DENSE INFINITE B_h SEQUENCES

JAVIER CILLERUELO AND RAFAEL TESORO

ABSTRACT. For h=3 and h=4 we prove the existence of infinite B_h sequences \mathcal{B} with counting function

$$\mathcal{B}(x) = x^{\sqrt{(h-1)^2 + 1} - (h-1) + o(1)}.$$

This result extends a construction of I. Ruzsa for B_2 sequences.

1. Introduction

Let $h \geq 2$ be an integer. We say that a sequence \mathcal{B} of positive integers is a B_h sequence if all the sums

$$b_1 + \dots + b_h$$
, $(b_k \in \mathcal{B}, 1 \le k \le h)$,

are distinct subject to $b_1 \leq b_2 \leq \ldots \leq b_h$. The study of the size of finite B_h sets (or the growing of the counting function of infinite B_h sequences) is a classic topic in combinatorial number theory. We define

$$F_h(n) = \max\{|\mathcal{B}|: \mathcal{B} \text{ is } B_h, \mathcal{B} \subset [1, n]\}.$$

A trivial counting argument proves that $F_h(n) \leq (C_h + o(1))n^{1/h}$ for a constant C_h (see [3] and [7] for non trivial upper bounds for C_h) and consequently that $\mathcal{B}(x) \ll x^{1/h}$ when \mathcal{B} is an infinite B_h sequence.

There are three algebraic constructions ([2], [12] and [6]) of finite B_h sets showing that $F_h(n) \geq n^{1/h}(1+o(1))$. It is probably true that $F_h(n) \sim n^{1/h}$ but this is an open problem, except for the case h=2 for which Erdős and Turan [5] did prove that $F_2(n) \sim n^{1/2}$. It is unknown whether $\lim_{n\to\infty} F_h(n)/n^{1/h}$ exists for $h\geq 3$. For further information about B_h sequences see [8, § II.2] or [10].

Erdős conjectured for all $\epsilon > 0$ the existence of an infinite B_h sequence \mathcal{B} with counting function $\mathcal{B}(x) \gg x^{1/h-\epsilon}$. It is believed that ϵ cannot be removed from the last exponent, however this has only been proved for h even. On the other hand, the *greedy* algorithm produces an infinite B_h sequence \mathcal{B} with

(1.1)
$$\mathcal{B}(x) \gg x^{\frac{1}{2h-1}} \quad (h \ge 2).$$

Until now the exponent 1/(2h-1) has been the largest known for the growth of a B_h sequence when $h \geq 3$. For the case h = 2, Atjai, Komlós and Szemerédi [1] proved that there exists a B_2 sequence (also called a Sidon sequence) with $\mathcal{B}(x) \gg (x \log x)^{1/3}$, improving by a power of logarithm the lower bound (1.1). So

Date: 2012.

far the highest improvement of (1.1) for the case h = 2 was achieved by Ruzsa ([11]). He constructed, in a clever way, an infinite Sidon sequence \mathcal{B} satisfying

$$\mathcal{B}(x) = x^{\sqrt{2} - 1 + o(1)}.$$

Our aim is to adapt Ruzsa's ideas to build dense infinite B_3 and B_4 sequences and so improve the lower bound (1.1) for h = 3 and h = 4.

Theorem 1.1. For h = 2, 3, 4 there is an infinite B_h sequence \mathcal{B} with counting function

$$\mathcal{B}(x) = x^{\sqrt{(h-1)^2 + 1} - (h-1) + o(1)}.$$

The starting point in Ruzsa's construction were the numbers $\log p$, p prime, which form an infinite Sidon set of real numbers. Instead we part from the arguments of the Gaussian primes, which also have the same B_h property with the additional advantage of being a bounded sequence. This idea was suggested in [4] to simplify the original construction of Ruzsa and was written in detail for B_2 sequences in [9].

We believe that the theorem can be extended to all h, but we have not found yet a proof. Indeed we have written the core of the proof for all $h \geq 2$ except for Lemma 3.3 where we have considered only the cases h = 2, 3, 4 since the technical difficulties become significantly more involved as h increases.

2. The Gaussian arguments

For each rational prime $p \equiv 1 \pmod{4}$ we consider the Gaussian prime \mathfrak{p} of $\mathbb{Z}[i]$ such that

$$\mathfrak{p} := a + bi, \qquad p = a^2 + b^2, \quad a > b > 0,$$

so the argument of \mathfrak{p} defined by $\mathfrak{p} = \sqrt{p} \ e^{2\pi i \theta(\mathfrak{p})}$ is a real number in the interval (0, 1/8). We will use several times through the paper the following lemma that can be seen as a measure of the quality of the B_h property of this sequence of real numbers.

Lemma 2.1. Let $\mathfrak{p}_1, \dots, \mathfrak{p}_h, \mathfrak{p}'_1, \dots, \mathfrak{p}'_h$ be distinct Gaussian primes satisfying $0 < \theta(\mathfrak{p}_r), \theta(\mathfrak{p}'_r) < 1/8, \ r = 1, \dots, h$. The following inequality holds:

$$\left| \sum_{r=1}^{h} \left(\theta(\mathfrak{p}_r) - \theta(\mathfrak{p}'_r) \right) \right| > \frac{1}{7 \left| \mathfrak{p}_1 \cdots \mathfrak{p}_h \right| \mathfrak{p}'_1 \cdots \mathfrak{p}'_h}.$$

Proof. It is clear that

(2.1)
$$\sum_{r=1}^{h} (\theta(\mathfrak{p}_r) - \theta(\mathfrak{p}'_r)) \equiv \theta(\mathfrak{p}_1 \cdots \mathfrak{p}_h \overline{\mathfrak{p}'_1 \cdots \mathfrak{p}'_h}) \pmod{1}.$$

Since $\mathbb{Z}[i]$ is a unique factorization domain, all the primes are in the first octant and are all distinct, the Gaussian integer $\mathfrak{p}_1 \cdots \mathfrak{p}_h \overline{\mathfrak{p}'_1 \cdots \mathfrak{p}'_h}$ cannot be a real integer.

Using this fact and the inequality $\arctan(1/x) > 0.99/x$ for $x \ge \sqrt{5 \cdot 13}$ we have

$$(2.2) |\theta(\mathfrak{p}_{1}\cdots\mathfrak{p}_{h}\overline{\mathfrak{p}'_{1}\cdots\mathfrak{p}'_{h}})| \geq ||\theta(\mathfrak{p}_{1}\cdots\mathfrak{p}_{h}\overline{\mathfrak{p}'_{1}\cdots\mathfrak{p}'_{h}})||$$

$$\geq \frac{1}{2\pi}\arctan\left(\frac{1}{|\mathfrak{p}_{1}\cdots\mathfrak{p}_{h}\overline{\mathfrak{p}'_{1}}\cdots\overline{\mathfrak{p}'_{h}}|}\right)$$

$$\geq \frac{1}{7|\mathfrak{p}_{1}\cdots\mathfrak{p}_{h}\overline{\mathfrak{p}'_{1}}\cdots\overline{\mathfrak{p}'_{h}}|},$$

where $\|\cdot\|$ means the distance to \mathbb{Z} . The lemma follows from (2.1) and (2.2). \square

We illustrate the B_h property of the arguments of the Gaussian primes with a quick construction, based on them, of a finite B_h set which is only a $\log x$ factor below the optimal bound.

