(\widehat{\alpha \theta\left(\mathfrak{p}_{r}\right)}-\widehat{\alpha \theta\left(\mathfrak{p}_{r}^{\prime}\right)}\right)+\epsilon_{s}
$$

with $\left|\epsilon_{s}\right| \leq s 2^{K_{s+1}^{2}-K_{s}^{2}}$. By Lemma 3.2 we know that $\sum_{r=1}^{l}\left(\widehat{\alpha \theta\left(\mathfrak{p}_{r}\right)}-\widehat{\alpha \theta\left(\mathfrak{p}_{r}^{\prime}\right)}\right)=0$ when $\left(\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{l}, \mathfrak{p}_{1}^{\prime}, \cdots, \mathfrak{p}_{l}^{\prime}\right)$ is a bad $2 l$-tuple. Using this and (3.1) we have that

$$
2^{K_{s+1}^{2}} \sum_{r=s+1}^{l}\left(\widehat{\alpha \theta\left(\mathfrak{p}_{r}^{\prime}\right)}-\widehat{\alpha \theta\left(\mathfrak{p}_{r}\right)}\right)=\sum_{r=s+1}^{l} \sum_{i=1}^{K_{r}^{2}} 2^{K_{s+1}^{2}-i}\left(\delta_{i \mathfrak{p}_{r}^{\prime}}-\delta_{i \mathfrak{p}_{r}}\right)
$$

is an integer, which proves (4.3).

Lemma 4.3.

$$
\int_{1}^{2}\left|E_{2 l}\left(\alpha ; K_{1}, \ldots, K_{l}\right)\right| \mathrm{d} \alpha \ll 2^{K_{l}^{2}-K_{1}^{2}} \sum_{\substack{\left(\mathfrak{p}_{1}, \ldots, \mathfrak{p}^{\prime}\right) \\\left|\omega_{l}\right|<l \cdot 2^{-K_{l}^{2}}}} \frac{\left|\omega_{l-1}\right|}{\left|\omega_{1}\right|} \prod_{j=1}^{l-2}\left(\frac{\left|\omega_{j}\right|}{\left|\omega_{j+1}\right|}+1\right)
$$

Proof. We have seen that if $\left(\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{l}^{\prime}\right) \in E_{2 l}\left(\alpha ; K_{1}, \ldots, K_{l}\right)$, then

$$
\begin{equation*}
\left\|\alpha 2^{K_{s+1}^{2}} \omega_{s}\right\| \leq s 2^{K_{s+1}^{2}-K_{s}^{2}}, s=1, \ldots, l-1 \tag{4.3}
\end{equation*}
$$

Then there exists integers $j_{s}, s=1, \cdots, l-1$ such that

$$
\begin{equation*}
\left|\alpha-\frac{j_{s}}{2^{K_{s+1}^{2}} \omega_{s}}\right| \leq \frac{s 2^{-K_{s}^{2}}}{\left|\omega_{s}\right|} \tag{4.4}
\end{equation*}
$$

Writing $I_{j_{1}}, \cdots, I_{j_{s}}$ for the intervals defined by the inequalities 4.4 we have

$$
\begin{aligned}
\mu\left\{\alpha:\left(\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{l}^{\prime}\right) \in E_{2 l}\left(\alpha ; K_{1}, \ldots, K_{l}\right)\right\} & \leq \sum_{j_{1}, \ldots, j_{l-1}}\left|I_{j_{1}} \cap \cdots \cap I_{j_{l-1}}\right| \\
& \leq \frac{2^{-K_{1}^{2}+1}}{\left|\omega_{1}\right|} \#\left\{\left(j_{1}, \ldots, j_{l-1}\right): \bigcap_{i=1}^{l-1} I_{j_{i}} \neq \emptyset\right\}
\end{aligned}
$$

To estimate this last cardinality note that for all $s=1, \ldots, l-2$ we have $\left|\frac{j_{s}}{2^{K_{s+1}^{2} \omega_{s}}}-\frac{j_{s+1}}{2^{K_{s+2}^{2} \omega_{s+1}}}\right|<\left|\alpha-\frac{j_{s}}{2^{K_{s+1}^{2}} \omega_{s}}\right|+\left|\alpha-\frac{j_{s+1}}{2^{K_{s+2}^{2} \omega_{s+1}}}\right|<\frac{s 2^{-K_{s}^{2}}}{\left|\omega_{s}\right|}+\frac{(s+1) 2^{-K_{s+1}^{2}}}{\left|\omega_{s+1}\right|}$

