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Abstract. A set of integers A is called a B2[g] set if every integer
m has at most g representations of the form m = a + a′, with a ≤ a′

and a, a′ ∈ A. We obtain a new lower bound for F (g, n), the largest
cardinality of a B2[g] set in {1, . . . , n}. More precisely, we prove

that lim infn→∞ F (g,n)√
gn

≥ 2√
π
− εg where εg → 0 when g → ∞. We

show a connection between this problem and another one discussed by
Schinzel and Schmidt which can be considered its continuous version.

1. Introduction

A set of integers A is called a B2[g] set if every integer m has at most
g representations of the form m = a + a′, with a ≤ a′ and a, a′ ∈ A. We
write rA(m) for the number of such representations.

A major problem in additive number theory is the study of the behaviour
of the function F (g, n), the largest cardinality of a B2[g] set in {1, . . . , n}.

It is a well known result on Sidon sets that F (1, n) ∼ n1/2, but the
asymptotic behavior of F (g, n) is an open problem for g ≥ 2. The trivial
counting argument gives F (g, n) ≤ 2

√
gn and it is not too difficult to show

(see section 2) that F (g, n) & √
gn.

We define

β(g) = lim inf
n→∞

F (g, n)√
gn

≤ lim sup
n→∞

F (g, n)√
gn

= α(g).

In the last years some progress has been done, improving the easier esti-
mates 1 ≤ β(g) ≤ α(g) ≤ 2. We list below the successive results obtained
by several authors including the improvement obtained in this work.
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grateful for their hospitality.
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α(g) ≤ 2 (trivial)
≤ 1.864 (J. Cilleruelo - I. Ruzsa - C. Trujillo, [1])
≤ 1.844 (B. Green, [2])
≤ 1.839 (G. Martin - K. O’Bryant, [5])
≤ 1.789 (G. Yu, [9])

β(g) ≥ 1 (M. Kolountzakis, [3])
& 1.060 (J. Cilleruelo - I. Ruzsa - C. Trujillo, [1])
& 1.122 (G. Martin - K. O’Bryant, [4])
& 2/

√
π = 1.128... (Corollary 1.2)

The aim of this work is not only to improve the lower bound for β(g) but
also to show a connection with another problem discussed by Schinzel and
Schmidt [7] which can be seen as the continuous version of this problem.

We define the Schinzel-Schmidt’s constant S to be the real number

(1) S = sup
f∈F

1
|f ∗ f |∞

where F = {f : f ≥ 0, supp(f) ⊆ [0, 1], |f |1 = 1} and f ∗ f(x) =∫
f(t)f(x− t) dt. We use the notation |g|1 =

∫ 1

0
|g(x)| dx, |g|∞ = supx g(x)

and supp(g) = {x : g(x) 6= 0}.
Remark 1.1. The definition in [7] is S = supf∈F̃ |f |21/|f ∗ f |∞ with F̃ =
{f : f ≥ 0, f 6≡ 0, supp(f) ⊆ [0, 1], f ∈ L1[0, 1]}, and we can assume that
|f |1 = 1 because |f |21/|f ∗ f |∞ is invariant under dilates of f .

It is easy to see that 1 ≤ S ≤ 2 but Schinzel and Schmidt proved in [7]
that 4/π ≤ S ≤ 1.7373. The witness for the lower found is the function
f(x) = 1

2
√

x
∈ F . They also conjecture that S = 4/π. Our main theorem

relates α(g) and β(g) to S.

Theorem 1.
√

S ≤ lim infg→∞ β(g) ≤ lim supg→∞ α(g) ≤ √
2S.

Corollary 1.2. β(g) ≥ 2/
√

π − εg, where εg → 0 when g →∞.

2. Lower bound constructions

At this point, it is convenient to introduce a few definitions.

Definition 1. We say that A is a B∗
2 [g] set if any integer n has at most g

representations of the form n = a + a′ with a, a′ ∈ A. We write r∗A(n) for
the number of such representations.

Definition 2. We say that A is a Sidon set (mod m) if a1 + a2 ≡ a3 + a4

(mod m) =⇒ {a1, a2} = {a3, a4}, where ai ∈ A.
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All the known lower bounds for β(g) were obtained from the next lemma
(see [1]).