Theorem 2.2. The set $\mathcal{A} = \{ \lfloor x\theta(\mathfrak{p}) \rfloor, \ |\mathfrak{p}| \leq \left(\frac{x}{7h}\right)^{\frac{1}{2h}} \} \subset [1, x] \text{ is a } B_h \text{ set with } |\mathcal{A}| \gg x^{1/h}/\log x.$

Proof. If

$$|x\theta(\mathfrak{p}_1)| + \cdots + |x\theta(\mathfrak{p}_h)| = |x\theta(\mathfrak{p}_1')| + \cdots + |x\theta(\mathfrak{p}_h')|$$

then

$$x |\theta(\mathfrak{p}_1) + \dots + \theta(\mathfrak{p}_h) - \theta(\mathfrak{p}'_1) - \dots - \theta(\mathfrak{p}'_h)| \le h.$$

If the Gaussian primes are distinct then Lemma 2.1 implies that

$$|\theta(\mathfrak{p}_1) + \dots + \theta(\mathfrak{p}_h) - \theta(\mathfrak{p}_1') - \dots - \theta(\mathfrak{p}_h')| > \frac{1}{7|\mathfrak{p}_1 \dots \mathfrak{p}_h \mathfrak{p}_1' \dots \mathfrak{p}_h'|} \ge h/x,$$

which is a contradiction.

3. Proof of Theorem 1.1

We start following the lines of [11] with several adjustments. In the sequel we will write \mathfrak{p} for a Gaussian prime in the first octant $(0 < \theta(\mathfrak{p}) < 1/8)$.

We fix a number $c_h > h$ which will determine the growth of the sequence we construct. Indeed we will take $c_h = \sqrt{(h-1)^2 + 1} + (h-1)$.

3.1. The construction. We will construct for each $\alpha \in [1, 2]$ a sequence of positive integers indexed with the Gaussian primes

$$\mathcal{B}_{\alpha} := \{b_{\mathfrak{p}}\},\$$

where each $b_{\mathfrak{p}}$ will be built using the development to base 2 of $\alpha \theta(\mathfrak{p})$:

$$\alpha \, \theta(\mathfrak{p}) = \sum_{i=1}^{\infty} \delta_{i\mathfrak{p}} 2^{-i} \qquad (\delta_{i\mathfrak{p}} \in \{0,1\}).$$

The role of the parameter α will be clear at a later stage, for the moment it is enough to note that the set $\{\alpha\theta(\mathfrak{p})\}$ obviously keeps the same B_h property of the set $\{\theta(\mathfrak{p})\}$.

To organize the construction we describe the sequence \mathcal{B}_{α} as a union of finite sets according with the sizes of the indexes:

$$\mathcal{B}_{\alpha} = \bigcup_{K} \mathcal{B}_{\alpha,K}$$

where

$$\mathcal{B}_{\alpha,K} = \{b_{\mathfrak{p}} : \ \mathfrak{p} \in P_K\}$$

and

$$P_K := \{ \mathfrak{p} : 2^{\frac{(K-2)^2}{c_h}} \le |\mathfrak{p}|^2 < 2^{\frac{(K-1)^2}{c_h}} \}.$$

Now we build the positive integers $b_{\mathfrak{p}} \in \mathcal{B}_{\alpha,K}$. For any $\mathfrak{p} \in P_K$ we define $\alpha\theta(\overline{\mathfrak{p}})$ the truncated series of $\alpha\theta(\mathfrak{p})$ at the K^2 -place:

(3.1)
$$\widehat{\alpha\theta(\mathfrak{p})} := \sum_{i=1}^{K^2} \delta_{i\mathfrak{p}} 2^{-i}$$

and combine the digits at places $(j-1)^2+1,\cdots,j^2$ into a single number

$$\Delta_{j\mathfrak{p}} = \sum_{i=(j-1)^2+1}^{j^2} \delta_{i\mathfrak{p}} 2^{j^2-i} \quad (j=1,\cdots,K),$$

so that we can write

(3.2)
$$\widehat{\alpha \, \theta(\mathfrak{p})} = \sum_{j=1}^{K} \Delta_{j\mathfrak{p}} 2^{-j^2}.$$

We observe that if $\mathfrak{p} \in P_K$ then

(3.3)
$$|\widehat{\alpha \theta(\mathfrak{p})} - \alpha \theta(\mathfrak{p})| \le 2^{-K^2}.$$

The definition of $b_{\mathfrak{p}}$ is informally outlined as follows. We consider the sequence of blocks $\Delta_{1\mathfrak{p}}, \cdots, \Delta_{K\mathfrak{p}}$ and re-arrange them opposite to the original left to right arrangement. Then we insert at the left of each $\Delta_{j\mathfrak{p}}$ an additional filling block of 2d+1 digits, with $d=\lceil \log_2 h \rceil$. At the filling blocks the digits will be always 0 except for only one exception: in the middle of the first filling block (placed to the left of the Δ_K block) we put the digit 1. This digit will mark which subset P_K the prime \mathfrak{p} belongs to.

$$\alpha \, \theta(\mathfrak{p}) = 0. \overset{\Delta_1}{1} \, \underbrace{\overset{\Delta_2}{001} \dots \overset{\Delta_j}{1 \dots \dots 0} \dots \underbrace{01 \dots \dots 11}_{\overset{K}{K^2}} \dots}_{\overset{K}{1}} \dots$$

$$b_{\mathfrak{p}} = \underline{\mathbf{0} \cdot \mathbf{1} \cdot \mathbf{0}} \underbrace{01 \cdot \cdots \cdot 11}^{\Delta_{K}} \underbrace{\mathbf{0} \cdots \mathbf{0}}_{1} \cdots \underbrace{\mathbf{0} \cdots \mathbf{0}}_{1} \underbrace{1 \cdot \cdots \cdot \mathbf{0}}_{1} \underbrace{\mathbf{0} \cdots \mathbf{0}}_{1} \cdots \underbrace{\mathbf{0} \cdots \mathbf{0}}_{1} \underbrace{\mathbf{0} \cdots \mathbf{0}}_{1} \cdots \underbrace{\mathbf{0}}_{1}^{\Delta_{1}}$$

The reason to add the blocks of zeroes and the value of d will be clarified just before Lemma 3.2.

More formally, for $\mathfrak{p} \in P_K$ we define

$$(3.4) t_n = 2^{K^2 + (2d+1)K + (d+1)},$$

and

$$b_{\mathfrak{p}} = t_{\mathfrak{p}} + \sum_{j=1}^{K} \Delta_{j\mathfrak{p}} 2^{(j-1)^2 + (2d+1)(j-1)}.$$

Furthermore we define $\Delta_{j\mathfrak{p}} = 0$ for j > K.

Remark 3.1. The construction at [11] was based on the numbers $\alpha \log p$, with p rational prime, hence the digits of their integral parts had to be included also in the corresponding integers b_p . Ruzsa solved that problem reserving fixed places for these digits. Since in our construction the integral part of $\alpha\theta(\mathfrak{p})$ is zero we don't need to care about this.

We observe that distinct primes $\mathfrak{p},\mathfrak{q}$ provide distinct $b_{\mathfrak{p}},b_{\mathfrak{q}}$. Indeed if $b_{\mathfrak{p}}=b_{\mathfrak{q}}$ then $\Delta_{i\mathfrak{p}}=\Delta_{i\mathfrak{q}}$ for all $i\leq K$. Also $t_{\mathfrak{p}}=t_{\mathfrak{q}}$ which means $\mathfrak{p},\mathfrak{q}\in P_K$, and so

$$|\theta(\mathfrak{p}) - \theta(\mathfrak{q})| = \alpha^{-1} \cdot \sum_{j>K} (\Delta_{j\mathfrak{p}} - \Delta_{j\mathfrak{q}}) < 2^{-K^2}.$$

Now if $\mathfrak{p} \neq \mathfrak{q}$ then Lemma 2.1 implies that $|\theta(\mathfrak{p}) - \theta(\mathfrak{q})| > \frac{1}{7|\mathfrak{p}\mathfrak{q}|} > 2^{-\frac{1}{c}(K-1)^2 - 3}$. Combining both inequalities we have a contradiction for $K \geq h+1 \geq 3$. So we assume $K \geq h+1$ through all the paper.