Thus,

$$
\begin{equation*}
\left|j_{s}-j_{s+1} \frac{2^{K_{s+1}^{2}} \omega_{s}}{2^{K_{s+2}^{2}} \omega_{s+1}}\right|<s 2^{-K_{s}^{2}+K_{s+1}^{2}}+\frac{(s+1)\left|\omega_{s+1}\right|}{\left|\omega_{s}\right|} \tag{4.5}
\end{equation*}
$$

We observe that for each $s=1, \ldots, l-2$ and for each j_{s+1}, the number of j_{s} satisfying 4.5) is bounded by $2\left(s 2^{-K_{s}^{2}+K_{s+1}^{2}}+\frac{(s+1)\left|\omega_{s}\right|}{\left|\omega_{s+1}\right|}\right)+1 \ll \frac{\left|\omega_{s+1}\right|}{\left|\omega_{s}\right|}+1$.

Note also that

$$
\begin{aligned}
\left|j_{l-1}\right| & \leq 2^{K_{l}^{2}}\left|\omega_{l-1}\right|\left(\left|\frac{j_{l-1}}{2^{K_{l}^{2}} \omega_{l-1}}-\alpha\right|+|\alpha|\right) \\
& \leq 2^{K_{l}^{2}}\left|\omega_{l-1}\right|\left(\frac{(l-1) 2^{K_{l-1}^{2}}}{\left|\omega_{l-1}\right|}+2\right) \\
& \leq l-1+2^{K_{l}^{2}+1}\left|\omega_{l-1}\right| \\
& \ll 2^{K_{l}^{2}+1}\left|\omega_{l-1}\right|
\end{aligned}
$$

In the last step we have used the condition iii).
Putting all these observations together we complete the proof.
4.2. Visible points. We will denote by \mathcal{V} the set of lattice points visible from the origin excluding $(1,0)$. In the next subsection we will use several times the following lemma.

Lemma 4.4. The number of integral lattice points visible from the origin that are contained in a circular sector centred at the origin of radius R and angle ϵ is at most $\epsilon R^{2}+1$. In other words, for any real number t

$$
\#\{\nu \in \mathcal{V},|\nu|<R,\|\theta(\nu)+t\|<\epsilon\} \leq \epsilon R^{2}+1
$$

Furthermore,

$$
\#\{\nu \in \mathcal{V},|\nu|<R,\|\theta(\nu)\|<\epsilon\} \leq \epsilon R^{2}
$$

Proof. We arrange the N lattice points inside de sector $\nu_{1}, \nu_{2}, \cdots, \nu_{N}$ that are visible from the origin O by the value of their argument so that $\theta\left(\nu_{i}\right)<\theta\left(\nu_{j}\right)$ for $1 \leq i<j \leq N$. For each $i=1, \ldots, N-1$ the three lattice points O, ν_{i}, ν_{i+1} define a triangle T_{i} with $\operatorname{Area}\left(T_{i}\right) \geq 1 / 2$, that does not contain any other lattice point.

Since all T_{i} are inside the circular sector their union covers at most the area of the sector. They don't overlap pairwise, thus

$$
N-1 \leq \sum_{i=1}^{N} 2 \cdot \operatorname{Area}\left(T_{i}\right)=2 \cdot \operatorname{Area}\left(\bigcup_{i=1}^{N} T_{i}\right) \leq R^{2} \epsilon
$$

For the last statement we add $\nu_{0}=(1,0)$ to our N visible points ν_{1}, \ldots, ν_{N} and we repeat the argument.
4.3. Estimates for the number of bad $2 l$-tuples $(l=2,3,4)$. We start with the case $l=2$ which was considered by Ruzsa for B_{2} sequences. In the sequel all lattice points ν appearing in the proofs belong to \mathcal{V} and Lemma 4.4 applies.