Lemma 1. Let A = {0 = a1 < . . . < ak} be a B∗
2 [g] set and C ⊆ [1,m] a

Sidon set (mod m). Then B = ∪k
i=1(C+mai) is a B2[g] set in [1,m(ak+1)]

with k|C| elements.

Remark 2.1. The lemma shows how to obtain a B2[g] set by carefully
arranging (with a dilation of a B∗

2 [g] set) several copies of a Sidon set
(mod m).

Proof. To prove that B is a B2[g] set, suppose that we have

(2) b1,1 + b2,1 = · · · = b1,g+1 + b2,g+1

for some b1,j , b2,j ∈ B. We can write each bi,j = ci,j + mai,j in a unique
way with ci,j ∈ C and ai,j ∈ A. Let us order the elements bi,j of each sum
in such a way that for any i, j we have c1,j ≤ c2,j , and when c1,j = c2,j we
order them so a1,j ≤ a2,j .

To see that B is a B2[g] set we need to check that there exist j and j′

such that b1,j = b1,j′ , b2,j = b2,j′ .
From (2), and since C is a Sidon set (mod m), we get {c1,1, c2,1} =

{c1,j , c2,j} for every 1 ≤ j ≤ g +1. Moreover, since we ordered the elements
of the equalities in that way, we have c1,1 = c1,j and c2,1 = c2,j for every j.

Then, the equalities (2) imply these other equalities

(3) a1,1 + a2,1 = a1,2 + a2,2 = · · · = a1,g+1 + a2,g+1.

And since A satisfies the B∗
2 [g] condition there exist j and j′ such that

a1,j = a1,j′ and a2,j = a2,j′ .
Then, for these j and j′ we have that b1,j = b1,j′ and b2,j = b2,j′ . This

proves that B ∈ B2[g].
Finally, it is clear that B ⊂ {1, . . . , (ak + 1)m} and |B| = k|C|. ¤

In order to apply Lemma 1 in an efficient way, we have to take dense
Sidon sets (mod m). For example, for each prime p we consider Cp the
Sidon set (mod m) with p − 1 elements and m = p(p − 1) discovered by
Ruzsa (see [6]).

Given a positive integer N , we write

(ak + 1)pn(pn − 1) < N ≤ (ak + 1)pn+1(pn+1 − 1)

for suitable consecutive primes, pn and pn+1. Clearly

F (g, N)√
gN

≥ |Cpn |k√
g(ak + 1)pn+1(pn+1 − 1)

≥ k√
g(ak + 1)

· pn − 1
pn+1

.
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Thus

β(g) = lim inf
N→∞

F (g,N)√
gN

≥ k√
g(ak + 1)

lim inf
n→∞

pn − 1
pn+1

.

Since lim infn→∞
pn

pn+1
= 1, as a consequence of the Prime Number Theorem,

we get

(4) β(g) ≥ k√
g(ak + 1)

.

So, in order to improve the lower bound for β(g), we need to find a set
A = {0 = a1 < . . . < ak} which satisfies the B∗

2 [g] condition and maximizes
the quotient k√

g(ak+1)
.

The sets
(a) A = {0, 1, . . . , g − 1}
(b) A = {0, 1, . . . , g − 1} ∪ {g + 1, g + 3, . . . , g − 1 + 2bg/2c}
(c) A = [0, bg/3c) ∪ (g − bg/3c+ 2 · [0, bg/6c))

∪ [g, g + bg/3c) ∪ (2g − bg/3c , 3g − bg/3c]
provide, respectively, the lower bounds
(a) β(g) ≥ 1

(b) β(g) ≥ g+bg/2c√
g2+2gbg/2c ≥

√
9
8 − εg = 1.060 . . .− εg

(c) β(g) ≥ g+2b g
3 c+b g

6 c√
3g2−gb g

3 c+g
≥

√
121
96 − εg = 1.122 . . .− εg,

cited in the introduction. In the next section we will find a denser set A.

3. Schinzel-Schmidt’s conjecture

The convolution f ∗ f in Schinzel-Schmidt’s problem can be thought as
the continuous version of the function r∗A(n) and |f ∗ f |∞ as the analog of
the maximum of r∗A(n).