Since all the integers $b_{\mathfrak{p}}$ are distinct, we have that

$$(3.5) |\mathcal{B}_{\alpha,K}| = |P_K| = \pi \left(2^{\frac{(K-1)^2}{c_h}}; 1, 4\right) - \pi \left(2^{\frac{(K-2)^2}{c_h}}; 1, 4\right) \gg \frac{2^{\frac{K^2}{c_h}}}{K^2}.$$

We observe also that

$$b_{\mathfrak{p}} < 2^{K^2 + (2d+1)K + (d+1) + 1}.$$

Using these estimates we can easily prove that $\mathcal{B}_{\alpha}(x) = x^{\frac{1}{c_h} + o(1)}$. Indeed, if K is the integer such that $2^{K^2 + (2d+1)K + (d+1) + 1} < x \le 2^{(K+1)^2 + (2d+1)(K+1) + (d+1) + 1}$ then we have

(3.6)
$$\mathcal{B}_{\alpha}(x) \ge |\mathcal{B}_{\alpha,K}| = 2^{\frac{1}{c_h}K^2(1+o(1))} = x^{\frac{1}{c_h}+o(1)}.$$

For the upper bound we have

$$\mathcal{B}_{\alpha}(x) \le \#\{\mathfrak{p}: |\mathfrak{p}|^2 \le 2^{\frac{K^2}{c_h}}\} \le 2^{\frac{K^2}{c_h}} = x^{\frac{1}{c_h} + o(1)}.$$

There is a compromise at the choice of a particular value of c_h for the construction. On one hand larger values of c_h capture more information from the Gaussian arguments which brings the sequence $\mathcal{B}_{\alpha} = \{b_{\mathfrak{p}}\}$ closer to being a B_h sequence. On the other hand smaller values of c_h provide higher growth of the counting function of \mathcal{B}_{α} .

Clearly \mathcal{B}_{α} would be a B_h sequence if for all $l=2,\cdots,h$ it does not contain $b_{\mathfrak{p}_1},\cdots,b_{\mathfrak{p}'_1},b_{\mathfrak{p}'_1},\cdots,b_{\mathfrak{p}'_l}$ satisfying

$$(3.7) b_{\mathfrak{p}_1} + \dots + b_{\mathfrak{p}_l} = b_{\mathfrak{p}'_1} + \dots + b'_l,$$

$$\{b_1, \cdots, b_l\} \quad \cap \quad \{b'_1, \cdots, b'_l\} = \emptyset,$$

(3.8)
$$b_{\mathfrak{p}_1} \ge \cdots \ge b_{\mathfrak{p}_l}$$
 and $b_{\mathfrak{p}'_1} \ge \cdots \ge b_{\mathfrak{p}'_l}$.

We say that $(\mathfrak{p}_1,\ldots,\mathfrak{p}_l,\mathfrak{p}'_1,\ldots,\mathfrak{p}'_l)$ is a bad 2l-tuple if the equation 3.7 is satisfied by the corresponding $b_{\mathfrak{p}_r}$.

The sequence $\mathcal{B}_{\alpha} = \{b_{\mathfrak{p}}\}$ we have constructed is not properly a B_h sequence. Some repeated sums as in (3.7) will eventually appear, but the particular way to construct the elements $b_{\mathfrak{p}}$ will allow us to study these bad 2l-tuples and to prove that there are not too many repeated sums. Then removing the bad elements involved in these bad 2l-tuples we obtain a true B_h sequence.

Now we will see why blocks of zeroes were added to the binary development of $b_{\mathfrak{p}}$. We can identify each $b_{\mathfrak{p}}$ with a vector as follows:

$$\begin{aligned} b_{\mathfrak{p}_1} &= (\cdots, \mathbf{1}, \Delta_{K_1 \mathfrak{p}_1}, 0, \cdots, 0, \Delta_{K_2 \mathfrak{p}_1}, 0, \cdots, 0, \Delta_{K_l \mathfrak{p}_1}, 0, \cdots, 0, \Delta_{2 \mathfrak{p}_1}, 0, \Delta_{1 \mathfrak{p}_1}) \\ b_{\mathfrak{p}_2} &= (\cdots, 0, \cdots, \cdots, \mathbf{1}, \Delta_{K_2 \mathfrak{p}_2}, 0, \cdots, 0, \Delta_{K_l \mathfrak{p}_2}, 0, \cdots, 0, \Delta_{2 \mathfrak{p}_2}, 0, \Delta_{1 \mathfrak{p}_2}) \\ &\vdots & \vdots & \vdots & \vdots \\ b_{\mathfrak{p}_l} &= (\cdots, 0, \cdots, \cdots, 0, \cdots, \cdots, \mathbf{1}, \Delta_{K_l \mathfrak{p}_l}, 0, \cdots, 0, \Delta_{2 \mathfrak{p}_l}, 0, \Delta_{1 \mathfrak{p}_l}), \end{aligned}$$

where each comma represents one block of d zeroes. Note that the leftmost part of each vector is null. The value of $d = \lceil \log_2 h \rceil$ has been chosen to prevent the propagation of the carry between any two consecutive coordinates separated by a comma in the above identification. So when we sum no more than h integers $b_{\mathfrak{p}}$ we can just sum the corresponding vectors coordinate-wise. This argument implies the following lemma.

Lemma 3.2. Let $(\mathfrak{p}_1, \dots, \mathfrak{p}_l, \mathfrak{p}'_1, \dots, \mathfrak{p}'_l)$ be a bad 2*l*-tuple. Then there are integers $K_1 \geq \dots \geq K_l$ such that $\mathfrak{p}_1, \mathfrak{p}'_1 \in P_{K_1}, \dots, \mathfrak{p}_l, \mathfrak{p}'_l \in P_{K_l}$, and we have

$$\widehat{\alpha\theta(\mathfrak{p}_1)} + \dots + \widehat{\alpha\theta(\mathfrak{p}_l)} = \widehat{\alpha\theta(\mathfrak{p}_1')} + \dots + \widehat{\alpha\theta(\mathfrak{p}_l')}.$$

Proof. Note that (3.7) implies $t_{\mathfrak{p}_1} + \cdots + t_{\mathfrak{p}_l} = t_{\mathfrak{p}'_1} + \cdots + t_{\mathfrak{p}'_l}$ and $\Delta_{j\mathfrak{p}_1} + \cdots + \Delta_{j\mathfrak{p}_l} = \Delta_{j\mathfrak{p}'_1} + \cdots + \Delta_{j\mathfrak{p}'_l}$ for each j. Using (3.2) we conclude (3.9). As the bad 2l-tuple satisfies condition (3.8) we deduce that $\mathfrak{p}_r, \mathfrak{p}'_r$ belongs to the same P_{K_r} for all r. \square

According with the lemma above we will write $E_{2l}(\alpha; K_1, \dots, K_l)$ for the set of bad 2l-tuples $(\mathfrak{p}_1, \dots, \mathfrak{p}'_l)$ with $\mathfrak{p}_r, \mathfrak{p}'_r \in P_{K_r}, \ 1 \leq r \leq l$ and

$$E_{2l}(\alpha; K) = \bigcup_{K_l \le \dots \le K_1 = K} E_{2l}(\alpha; K_1, \dots, K_l),$$

where $K = K_1$. Also we define the set

 $\operatorname{Bad}_{\alpha,K} = \{b_{\mathfrak{p}} \in \mathcal{B}_{\alpha,K} : b_{\mathfrak{p}} \text{ is the largest element involved in some equation 3.7}\}.$

It is clear that $\sum_{l \leq h} |E_{2l}(\alpha, K)|$ is an upper bound for $|\text{Bad}_{\alpha, K}|$, the number of elements that we need to remove from each $\mathcal{B}_{\alpha, K}$ to get a B_h sequence.