Proposition 4.5. For any $c_{h}>2$ we have

$$
\int_{1}^{2}\left|E_{4}(\alpha ; K)\right| \mathrm{d} \alpha \ll K 2^{\left(\frac{2}{c_{h}-1}-1\right)(K-1)^{2}-2 K} .
$$

Proof. Lemma 4.3 implies that

$$
\int_{1}^{2}\left|E_{4}\left(\alpha ; K_{1}, K_{2}\right)\right| \mathrm{d} \alpha \ll 2^{K_{2}^{2}-K_{1}^{2}} \#\left\{\left(\mathfrak{p}_{1}, \mathfrak{p}_{1}^{\prime}, \mathfrak{p}_{2}, \mathfrak{p}_{2}^{\prime}\right):\left|\omega_{2}\right| \leq 2 \cdot 2^{-K_{2}^{2}}\right\}
$$

We get an upper bound for the second factor here by using Lemma 4.4 to estimate the number of lattice points of the form $\nu_{2}=\mathfrak{p}_{1} \mathfrak{p}_{1}^{\prime} \overline{\mathfrak{p}_{2} \mathfrak{p}_{2}^{\prime}}$ such that $\left\|\theta\left(\nu_{2}\right)\right\|<\epsilon,\left|\nu_{2}\right|<$ R, with $\epsilon=2 \cdot 2^{-K_{2}^{2}}$ and $R=2^{\frac{1}{c_{h}}\left(\left(K_{1}-1\right)^{2}+\left(K_{2}-1\right)^{2}\right)}$. We have

$$
\begin{aligned}
\int_{1}^{2}\left|E_{4}\left(\alpha ; K_{1}, K_{2}\right)\right| \mathrm{d} \alpha & \ll 2^{K_{2}^{2}-K_{1}^{2}} \cdot 2^{\frac{2}{c_{h}}\left(\left(K_{1}-1\right)^{2}+\left(K_{2}-1\right)^{2}\right)-K_{2}^{2}} \\
& \ll 2^{\frac{2}{c_{h}}\left(\left(K_{1}-1\right)^{2}+\left(K_{2}-1\right)^{2}\right)-K_{1}^{2}} .
\end{aligned}
$$

By Lemma 4.1 iv) we also have $\left(K_{2}-1\right)^{2} \leq \frac{\left(K_{1}-1\right)^{2}}{c_{h}-1}$, thus

$$
\int_{1}^{2}\left|E_{4}\left(\alpha ; K_{1}, K_{2}\right)\right| \mathrm{d} \alpha \ll 2^{\left(\frac{2}{c_{h}-1}-1\right) K_{1}^{2}-2 K_{1}}
$$

and

$$
\int_{1}^{2}\left|E_{4}(\alpha ; K)\right| \mathrm{d} \alpha=\sum_{K_{2} \leq K} \int_{1}^{2}\left|E_{4}\left(\alpha ; K, K_{2}\right)\right| \mathrm{d} \alpha \ll K 2^{\left(\frac{2}{c_{h}-1}-1\right)(K-1)^{2}-2 K} .
$$

Proposition 4.6. For any $c_{h}>3$ we have

$$
\int_{1}^{2}\left|E_{6}(\alpha ; K)\right| \mathrm{d} \alpha \ll K^{2} 2^{\left(\frac{4}{c_{h}-1}-1\right)(K-1)^{2}-2 K}
$$

Proof. Lemma 4.3 says that

$$
\int_{1}^{2}\left|E_{6}\left(\alpha ; K_{1}, K_{2}, K_{3}\right)\right| \mathrm{d} \alpha \ll 2^{K_{3}^{2}-K_{1}^{2}} \sum_{\substack{\left(\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{3}^{\prime}\right) \\\left|\omega_{3}\right| \leq 3 \cdot 2^{-K_{3}^{2}}}} \frac{1}{\left|\omega_{1}\right|}
$$