The idea is to start with a function f ∈ F such that 1/|f ∗ f |∞ is close
to S (see (1)) and use f as a model to construct our set A. We will use the
probabilistic method.

An interesting result in [7] relates the constant S with the coefficients of
squares of polynomials. We state that result in a more convenient way for
our purposes.

Theorem 2. For any ε > 0, for any n > n(ε), there exists a sequence of
non negative real numbers c0, . . . , cn−1 such that

i)
∑n−1

j=0 cj =
√

n.
ii) cj ≤ n−1/6(1 + ε) for all j = 0, . . . , n− 1.
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iii)
∑

j<m/2 cjcm−j ≤ 1
2S (1 + ε) for any m = 0, . . . , n− 1.

Proof. We follow the ideas of the proof of assertion (iii) of Theorem 1 in [7].
Let f ∈ F with |f ∗ f |∞ close to 1/S, say |f ∗ f |∞ ≤ 1/S + 1/n, and define
for j = 0, . . . , n− 1,

aj =
n

2t

∫ (j+1/2+t)/n

(j+1/2−t)/n

f(x) dx

where t = d2n1/3e. We have the following estimate

(∫ s

r

f(x) dx

)2

≤
∫∫

2r≤x+y≤2s

f(x)f(y) dxdy

=
∫ 2s

2r

(∫
f(x)f(z − x) dx

)
dz

=
∫ 2s

2r

f ∗ f(z) dz ≤ 2(s− r)(1/S + 1/n) ≤ 4(s− r),

where in the last inequality we have used the fact that S ≥ 1 and n ≥ 1.
In particular, we can deduce aj ≤ (2n/t)1/2. The idea for proving

Theorem 1 (iii) in [7] consists of showing that
∑n−1

j=0 aj ≥ n + o(n) and∑m
j=0 ajam−j ≤ (1/S)(n + o(n)) for all m. See [7] for the details.

We define cj = ajρ, where ρ =
√

n∑n−1
j=0 aj

. Clearly ρ ≤ (1/
√

n)(1 + o(1)),

so cj ≤ n−1/6(1 + o(1)),
∑n−1

j=0 cj =
√

n and
∑m

j=0 cjcm−j ≤ (1/S)(1 +
o(1)). ¤

4. The proof

We will use a special case of Chernoff’s inequality (see Corollary 1.9 in
[8]):

Proposition 4.1. (Chernoff’s inequality) Let X = t1 + · · ·+ tn where the
ti are independent Boolean random variables. Then for any δ > 0

P(|X − E(X)| ≥ δE(X)) ≤ 2e−min(δ2/4,δ/2)E(X).(5)

Given ε > 0 and the constants cj ’s defined in Theorem 2, we consider
the probability space of all the subsets A ⊆ {0, 1, 2, . . . , n − 1} defined by
P(j ∈ A) = λncj , where λn = bn1/6/(1 + ε)c (observe that cjλn ≤ 1 for n
large enough).
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Lemma 2. With the conditions above, given ε > 0, there exists n0 such
that for all n ≥ n0

P
(|A| ≥ λn

√
n(1− ε)

)
> 0.9.

Proof. Since |A| is a sum of independent boolean variables and E(|A|) =∑n−1
j=0 P(j ∈ A) = λn

√
n we can apply Chernoff’s lemma to deduce that

P
(
|A| < λn

√
n(1− ε)

)
≤ 2e−min(ε2/4,ε/2)λn

√
n < 0.1

for n large enough. ¤

Lemma 3. Again with the same conditions, given 0 < ε < 1, there exists
n1 such that for all n ≥ n1

r∗A(m) ≤ λ2
n

S
(1 + ε)3 for all m

with probability > 0.9.

Proof. Since r∗A(m) =
∑m

j=0 I(j ∈ A)I(m − j ∈ A) is a sum of boolean
variables which are not independent, it is convenient to define a new variable
r∗A

′(m) = 1
2r∗A(m) − 1

2 I(m/2 ∈ A) =
∑

j<m/2 I(j ∈ A)I(m − j ∈ A). Now
we can apply Chernoff’s inequality to this variable.