We do know how to obtain a good upper bound for $|E_{2l}(\alpha, K)|$ for a concrete α , but we can do it for almost α .

Lemma 3.3. For l = 2, 3, 4 we have

$$\int_{1}^{2} |E_{2l}(\alpha, K)| \, \mathrm{d}\alpha \ll K^{m_l} 2^{\left(\frac{2(l-1)}{c_h} - 1\right)(K-1)^2 - 2K}$$

for some m_l .

The proof of Lemma 3.3 is involved and we postpone it to section $\S 4$. We think that Lemma 3.3 holds for any l but we have not found a proof.

3.2. Last step in the proof of the theorem. For h = 2, 3, 4 we have that

$$\int_{1}^{2} \sum_{K} \frac{|\operatorname{Bad}_{\alpha,K}|}{|\mathcal{B}_{\alpha,K}|} d\alpha \ll \sum_{K} \frac{\sum_{l \leq h} \int_{1}^{2} |E_{2l}(\alpha,K)| d\alpha}{K^{-2} 2^{\frac{1}{c_{h}}(K-1)^{2}}}
\ll \sum_{K} \frac{\sum_{l \leq h} K^{m_{l}} 2^{\left(\frac{2(l-1)}{c_{h}}-1\right)(K-1)^{2}-2K}}{K^{-2} 2^{\frac{1}{c_{h}}(K-1)^{2}}}
\ll \sum_{K} K^{m_{l}+2} 2^{\left(\frac{2(h-1)}{c_{h}}-1-\frac{1}{c_{h}}\right)(K-1)^{2}-2K}.$$

The last sum is finite for $c_h = \sqrt{(h-1)^2 + 1} + (h-1)$ which is the largest number for which $\frac{2(h-1)}{c_h} - 1 - \frac{1}{c_h} \leq 0$. So for this c_h the sum $\sum_K \frac{|\mathrm{Bad}_{\alpha,K}|}{|\mathcal{B}_{\alpha,K}|}$ is convergent for almost all $\alpha \in [1,2]$. We take one of these α , say α_0 , and consider the sequence

$$\mathcal{B} = \bigcup_{K} \left(\mathcal{B}_{\alpha_0, K} \setminus \operatorname{Bad}_{\alpha_0, K} \right).$$

We claim that this sequence satisfies the condition of the theorem. It is clear that this sequence is a B_h sequence because we have destroyed all the repeated sums of h elements of \mathcal{B}_{α_0} removing all the bad elements from each $\mathcal{B}_{\alpha_0,K}$.

On the other hand, the convergence of $\sum_{K} \frac{|\operatorname{Bad}_{\alpha_0,K}|}{|\mathcal{B}_{\alpha,K}|}$ implies that $|\operatorname{Bad}_{\alpha_0,K}| = o(|\mathcal{B}_{\alpha,K}|)$. We proceed as in (3.6) to estimate the counting function of \mathcal{B} . For any x let K the integer such that $2^{K^2 + (2d+1)K + (d+1) + 1} < x \le 2^{(K+1)^2 + (2d+1)(K+1) + (d+1) + 1}$. We have

$$\mathcal{B}(x) \ge |\mathcal{B}_{\alpha_0,K}| - |\mathrm{Bad}_{\alpha_0,K}| = |\mathcal{B}_{\alpha_0,K}|(1+o(1)) \gg K^{-2} 2^{\frac{1}{c_h}K^2} = x^{\frac{1}{c_h}+o(1)}$$

For the upper bound, we have

$$\mathcal{B}(x) \le \mathcal{B}_{\alpha_0}(x) = x^{\frac{1}{c_h} + o(1)}.$$

Thus

$$\mathcal{B}(x) = x^{\sqrt{(h-1)^2 + 1} - (h-1) + o(1)}.$$

4. Proof of Lemma 3.3

The proof of Lemma 3.3 will be a consequence of Propositions 4.5, 4.6 and 4.7. Before proving these propositions we need to study some properties of the bad 2l-tuples and an auxiliary lemma about visible lattice points.

4.1. Some properties of the 2*l*-tuples. For any 2*l*-tuple $(\mathfrak{p}_1, \dots, \mathfrak{p}'_l)$ we define the numbers $\omega_s = \omega_s(\mathfrak{p}_1, \dots, \mathfrak{p}'_l)$ by

$$\omega_s = \sum_{r=1}^{s} (\theta(\mathfrak{p}_r) - \theta(\mathfrak{p}'_r))$$
 $(s \le l).$

The next two lemmas contain several properties of the bad 2*l*-tuples.

Lemma 4.1. Let $(\mathfrak{p}_1, \dots, \mathfrak{p}_l, \mathfrak{p}'_1, \dots, \mathfrak{p}'_l)$ be a bad 2l-tuple with $K_1 \geq \dots \geq K_l$ given by Lemma 3.2. We have

i)
$$|\omega_l| \leq l 2^{-K_l^2}$$
,

ii)
$$|\omega_{l-1}| \ge 2^{-\frac{1}{c_h}(K_l-1)^2-4}$$

iii)
$$(K_l - 1)^2 \le \frac{(K_1 - 1)^2 + \dots + (K_{l-1} - 1)^2}{c_h - 1}$$
.

Proof. i) This is a consequence of (3.9) and (3.3):

$$|\omega_l| = \frac{1}{\alpha} \left| \sum_{r=1}^l (\alpha \theta(\mathfrak{p}_r) - \alpha \theta(\mathfrak{p}_r')) \right| \le \frac{1}{\alpha} \left(2^{-K_1^2} + \dots + 2^{-K_l^2} \right) \le l 2^{-K_l^2},$$

since $\alpha \geq 1$.

ii) Lemma 2.1 implies

(4.1)
$$|\theta(\mathfrak{p}_l) - \theta(\mathfrak{p}'_l)| \ge \frac{1}{7|\mathfrak{p}_l\mathfrak{p}'_l|} \ge 2^{-3 - \frac{1}{c_h}(K_l - 1)^2}$$

and so,

$$|\omega_{l-1}| = |\omega_l + \theta(\mathfrak{p}'_l) - \theta(\mathfrak{p}_l)| \ge |\theta(\mathfrak{p}'_l) - \theta(\mathfrak{p}_l)| - |\omega_l|$$

$$\ge 2^{-\frac{1}{c_h}(K_l - 1)^2 - 3} - l2^{-K_l^2} \ge 2^{-\frac{1}{c_h}(K_l - 1)^2 - 4},$$

since $K_l \ge h + 1 \ge l + 1$.

iii) Lema 2.1 implies also that

$$|\omega_l| = \left| \sum_{r=1}^l \left(\theta(\mathfrak{p}_r) - \theta(\mathfrak{p}'_r) \right) \right| > \frac{1}{7 \left| \mathfrak{p}_1 \cdots \mathfrak{p}'_l \right|} > 2^{-3 - \frac{1}{c_h} \sum_{r=1}^l (K_r - 1)^2}.$$

Combining this with i) we obtain

$$(K_l-1)^2 \le \frac{1}{c_h-1} \left((K_1-1)^2 + \dots + (K_{l-1}-1)^2 \right) + \frac{\log_2 l - 2K_l + 4}{1 - 1/c_h}.$$

The last term is negative because $K_l \ge h+1 \ge l+1$ and $l \ge 2$.