Applying Lemma 4.4 by writing $\nu_{1}=\mathfrak{p}_{1} \overline{\mathfrak{p}_{1}^{\prime}}$ and $\nu_{2}=\mathfrak{p}_{2} \mathfrak{p}_{3} \overline{\mathfrak{p}_{2}^{\prime} \mathfrak{p}_{3}^{\prime}}$, we have that

$$
\begin{aligned}
\sum_{\substack{\left(\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{3}^{\prime}\right) \\
\left|\omega_{3}\right| \leq 3 \cdot 2^{-K_{3}^{2}}}} \frac{1}{\left|\omega_{1}\right|} & \ll \sum_{m} 2^{m} \#\left\{\left(\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{3}^{\prime}\right):\left|\omega_{1}\right| \leq 2^{-m},\left|\omega_{3}\right| \leq 3 \cdot 2^{-K_{3}^{2}}\right\} \\
& \ll \sum_{m} 2^{m} \#\left\{\left(\nu_{1}, \nu_{2}\right):\left\|\theta\left(\nu_{1}\right)\right\| \leq 2^{-m},\left\|\theta\left(\nu_{1}\right)+\theta\left(\nu_{2}\right)\right\| \leq 3 \cdot 2^{-K_{3}^{2}}\right\} \\
& \ll \sum_{m} 2^{m} \sum_{\left|\theta\left(\nu_{1}\right)\right| \leq 2^{-m}} \#\left\{\nu_{2}:\left\|\theta\left(\nu_{1}\right)+\theta\left(\nu_{2}\right)\right\| \leq 3 \cdot 2^{-K_{3}^{2}}\right\} \\
& \ll \sum_{m} 2^{m} \cdot 2^{\frac{2}{c_{h}}\left(K_{1}-1\right)^{2}-m}\left(2^{\frac{2}{c_{h}}\left(\left(K_{2}-1\right)^{2}+\left(K_{3}-1\right)^{2}\right)-K_{3}^{2}}+1\right) .
\end{aligned}
$$

Thus, using the inequalities $K_{3} \leq K_{2} \leq K_{1}$ and $\left(K_{3}-1\right)^{2} \leq \frac{\left(K_{2}-1\right)^{2}+\left(K_{1}-1\right)^{2}}{c_{h}-1}$ we have

$$
\begin{aligned}
& \int_{1}^{2}\left|E_{6}\left(\alpha ; K_{1}, K_{2}, K_{3}\right)\right| \mathrm{d} \alpha \ll K_{1}^{2} 2^{K_{3}^{2}-K_{1}^{2}+\frac{2}{c_{h}}\left(K_{1}-1\right)^{2}}\left(2^{\frac{2}{c_{h}}\left(\left(K_{2}-1\right)^{2}+\left(K_{3}-1\right)^{2}\right)-K_{3}^{2}}+1\right) \\
& \ll K_{1}^{2} 2^{-K_{1}^{2}+\frac{2}{c_{h}}\left(\left(K_{1}-1\right)^{2}+\left(K_{2}-1\right)^{2}+\left(K_{3}-1\right)^{2}\right)}+K_{1}^{2} 2^{K_{3}^{2}-K_{1}^{2}+\frac{2}{c_{h}}\left(K_{1}-1\right)^{2}} \\
& \ll K_{1}^{2} 2^{-\left(K_{1}-1\right)^{2}+\frac{2}{c_{h}}\left(\left(K_{1}-1\right)^{2}+\left(K_{2}-1\right)^{2}+\left(K_{3}-1\right)^{2}\right)-2 K_{1}} \\
&+K_{1}^{2} 2^{\left(K_{3}-1\right)^{2}-\left(K_{1}-1\right)^{2}+\frac{2}{c_{h}}\left(K_{1}-1\right)^{2}} \\
& \ll K_{1}^{2} 2^{\left(\frac{4}{c_{h}-1}-1\right)\left(K_{1}-1\right)^{2}-2 K_{1}}+K_{1}^{2} 2^{\left(\frac{4}{c_{h}-1}-1\right)\left(K_{1}-1\right)^{2}-\frac{2}{c_{h}\left(c_{h}-1\right)}\left(K_{1}-1\right)^{2}} \\
& \ll K_{1}^{2} 2^{\left(\frac{4}{c_{h}-1}-1\right)\left(K_{1}-1\right)^{2}-2 K_{1}} .
\end{aligned}
$$