Let µm denote the expected value of r∗A
′(m). We observe that, from the

independence of the indicator functions, E
(
I(j ∈ A)I(m− j ∈ A)

)
= P(j ∈

A)P(m− j ∈ A) = λ2
ncjcm−j for every j < m/2 and so

µm =
∑

j<m/2

E
(
I(j ∈ A)I(m− j ∈ A)

)
=

∑

j<m/2

λ2
ncjcm−j ≤ λ2

n

2S
(1 + ε),

by Theorem 2 iii).

• If µm ≥ λ2
n

6S
(1 + ε), we apply Proposition 4.1 (observe that ε < 2

implies that ε2/4 ≤ ε/2) to obtain

P
(

r∗A
′(m) ≥ λ2

n

2S
(1 + ε)2

)
≤ P

(
r∗A

′(m) ≥ µm(1 + ε)
)

≤ 2 exp
(
−µmε2

4

)

≤ 2 exp
(
− λ2

n

24S
(1 + ε)ε2

)
.

• If µm = 0 then r∗A
′(m) = 0.
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• If 0 < µm <
λ2

n

6S
(1 + ε), for δ =

λ2
n

µm2S
(1 + ε)2 − 1 ≥ 2 (now

δ/2 ≤ δ2/4) we obtain

P
(

r∗A
′(m) ≥ λ2

n

2S
(1 + ε)2

)
= P

(
r∗A

′(m) ≥ µm(1 + δ)
)

≤ 2 exp(−δµm/2)

≤ 2 exp
(
−λ2

n

4S
(1 + ε)2 +

µm

2

)

≤ 2 exp
(
−λ2

n

4S
(1 + ε)2 +

λ2
n

12S
(1 + ε)

)

≤ 2 exp
(
−λ2

n

6S
(1 + ε)2

)
.

Then

P
(

r∗A
′(m) ≥ λ2

n

2S
(1 + ε)2 for some m

)

≤ 2n

(
exp

(
− λ2

n

24S
(1 + ε)ε2

)
+ exp

(
−λ2

n

6S
(1 + ε)2

))
< 0.1

for n large enough.
Because of the way we defined r∗A

′(m), this means

P
(

r∗A(m) ≥ λ2
n

S
(1 + ε)2 + I(m/2 ∈ A) for some m

)
< 0.1,

so

P
(

r∗A(m) ≥ λ2
n

S
(1 + ε)3 for some m

)
< 0.1

for n large enough.
¤

Lemmas 1 and 2 imply that for any 0 < ε < 1, for n ≥ n(ε) = max(n0, n1)
the probability that |A| ≥ λn

√
n(1 − ε) and r∗A(m) ≤ λ2

n

S (1 + ε)3 for all m
is greater than 0.8. We now choose one of these sets A ⊂ {0, . . . , n− 1} for
a suitable n.

Write gε = bλ2
n(ε)

S (1 + ε)3c. For any g ≥ gε we take n such that g =

bλ2
n

S (1 + ε)3c (this is possible because λ2
n

S (1 + ε)3 grows slower than n).
Thus, for g ≥ gε,

β(g) ≥ |A|
g1/2n1/2

≥ λn
√

n(1− ε)
(λn/

√
S)(1 + ε)3/2n1/2

=
√

S
1− ε

(1 + ε)3/2
,
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which completes the proof for the lower bound in Theorem 1, since we can
take ε arbitrary small.

To obtain the upper bound in Theorem 1, we will use the following result
(assertion (ii) of Theorem 1 in [7]):

Theorem 3. Let S be the Schinzel-Schmidt constant and Q = {Q : Q ∈
R≥0[x], Q 6≡ 0, deg(Q) < N}. Then

1
N

sup
Q∈Q

|Q2(x)|1
|Q2(x)|∞ ≤ S,

where |P |1 is the sum and |P |∞ the maximum of the coefficients of a poly-
nomial, P .

Given a B2[g] set, A ⊆ {0, . . . , N−1}, we define the polynomial QA(x) =∑
a∈A xa, so Q2

A(x) =
∑

n r∗A(n)xn. Theorem 3 says that, in particular,

S ≥ 1
N

sup
A⊆{0,...,N−1}

|A|2
2g

=
F 2(g, N)

2gN
,

and so
F (g, N)√

gN
≤ √

2S.
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