Lemma 4.2. Suppose that $(\mathfrak{p}_1, \dots, \mathfrak{p}_l, \mathfrak{p}'_1, \dots, \mathfrak{p}'_l)$ is a bad 2*l*-tuple. Then for any $\omega_s = \sum_{r=1}^s (\theta(\mathfrak{p}_r) - \theta(\mathfrak{p}'_r))$ with $1 \le s \le l-1$ we have

(4.2)
$$\left\|\alpha 2^{K_{s+1}^2} \omega_s\right\| \le s 2^{K_{s+1}^2 - K_s^2} \qquad (s = 1, \dots, l-1),$$

where $\|\cdot\|$ means the distance to the nearest integer.

Proof. Since $0 \le \alpha \theta(\mathfrak{p}) - \widehat{\alpha \theta(\mathfrak{p})} \le 2^{-K^2}$ when $\mathfrak{p} \in P_K$, we can write

$$2^{K_{s+1}^2}\alpha\sum_{r=1}^s\left(\theta(\mathfrak{p}_r)-\theta(\mathfrak{p}_r')\right)=2^{K_{s+1}^2}\sum_{r=1}^s\left(\widehat{\alpha\theta(\mathfrak{p}_r)}-\widehat{\alpha\theta(\mathfrak{p}_r')}\right)+\epsilon_s,$$

with $|\epsilon_s| \leq s2^{K_{s+1}^2 - K_s^2}$. By Lemma 3.2 we know that $\sum_{r=1}^l \left(\widehat{\alpha\theta(\mathfrak{p}_r)} - \widehat{\alpha\theta(\mathfrak{p}_r')}\right) = 0$ when $(\mathfrak{p}_1, \dots, \mathfrak{p}_l, \mathfrak{p}_1', \dots, \mathfrak{p}_l')$ is a bad 2l-tuple. Using this and (3.1) we have that

$$2^{K_{s+1}^2}\sum_{r=s+1}^l \left(\widehat{\alpha\theta(\mathfrak{p}_r')}-\widehat{\alpha\theta(\mathfrak{p}_r)}\right) = \sum_{r=s+1}^l \sum_{i=1}^{K_r^2} 2^{K_{s+1}^2-i} (\delta_{i\mathfrak{p}_r'}-\delta_{i\mathfrak{p}_r})$$

is an integer, which proves (4.3).

Lemma 4.3.

 $\int_{1}^{2} |E_{2l}(\alpha; K_{1}, \dots, K_{l})| \, d\alpha \ll 2^{K_{l}^{2} - K_{1}^{2}} \sum_{\substack{(\mathfrak{p}_{1}, \dots, \mathfrak{p}_{l}') \\ |\omega_{l}| < l \cdot 2^{-K_{l}^{2}}}} \frac{|\omega_{l-1}|}{|\omega_{1}|} \prod_{j=1}^{l-2} \left(\frac{|\omega_{j}|}{|\omega_{j+1}|} + 1\right)$

Proof. We have seen that if $(\mathfrak{p}_1,\ldots,\mathfrak{p}'_l)\in E_{2l}(\alpha;K_1,\ldots,K_l)$, then

(4.3)
$$\left\|\alpha 2^{K_{s+1}^2}\omega_s\right\| \le s2^{K_{s+1}^2-K_s^2}, \ s=1,\ldots,l-1.$$

Then there exists integers j_s , $s = 1, \dots, l-1$ such that

$$\left|\alpha - \frac{j_s}{2^{K_{s+1}^2}\omega_s}\right| \le \frac{s2^{-K_s^2}}{|\omega_s|}.$$

Writing I_{j_1}, \dots, I_{j_s} for the intervals defined by the inequalities 4.4, we have

$$\mu\{\alpha: \ (\mathfrak{p}_{1},\ldots,\mathfrak{p}'_{l}) \in E_{2l}(\alpha;K_{1},\ldots,K_{l})\} \leq \sum_{j_{1},\ldots,j_{l-1}} \left| I_{j_{1}} \cap \cdots \cap I_{j_{l-1}} \right| \\
\leq \frac{2^{-K_{1}^{2}+1}}{|\omega_{1}|} \#\{(j_{1},\ldots,j_{l-1}): \bigcap_{j=1}^{l-1} I_{j_{i}} \neq \emptyset\}$$

To estimate this last cardinality note that for all s = 1, ..., l-2 we have

$$\left| \frac{j_s}{2^{K_{s+1}^2 \omega_s}} - \frac{j_{s+1}}{2^{K_{s+2}^2 \omega_{s+1}}} \right| < \left| \alpha - \frac{j_s}{2^{K_{s+1}^2 \omega_s}} \right| + \left| \alpha - \frac{j_{s+1}}{2^{K_{s+2}^2 \omega_{s+1}}} \right| < \frac{s2^{-K_s^2}}{|\omega_s|} + \frac{(s+1)2^{-K_{s+1}^2 \omega_{s+1}}}{|\omega_{s+1}|}$$

Thus,

$$(4.5) \left| j_s - j_{s+1} \frac{2^{K_{s+1}^2 \omega_s}}{2^{K_{s+2}^2 \omega_{s+1}}} \right| < s 2^{-K_s^2 + K_{s+1}^2} + \frac{(s+1)|\omega_{s+1}|}{|\omega_s|}.$$

We observe that for each $s=1,\ldots,l-2$ and for each j_{s+1} , the number of j_s satisfying (4.5) is bounded by $2\left(s2^{-K_s^2+K_{s+1}^2}+\frac{(s+1)|\omega_s|}{|\omega_{s+1}|}\right)+1\ll\frac{|\omega_{s+1}|}{|\omega_s|}+1$.

Note also that

$$|j_{l-1}| \leq 2^{K_l^2} |\omega_{l-1}| \left(\left| \frac{j_{l-1}}{2^{K_l^2} \omega_{l-1}} - \alpha \right| + |\alpha| \right)$$

$$\leq 2^{K_l^2} |\omega_{l-1}| \left(\frac{(l-1)2^{K_{l-1}^2}}{|\omega_{l-1}|} + 2 \right)$$

$$\leq l-1 + 2^{K_l^2+1} |\omega_{l-1}|$$

$$\ll 2^{K_l^2+1} |\omega_{l-1}|$$

In the last step we have used the condition iii).

Putting all these observations together we complete the proof.

4.2. Visible points. We will denote by \mathcal{V} the set of lattice points visible from the origin excluding (1,0). In the next subsection we will use several times the following lemma.