Then we can write

$$
\int_{1}^{2}\left|E_{6}(\alpha ; K)\right| \mathrm{d} \alpha=\sum_{K_{3} \leq K_{2} \leq K} \int_{1}^{2}\left|E_{6}\left(\alpha ; K, K_{2}, K_{3}\right)\right| \mathrm{d} \alpha \ll K^{4} 2^{\left(\frac{4}{c-1}-1\right)(K-1)^{2}-2 K}
$$

as claimed.
Proposition 4.7. For any $c_{h}>4$ we have

$$
\int_{1}^{2}\left|E_{8}(\alpha ; K)\right| \mathrm{d} \alpha \ll K^{2} 2^{\left(\frac{6}{c_{h}-1}-1\right)(K-1)^{2}-2 K}
$$

Proof. Considering the two possibilities $\left|\omega_{1}\right|<\left|\omega_{2}\right|$ and $\left|\omega_{1}\right| \geq\left|\omega_{2}\right|$ we get the inequality $\frac{\left|\omega_{3}\right|}{\left|\omega_{1}\right|}\left(\frac{\left|\omega_{1}\right|}{\left|\omega_{2}\right|}+1\right)\left(\frac{\left|\omega_{2}\right|}{\left|\omega_{3}\right|}+1\right) \ll \frac{\left|\omega_{3}\right|}{\left|\omega_{1}\right|}\left(\frac{\left|\omega_{1}\right|}{\left|\omega_{2}\right|}+1\right) \frac{1}{\left|\omega_{3}\right|} \ll \max \left(\frac{1}{\left|\omega_{1}\right|}, \frac{1}{\left|\omega_{2}\right|}\right)$. This combined with Lemma 4.3 implies that

$$
\int_{1}^{2}\left|E_{8}\left(\alpha, K_{1}, K_{2}, K_{3}, K_{4}\right)\right| \mathrm{d} \alpha \ll 2^{-K_{1}^{2}+K_{4}^{2}}\left(\sum_{\substack{\left(\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{4}^{\prime}\right) \\\left|\omega_{4}\right| \leq 4 \cdot 2^{-K_{4}^{2}}}} \frac{1}{\left|\omega_{1}\right|}+\sum_{\substack{\left(\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{4}^{\prime}\right) \\\left|\omega_{4}\right| \leq 4 \cdot 2^{-K_{4}^{2}}}} \frac{1}{\left|\omega_{2}\right|}\right)
$$

Applying Lemma 4.4 with the notation $\nu_{1}=\mathfrak{p}_{1} \overline{\mathfrak{p}_{1}^{\prime}}$ and $\nu_{2}=\mathfrak{p}_{2} \mathfrak{p}_{3} \mathfrak{p}_{4} \overline{\mathfrak{p}_{2}^{\prime} \mathfrak{p}_{3}^{\prime} \mathfrak{p}_{4}^{\prime}}$, we have that

$$
\begin{aligned}
\sum_{\substack{\left(\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{4}^{\prime}\right) \\
\left|\omega_{4}\right| \leq 4 \cdot 2^{-K_{4}^{2}}}} \frac{1}{\left|\omega_{1}\right|} & \ll \sum_{m} 2^{m} \#\left\{\left(\mathfrak{p}_{1}, \ldots, \overline{\mathfrak{p}_{4}}\right):\left|\omega_{1}\right|<2^{-m},\left|\omega_{4}\right| \leq 4 \cdot 2^{-K_{4}^{2}}\right\} \\
& \ll \sum_{m} 2^{m} \#\left\{\left(\nu_{1}, \nu_{2}\right):\left\|\theta\left(\nu_{1}\right)\right\| \leq 2^{-m},\left\|\theta\left(\nu_{1}\right)+\theta\left(\nu_{2}\right)\right\| \leq 4 \cdot 2^{-K_{4}^{2}}\right\} \\
& \ll \sum_{m} \sum_{\left\|\theta\left(\nu_{1}\right)\right\|<2^{-m}} \#\left\{\nu_{2}:\left\|\theta\left(\nu_{1}\right)+\theta\left(\nu_{2}\right)\right\| \leq 4 \cdot 2^{-K_{4}^{2}}\right\} \\
& \ll \sum_{m} 2^{\frac{2}{c_{h}}\left(K_{1}-1\right)^{2}}\left(2^{\frac{2}{c_{h}}\left(\left(K_{2}-1\right)^{2}+\left(K_{3}-1\right)^{2}+\left(K_{4}-1\right)^{2}\right)-K_{4}^{2}}+1\right) \\
& \ll K_{1}^{2} 2^{\frac{2}{c_{h}}\left(\left(K_{1}-1\right)^{2}+\left(K_{2}-1\right)^{2}+\left(K_{3}-1\right)^{2}+\left(K_{4}-1\right)^{2}\right)-K_{4}^{2}}+K_{1}^{2} 2^{\frac{2}{c_{h}}\left(K_{1}-1\right)^{2}} .
\end{aligned}
$$

Similarly, but writing now $\nu_{1}=\mathfrak{p}_{1} \mathfrak{p}_{2} \overline{\mathfrak{p}_{1}^{\prime} \mathfrak{p}_{2}^{\prime}}$ and $\nu_{2}=\mathfrak{p}_{3} \mathfrak{p}_{4} \overline{\mathfrak{p}_{3}^{\prime} \mathfrak{p}_{4}^{\prime}}$ we have

$$
\begin{aligned}
\sum_{\substack{\left(\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{4}^{\prime}\right) \\
\left|\omega_{4}\right| \leq 4 \cdot 2^{-K_{4}^{2}}}} \frac{1}{\left|\omega_{2}\right|} & \ll \sum_{m} 2^{m} \#\left\{\left(\mathfrak{p}_{1}, \ldots, \overline{\mathfrak{p}_{4}}\right):\left|\omega_{2}\right| \leq 2^{-m},\left|\omega_{4}\right| \leq 4 \cdot 2^{-K_{4}^{2}}\right\} \\
& \ll \sum_{m \leq K_{4}^{2}} 2^{m} \#\left\{\left(\nu_{1}, \nu_{2}\right):\left\|\theta\left(\nu_{1}\right)\right\| \leq 2^{-m},\left\|\theta\left(\nu_{1}\right)+\theta\left(\nu_{2}\right)\right\| \leq 4 \cdot 2^{-K_{4}^{2}}\right\} \\
& +\sum_{m>K_{4}^{2}} 2^{m} \#\left\{\left(\nu_{1}, \nu_{2}\right):\left\|\theta\left(\nu_{1}\right)\right\| \leq 2^{-m},\left\|\theta\left(\nu_{1}\right)+\theta\left(\nu_{2}\right)\right\| \leq 4 \cdot 2^{-K_{4}^{2}}\right\} \\
& =S_{1}+S_{2}
\end{aligned}
$$

We observe that if $m \leq K_{4}^{2}$ then $\left\|\theta\left(\nu_{2}\right)\right\| \leq\left\|\theta\left(\nu_{1}\right)+\theta\left(\nu_{2}\right)\right\|+\left\|\theta\left(\nu_{1}\right)\right\| \leq 5 \cdot 2^{-m}$. Thus

$$
\begin{aligned}
S_{1} & \ll \sum_{m \leq K_{4}^{2}} 2^{m} \#\left\{\left(\nu_{1}, \nu_{2}\right):\left\|\theta\left(\nu_{2}\right)\right\| \leq 5 \cdot 2^{-m},\left\|\theta\left(\nu_{1}\right)+\theta\left(\nu_{2}\right)\right\| \leq 4 \cdot 2^{-K_{4}^{2}}\right\} \\
& \ll \sum_{m} 2^{m} \sum_{\left\|\theta\left(\nu_{2}\right)\right\| \leq 5 \cdot 2^{-m}} \#\left\{\nu_{1}:\left\|\theta\left(\nu_{1}\right)+\theta\left(\nu_{2}\right)\right\| \leq 4 \cdot 2^{-K_{4}^{2}}\right\} \\
& \ll \sum_{m} 2^{m} \cdot 2^{\frac{2}{c_{h}}\left(\left(K_{3}-1\right)^{2}+\left(K_{4}-1\right)^{2}\right)-m}\left(2^{\frac{2}{c_{h}}\left(\left(K_{1}-1\right)^{2}+\left(K_{2}-1\right)^{2}\right)-K_{4}^{2}}+1\right) \\
& \ll K_{1}^{2} 2^{\frac{2}{c_{h}}\left(\left(K_{1}-1\right)^{2}+\left(K_{2}-1\right)^{2}+\left(K_{3}-1\right)^{2}+\left(K_{4}-1\right)^{2}\right)-K_{4}^{2}}+K_{1}^{2} 2^{\frac{2}{c_{h}}\left(\left(K_{3}-1\right)^{2}+\left(K_{4}-1\right)^{2}\right) .} .
\end{aligned}
$$