Lemma 4.4. The number of integral lattice points visible from the origin that are contained in a circular sector centred at the origin of radius R and angle ϵ is at most $\epsilon R^2 + 1$. In other words, for any real number t

$$\#\{\nu \in \mathcal{V}, \ |\nu| < R, \ \|\theta(\nu) + t\| < \epsilon\} \le \epsilon R^2 + 1.$$

Furthermore,

$$\#\{\nu \in \mathcal{V}, \ |\nu| < R, \ \|\theta(\nu)\| < \epsilon\} \le \epsilon R^2.$$

Proof. We arrange the N lattice points inside de sector $\nu_1, \nu_2, \cdots, \nu_N$ that are visible from the origin O by the value of their argument so that $\theta(\nu_i) < \theta(\nu_j)$ for $1 \le i < j \le N$. For each $i = 1, \ldots, N-1$ the three lattice points O, ν_i, ν_{i+1} define a triangle T_i with $\operatorname{Area}(T_i) \ge 1/2$, that does not contain any other lattice point.

Since all T_i are inside the circular sector their union covers at most the area of the sector. They don't overlap pairwise, thus

$$N-1 \leq \sum_{i=1}^{N} 2 \cdot \operatorname{Area}(T_i) = 2 \cdot \operatorname{Area}\left(\bigcup_{i=1}^{N} T_i\right) \leq R^2 \epsilon.$$

For the last statement we add $\nu_0 = (1,0)$ to our N visible points ν_1, \dots, ν_N and we repeat the argument.

4.3. Estimates for the number of bad 2*l*-tuples (l = 2, 3, 4). We start with the case l = 2 which was considered by Ruzsa for B_2 sequences. In the sequel all lattice points ν appearing in the proofs belong to \mathcal{V} and Lemma 4.4 applies.

Proposition 4.5. For any $c_h > 2$ we have

$$\int_{1}^{2} |E_4(\alpha; K)| \, \mathrm{d}\alpha \ll K 2^{\left(\frac{2}{c_h - 1} - 1\right)(K - 1)^2 - 2K}.$$

Proof. Lemma 4.3 implies that

$$\int_{1}^{2} |E_{4}(\alpha; K_{1}, K_{2})| \, \mathrm{d}\alpha \ll 2^{K_{2}^{2} - K_{1}^{2}} \# \{ (\mathfrak{p}_{1}, \mathfrak{p}'_{1}, \mathfrak{p}_{2}, \mathfrak{p}'_{2}) \colon |\omega_{2}| \le 2 \cdot 2^{-K_{2}^{2}} \}.$$

We get an upper bound for the second factor here by using Lemma 4.4 to estimate the number of lattice points of the form $\nu_2 = \mathfrak{p}_1\mathfrak{p}_1'\overline{\mathfrak{p}_2\mathfrak{p}_2'}$ such that $\|\theta(\nu_2)\| < \epsilon$, $|\nu_2| < R$, with $\epsilon = 2 \cdot 2^{-K_2^2}$ and $R = 2^{\frac{1}{c_h}((K_1-1)^2+(K_2-1)^2)}$. We have

$$\begin{split} \int_{1}^{2} |E_{4}(\alpha; K_{1}, K_{2})| \, \mathrm{d}\alpha & \ll \quad 2^{K_{2}^{2} - K_{1}^{2}} \cdot 2^{\frac{2}{c_{h}}((K_{1} - 1)^{2} + (K_{2} - 1)^{2}) - K_{2}^{2}} \\ & \ll \quad 2^{\frac{2}{c_{h}}((K_{1} - 1)^{2} + (K_{2} - 1)^{2}) - K_{1}^{2}}. \end{split}$$

By Lemma 4.1 iv) we also have $(K_2 - 1)^2 \le \frac{(K_1 - 1)^2}{c_h - 1}$, thus

$$\int_{1}^{2} |E_{4}(\alpha; K_{1}, K_{2})| \, \mathrm{d}\alpha \ll 2^{\left(\frac{2}{c_{h}-1}-1\right)K_{1}^{2}-2K_{1}}$$

and

$$\int_{1}^{2} |E_{4}(\alpha; K)| \, \mathrm{d}\alpha = \sum_{K_{2} \leq K} \int_{1}^{2} |E_{4}(\alpha; K, K_{2})| \, \mathrm{d}\alpha \ll K 2^{\left(\frac{2}{c_{h} - 1} - 1\right)(K - 1)^{2} - 2K}.$$

Proposition 4.6. For any $c_h > 3$ we have

$$\int_{1}^{2} |E_{6}(\alpha; K)| \, \mathrm{d}\alpha \ll K^{2} \, 2^{\left(\frac{4}{c_{h}-1}-1\right)(K-1)^{2}-2K}.$$

Proof. Lemma 4.3 says that

$$\int_{1}^{2} |E_{6}(\alpha; K_{1}, K_{2}, K_{3})| d\alpha \ll 2^{K_{3}^{2} - K_{1}^{2}} \sum_{\substack{(\mathfrak{p}_{1}, \dots, \mathfrak{p}_{3}') \\ |\omega_{3}| < 3 \cdot 2^{-K_{3}^{2}}}} \frac{1}{|\omega_{1}|}.$$

Applying Lemma 4.4 by writing $\nu_1 = \mathfrak{p}_1 \overline{\mathfrak{p}'_1}$ and $\nu_2 = \mathfrak{p}_2 \mathfrak{p}_3 \overline{\mathfrak{p}'_2 \mathfrak{p}'_3}$, we have that

$$\sum_{\substack{(\mathfrak{p}_1, \dots, \mathfrak{p}_3') \\ |\omega_3| \leq 3 \cdot 2^{-K_3^2}}} \frac{1}{|\omega_1|} \ll \sum_{m} 2^m \# \{(\mathfrak{p}_1, \dots, \mathfrak{p}_3') : |\omega_1| \leq 2^{-m}, |\omega_3| \leq 3 \cdot 2^{-K_3^2} \}
\ll \sum_{m} 2^m \# \{(\nu_1, \nu_2) : ||\theta(\nu_1)|| \leq 2^{-m}, ||\theta(\nu_1) + \theta(\nu_2)|| \leq 3 \cdot 2^{-K_3^2} \}
\ll \sum_{m} 2^m \sum_{|\theta(\nu_1)| \leq 2^{-m}} \# \{\nu_2 : ||\theta(\nu_1) + \theta(\nu_2)|| \leq 3 \cdot 2^{-K_3^2} \}
\ll \sum_{m} 2^m \cdot 2^{\frac{2}{c_h}(K_1 - 1)^2 - m} \left(2^{\frac{2}{c_h}((K_2 - 1)^2 + (K_3 - 1)^2) - K_3^2} + 1 \right).$$

Thus, using the inequalities $K_3 \leq K_2 \leq K_1$ and $(K_3 - 1)^2 \leq \frac{(K_2 - 1)^2 + (K_1 - 1)^2}{c_h - 1}$ we have

$$\begin{split} \int_{1}^{2} |E_{6}(\alpha;K_{1},K_{2},K_{3})| \,\mathrm{d}\alpha & \ll K_{1}^{2} 2^{K_{3}^{2}-K_{1}^{2}+\frac{2}{c_{h}}(K_{1}-1)^{2}} \left(2^{\frac{2}{c_{h}}\left((K_{2}-1)^{2}+(K_{3}-1)^{2}\right)-K_{3}^{2}}+1\right) \\ & \ll K_{1}^{2} 2^{-K_{1}^{2}+\frac{2}{c_{h}}\left((K_{1}-1)^{2}+(K_{2}-1)^{2}+(K_{3}-1)^{2}\right)}+K_{1}^{2} 2^{K_{3}^{2}-K_{1}^{2}+\frac{2}{c_{h}}(K_{1}-1)^{2}} \\ & \ll K_{1}^{2} 2^{-(K_{1}-1)^{2}+\frac{2}{c_{h}}\left((K_{1}-1)^{2}+(K_{2}-1)^{2}+(K_{3}-1)^{2}\right)-2K_{1}} \\ & + K_{1}^{2} 2^{(K_{3}-1)^{2}-(K_{1}-1)^{2}+\frac{2}{c_{h}}(K_{1}-1)^{2}} \\ & \ll K_{1}^{2} 2^{\left(\frac{4}{c_{h}-1}-1\right)(K_{1}-1)^{2}-2K_{1}}+K_{1}^{2} 2^{\left(\frac{4}{c_{h}-1}-1\right)(K_{1}-1)^{2}-\frac{2}{c_{h}(c_{h}-1)}(K_{1}-1)^{2}} \\ & \ll K_{1}^{2} 2^{\left(\frac{4}{c_{h}-1}-1\right)(K_{1}-1)^{2}-2K_{1}}. \end{split}$$