To estimate S_{2}, we observe that if $m>K_{4}^{2}$ then $\left\|\theta\left(\nu_{2}\right)\right\| \leq\left\|\theta\left(\nu_{1}\right)+\theta\left(\nu_{2}\right)\right\|+$ $\left\|\theta\left(\nu_{1}\right)\right\| \leq 5 \cdot 2^{-K_{4}^{2}}$. Thus

$$
\begin{aligned}
S_{2} & \ll \sum_{m>K_{4}^{2}} 2^{m} \#\left\{\left(\nu_{1}, \nu_{2}\right):\left\|\theta\left(\nu_{1}\right)\right\| \leq 2^{-m},\left\|\theta\left(\nu_{2}\right)\right\| \leq 5 \cdot 2^{-K_{4}^{2}}\right\} \\
& \ll \sum_{m} 2^{m} \cdot 2^{\frac{2}{c_{h}}\left(\left(K_{1}-1\right)^{2}+\left(K_{2}-1\right)^{2}\right)-m} \cdot 2^{\frac{2}{c_{h}}\left(\left(K_{3}-1\right)^{2}+\left(K_{4}-1\right)^{2}\right)-K_{4}^{2}} \\
& \ll K_{1}^{2} 2^{\frac{2}{c_{h}}\left(\left(K_{1}-1\right)^{2}+\left(K_{2}-1\right)^{2}+\left(K_{3}-1\right)^{2}+\left(K_{4}-1\right)^{2}\right)-K_{4}^{2}} .
\end{aligned}
$$

Putting together the estimates we have obtained for $\sum \frac{1}{\left|\omega_{1}\right|}$ and $\sum \frac{1}{\left|\omega_{2}\right|}$ we get

$$
\begin{aligned}
\int_{1}^{2}\left|E_{8}\left(\alpha, K_{1}, K_{2}, K_{3}, K_{4}\right)\right| \mathrm{d} \alpha & \ll K_{1}^{2} 2^{\frac{2}{c_{h}}\left(\left(K_{1}-1\right)^{2}+\left(K_{2}-1\right)^{2}+\left(K_{3}-1\right)^{2}+\left(K_{4}-1\right)^{2}\right)-K_{1}^{2}} \\
& +K_{1}^{2} 2^{-K_{1}^{2}+K_{4}^{2}+\frac{2}{c_{h}}\left(K_{1}-1\right)^{2}} \\
& +K_{1}^{2} 2^{K_{4}^{2}-K_{1}^{2}+\frac{2}{c_{h}}\left(\left(K_{3}-1\right)^{2}+\left(K_{4}-1\right)^{2}\right)} \\
& =T_{1}+T_{2}+T_{3} .
\end{aligned}
$$

Using the inequalities $\left(K_{4}-1\right)^{2} \leq \frac{1}{c_{h}-1}\left(\left(K_{1}-1\right)^{2}+\left(K_{2}-1\right)^{2}+\left(K_{3}-1\right)^{2}\right)$ and $K_{4} \leq K_{3} \leq K_{2} \leq K_{1}$ we have

$$
\begin{aligned}
T_{1} & \ll K_{1}^{2} 2\left(-1+\frac{6}{c_{h}-1}\right)\left(K_{1}-1\right)^{2}-2 K_{1} \\
T_{2} & \ll K_{1}^{2} 2^{-\left(K_{1}-1\right)^{2}+\left(K_{4}-1\right)^{2}+\frac{2}{c_{h}}\left(K_{1}-1\right)^{2}} \\
& \ll K_{1}^{2} 2\left(-1+\frac{3}{c_{h}-1}+\frac{2}{c_{h}}\right)\left(K_{1}-1\right)^{2} \\
& \ll K_{1}^{2} 2\left(-1+\frac{6}{c_{h}-1}\right)\left(K_{1}-1\right)^{2}-2 K_{1} \\
T_{3} & \ll K_{1}^{2} 2^{\left(K_{4}-1\right)^{2}-\left(K_{1}-1\right)^{2}+\frac{2}{c_{h}}\left(\left(K_{3}-1\right)^{2}+\left(K_{4}-1\right)^{2}\right)} \\
& \ll K_{1}^{2} 2\left(1+\frac{2}{c_{h}}\right) \frac{1}{c_{h}-1}\left(\left(K_{1}-1\right)^{2}+\left(K_{2}-1\right)^{2}+\left(K_{3}-1\right)^{2}\right)-\left(K_{1}-1\right)^{2}+\frac{2}{c_{h}}\left(K_{3}-1\right)^{2} \\
& \ll K_{1}^{2} 2\left(\left(1+\frac{2}{c_{h}}\right) \frac{3}{c_{h}-1}-1+\frac{2}{c_{h}}\right)\left(K_{1}-1\right)^{2} \\
& \ll K_{1}^{2} 2\left(-1+\frac{6}{c_{h}-1}\right)\left(K_{1}-1\right)^{2}-2 K_{1}
\end{aligned}
$$

since $c_{h}>4$. Finally,

$$
\begin{aligned}
\int_{1}^{2}\left|E_{8}(\alpha, K)\right| \mathrm{d} \alpha & \ll \sum_{K_{4} \leq K_{3} \leq K_{2} \leq K} K^{2} 2^{\left(-1+\frac{6}{c_{h}-1}\right)(K-1)^{2}-2 K} \\
& \ll K^{5} 2^{\left(-1+\frac{6}{c_{h}-1}\right)(K-1)^{2}-2 K}
\end{aligned}
$$

as claimed.

References

[1] M. Ajtai, J. Komlós, and E. Szemerédi, A dense infinite Sidon sequence, European J. Combin. 2 (1981), 1-11.
[2] Bose, R.C. and Chowla, S., Theorems in the additive theory of numbers, Comment. Math. Helv. 37 (1962/1963), 141-147.
[3] Cilleruelo, J. New upper bounds for B_{h} sequences, Advances in Mathematics, vol 159, n ${ }^{\circ} 1$ (2001).
[4] Cilleruelo, J. and Ruzsa, I. Real and p-adic Sidon sequences, Acta Sci. Math. (Szegez) vol 70, $n^{\circ} 3-4$, (1983).
[5] P. Erdős and P. Turan, On a problem of Sidon in additive number theory and on some related problems, J. London Math. Soc. 16 (1941), 212-215; P. Erdős, Addendum 19 (1944), 208.
[6] Gómez, C.A. and Trujillo, C.A. Una nueva construcción de conjuntos B_{h} modulares Matemáticas: Enseñanza Universitaria Vol. XIX, No 1, Junio (2011) 53-62.
[7] Green, B. The number of squares and $B_{h}[g]$ sets Acta Arith. 100 (2001), no. 4, 365-390.
[8] Halberstam, H. and Roth, K.F. Sequences Springer-Verlag, (1983).
[9] Maldonado, J. A remark on Ruzsa's construction of an infinite Sidon set arXiv:1103.5732 (2011).
[10] O'Bryant, K. A Complete Annotated Bibliography of Work Related to Sidon Sequences The electronic journal of combinatorics, DS11 (2004)
[11] Ruzsa, Imre Z. An Infinite Sidon Sequence Journal of Number Theory, 68, 63-71 (1998).
[12] Singer, J. A theorem in finite projective geometry and some applications to number theory, Trans. Amer. Math. Soc. 43 (1938), 377-385.

Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM) and Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049, Madrid, España

E-mail address: franciscojavier.cilleruelo@uam.es

Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049, Madrid, España

E-mail address: rafael.tesoro@estudiante.uam.es