Then we can write

$$\int_{1}^{2} |E_{6}(\alpha;K)| \, \mathrm{d}\alpha = \sum_{K_{3} \leq K_{2} \leq K} \int_{1}^{2} |E_{6}(\alpha;K,K_{2},K_{3})| \, \mathrm{d}\alpha \ll K^{4} 2^{\left(\frac{4}{c-1}-1\right)(K-1)^{2}-2K}.$$

as claimed. \Box

Proposition 4.7. For any $c_h > 4$ we have

$$\int_{1}^{2} |E_{8}(\alpha; K)| \, d\alpha \ll K^{2} \, 2^{\left(\frac{6}{c_{h}-1}-1\right)(K-1)^{2}-2K}.$$

Proof. Considering the two possibilities $|\omega_1| < |\omega_2|$ and $|\omega_1| \ge |\omega_2|$ we get the inequality $\frac{|\omega_3|}{|\omega_1|} \left(\frac{|\omega_1|}{|\omega_2|} + 1\right) \left(\frac{|\omega_2|}{|\omega_3|} + 1\right) \ll \frac{|\omega_3|}{|\omega_1|} \left(\frac{|\omega_1|}{|\omega_2|} + 1\right) \frac{1}{|\omega_3|} \ll \max\left(\frac{1}{|\omega_1|}, \frac{1}{|\omega_2|}\right)$. This combined with Lemma 4.3 implies that

$$\int_{1}^{2} |E_{8}(\alpha, K_{1}, K_{2}, K_{3}, K_{4})| \, d\alpha \ll 2^{-K_{1}^{2} + K_{4}^{2}} \left(\sum_{\substack{(\mathfrak{p}_{1}, \dots, \mathfrak{p}_{4}') \\ |\omega_{4}| < 4 \cdot 2^{-K_{4}^{2}}}} \frac{1}{|\omega_{1}|} + \sum_{\substack{(\mathfrak{p}_{1}, \dots, \mathfrak{p}_{4}') \\ |\omega_{4}| < 4 \cdot 2^{-K_{4}^{2}}}} \frac{1}{|\omega_{2}|} \right)$$

Applying Lemma 4.4 with the notation $\nu_1 = \mathfrak{p}_1\overline{\mathfrak{p}_1'}$ and $\nu_2 = \mathfrak{p}_2\mathfrak{p}_3\mathfrak{p}_4\overline{\mathfrak{p}_2'\mathfrak{p}_3'\mathfrak{p}_4'}$, we have that

$$\sum_{\substack{(\mathfrak{p}_1, \dots, \mathfrak{p}_4') \\ \omega_4 | \leq 4 \cdot 2^{-K_4^2}}} \frac{1}{|\omega_1|} \ll \sum_{m} 2^m \# \{(\mathfrak{p}_1, \dots, \overline{\mathfrak{p}_4}) : |\omega_1| < 2^{-m}, |\omega_4| \leq 4 \cdot 2^{-K_4^2} \}$$

$$\ll \sum_{m} 2^m \# \{(\nu_1, \nu_2) : ||\theta(\nu_1)|| \leq 2^{-m}, ||\theta(\nu_1) + \theta(\nu_2)|| \leq 4 \cdot 2^{-K_4^2} \}$$

$$\ll \sum_{m} \sum_{\|\theta(\nu_1)\| < 2^{-m}} \# \{\nu_2 : ||\theta(\nu_1) + \theta(\nu_2)|| \leq 4 \cdot 2^{-K_4^2} \}$$

$$\ll \sum_{m} 2^{\frac{2}{c_h}(K_1 - 1)^2} \left(2^{\frac{2}{c_h}((K_2 - 1)^2 + (K_3 - 1)^2 + (K_4 - 1)^2) - K_4^2} + 1 \right)$$

$$\ll K_1^2 2^{\frac{2}{c_h}((K_1 - 1)^2 + (K_2 - 1)^2 + (K_3 - 1)^2 + (K_4 - 1)^2) - K_4^2} + K_1^2 2^{\frac{2}{c_h}(K_1 - 1)^2}.$$

Similarly, but writing now $\nu_1 = \mathfrak{p}_1 \mathfrak{p}_2 \overline{\mathfrak{p}_1' \mathfrak{p}_2'}$ and $\nu_2 = \mathfrak{p}_3 \mathfrak{p}_4 \overline{\mathfrak{p}_3' \mathfrak{p}_4'}$ we have

$$\sum_{\substack{(\mathfrak{p}_1,\ldots,\mathfrak{p}_4')\\ |\omega_4|\leq 4\cdot 2^{-K_4^2}}} \frac{1}{|\omega_2|} \ll \sum_m 2^m \#\{(\mathfrak{p}_1,\ldots,\overline{\mathfrak{p}_4}): |\omega_2|\leq 2^{-m}, |\omega_4|\leq 4\cdot 2^{-K_4^2}\}$$

$$\ll \sum_{m\leq K_4^2} 2^m \#\{(\nu_1,\nu_2): \|\theta(\nu_1)\|\leq 2^{-m}, \|\theta(\nu_1)+\theta(\nu_2)\|\leq 4\cdot 2^{-K_4^2}\}$$

$$+ \sum_{m>K_4^2} 2^m \#\{(\nu_1,\nu_2): \|\theta(\nu_1)\|\leq 2^{-m}, \|\theta(\nu_1)+\theta(\nu_2)\|\leq 4\cdot 2^{-K_4^2}\}$$

$$= S_1 + S_2$$

We observe that if $m \leq K_4^2$ then $\|\theta(\nu_2)\| \leq \|\theta(\nu_1) + \theta(\nu_2)\| + \|\theta(\nu_1)\| \leq 5 \cdot 2^{-m}$. Thus

$$S_{1} \ll \sum_{m \leq K_{4}^{2}} 2^{m} \# \{ (\nu_{1}, \nu_{2}) : \|\theta(\nu_{2})\| \leq 5 \cdot 2^{-m}, \|\theta(\nu_{1}) + \theta(\nu_{2})\| \leq 4 \cdot 2^{-K_{4}^{2}} \}$$

$$\ll \sum_{m} 2^{m} \sum_{\|\theta(\nu_{2})\| \leq 5 \cdot 2^{-m}} \# \{ \nu_{1} : \|\theta(\nu_{1}) + \theta(\nu_{2})\| \leq 4 \cdot 2^{-K_{4}^{2}} \}$$

$$\ll \sum_{m} 2^{m} \cdot 2^{\frac{2}{c_{h}} \left((K_{3} - 1)^{2} + (K_{4} - 1)^{2} \right) - m} \left(2^{\frac{2}{c_{h}} \left((K_{1} - 1)^{2} + (K_{2} - 1)^{2} \right) - K_{4}^{2}} + 1 \right)$$

$$\ll K_{1}^{2} 2^{\frac{2}{c_{h}} \left((K_{1} - 1)^{2} + (K_{2} - 1)^{2} + (K_{3} - 1)^{2} + (K_{4} - 1)^{2} \right) - K_{4}^{2}} + K_{1}^{2} 2^{\frac{2}{c_{h}} \left((K_{3} - 1)^{2} + (K_{4} - 1)^{2} \right)}.$$

To estimate S_2 , we observe that if $m > K_4^2$ then $\|\theta(\nu_2)\| \le \|\theta(\nu_1) + \theta(\nu_2)\| + \|\theta(\nu_1)\| \le 5 \cdot 2^{-K_4^2}$. Thus

$$S_{2} \ll \sum_{m>K_{4}^{2}} 2^{m} \#\{(\nu_{1},\nu_{2}): \|\theta(\nu_{1})\| \leq 2^{-m}, \|\theta(\nu_{2})\| \leq 5 \cdot 2^{-K_{4}^{2}}\}$$

$$\ll \sum_{m} 2^{m} \cdot 2^{\frac{2}{c_{h}} \left((K_{1}-1)^{2}+(K_{2}-1)^{2}\right)-m} \cdot 2^{\frac{2}{c_{h}} \left((K_{3}-1)^{2}+(K_{4}-1)^{2}\right)-K_{4}^{2}}$$

$$\ll K_{1}^{2} 2^{\frac{2}{c_{h}} \left((K_{1}-1)^{2}+(K_{2}-1)^{2}+(K_{3}-1)^{2}+(K_{4}-1)^{2}\right)-K_{4}^{2}}.$$

Putting together the estimates we have obtained for $\sum \frac{1}{|\omega_1|}$ and $\sum \frac{1}{|\omega_2|}$ we get

$$\begin{split} \int_{1}^{2} |E_{8}(\alpha,K_{1},K_{2},K_{3},K_{4})| \, \mathrm{d}\alpha & \ll K_{1}^{2} 2^{\frac{2}{c_{h}}((K_{1}-1)^{2}+(K_{2}-1)^{2}+(K_{3}-1)^{2}+(K_{4}-1)^{2})-K_{1}^{2}} \\ & + K_{1}^{2} 2^{-K_{1}^{2}+K_{4}^{2}+\frac{2}{c_{h}}(K_{1}-1)^{2}} \\ & + K_{1}^{2} 2^{K_{4}^{2}-K_{1}^{2}+\frac{2}{c_{h}}\left((K_{3}-1)^{2}+(K_{4}-1)^{2}\right)} \\ & = T_{1}+T_{2}+T_{3}. \end{split}$$

Using the inequalities $(K_4-1)^2 \leq \frac{1}{c_h-1} \left((K_1-1)^2 + (K_2-1)^2 + (K_3-1)^2 \right)$ and $K_4 \leq K_3 \leq K_2 \leq K_1$ we have

$$T_{1} \ll K_{1}^{2} 2^{\left(-1 + \frac{6}{c_{h}-1}\right)(K_{1}-1)^{2} - 2K_{1}}$$

$$T_{2} \ll K_{1}^{2} 2^{-(K_{1}-1)^{2} + (K_{4}-1)^{2} + \frac{2}{c_{h}}(K_{1}-1)^{2}}$$

$$\ll K_{1}^{2} 2^{\left(-1 + \frac{3}{c_{h}-1} + \frac{2}{c_{h}}\right)(K_{1}-1)^{2}}$$

$$\ll K_{1}^{2} 2^{\left(-1 + \frac{6}{c_{h}-1}\right)(K_{1}-1)^{2} - 2K_{1}}.$$

$$T_{3} \ll K_{1}^{2} 2^{\left(K_{4}-1\right)^{2} - \left(K_{1}-1\right)^{2} + \frac{2}{c_{h}}\left(\left(K_{3}-1\right)^{2} + \left(K_{4}-1\right)^{2}\right)}$$

$$\ll K_{1}^{2} 2^{\left(1 + \frac{2}{c_{h}}\right) \frac{1}{c_{h}-1}\left(\left(K_{1}-1\right)^{2} + \left(K_{2}-1\right)^{2} + \left(K_{3}-1\right)^{2}\right) - \left(K_{1}-1\right)^{2} + \frac{2}{c_{h}}\left(K_{3}-1\right)^{2}}$$

$$\ll K_{1}^{2} 2^{\left(\left(1 + \frac{2}{c_{h}}\right) \frac{3}{c_{h}-1} - 1 + \frac{2}{c_{h}}\right)\left(K_{1}-1\right)^{2}}$$

$$\ll K_{1}^{2} 2^{\left(-1 + \frac{6}{c_{h}-1}\right)\left(K_{1}-1\right)^{2} - 2K_{1}}$$

since $c_h > 4$. Finally,

$$\int_{1}^{2} |E_{8}(\alpha, K)| \, d\alpha \ll \sum_{K_{4} \leq K_{3} \leq K_{2} \leq K} K^{2} 2^{\left(-1 + \frac{6}{c_{h} - 1}\right)(K - 1)^{2} - 2K}$$

$$\ll K^{5} 2^{\left(-1 + \frac{6}{c_{h} - 1}\right)(K - 1)^{2} - 2K},$$

as claimed. \Box

References

- M. Ajtai, J. Komlós, and E. Szemerédi, A dense infinite Sidon sequence, European J. Combin. 2 (1981), 1–11.
- [2] Bose, R.C. and Chowla, S., Theorems in the additive theory of numbers, Comment. Math. Helv. 37 (1962/1963), 141-147.
- [3] Cilleruelo, J. New upper bounds for B_h sequences, Advances in Mathematics, vol 159, n°1 (2001).
- [4] Cilleruelo, J. and Ruzsa, I. Real and p-adic Sidon sequences, Acta Sci. Math. (Szegez) vol 70, no 3-4, (1983).
- [5] P. Erdős and P. Turan, On a problem of Sidon in additive number theory and on some related problems, J. London Math. Soc. 16 (1941), 212–215; P. Erdős, Addendum 19 (1944), 208.
- [6] Gómez, C.A. and Trujillo, C.A. Una nueva construcción de conjuntos B_h modulares Matemáticas: Enseñanza Universitaria Vol. XIX, No 1, Junio (2011) 53-62.
- [7] Green, B. The number of squares and $B_h[g]$ sets Acta Arith. 100 (2001), no. 4, 365–390.
- [8] Halberstam, H. and Roth, K.F. Sequences Springer-Verlag, (1983).
- [9] Maldonado, J. A remark on Ruzsa's construction of an infinite Sidon set arXiv:1103.5732 (2011).
- [10] O'Bryant, K. A Complete Annotated Bibliography of Work Related to Sidon Sequences The electronic journal of combinatorics, DS11 (2004)
- [11] Ruzsa, Imre Z. An Infinite Sidon Sequence Journal of Number Theory, 68, 63–71 (1998).
- [12] Singer, J. A theorem in finite projective geometry and some applications to number theory, Trans. Amer. Math. Soc. 43 (1938), 377–385.

INSTITUTO DE CIENCIAS MATEMÁTICAS (CSIC-UAM-UC3M-UCM) AND DEPARTAMENTO DE MATEMÁTICAS, UNIVERSIDAD AUTÓNOMA DE MADRID, 28049, MADRID, ESPAÑA

 $E\text{-}mail\ address: \texttt{franciscojavier.cilleruelo@uam.es}$

Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049, Madrid, España

 $E ext{-}mail\ address: rafael.tesoro@estudiante.uam.es}$