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1. INTRODUCTION.

In [1], A.Cordoba and myself developed a method to study the location of
lattice points on circles centered at the origin. There we proved the following
theorem:

Theorem A.
On a circle of radius R centered at the origin, an arc whose length is not

greater than √
2R

1
2− 1

4[ m
2 ]+2

contains, at most, m lattice points.

We could not prove wether the exponent 1
2 − 1

4[ m
2 ]+2 is sharp for each m.

In particular, we do not know if the number of lattice points on arcs of length
R

1
2 is bounded uniformly in R or not. Probably it is not.

Obviously, theorem A is sharp for m = 1. The case m = 2 was first proved
by A.Schinzel and used by Zygmund [2] to prove a Cantor-Lebesgue theorem
in two variables.

It is not too hard to prove that the exponent 1
3 can not be improved.

In this paper we get the best constant C, such that an arc of length CR
1
3

can not contain three lattice points.
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Theorem 1.
i) On a circle of radius R centered at the origin, an arc whose length is

not greater than 2 3
√

2R
1
3 , contains, at most, two lattice points.

ii) For every ε > 0, there exist infinitely many circles x2 + y2 = R2
n with

arcs of length 2 3
√

2R
1
3
n + ε containing three lattice points.

2 PRELIMINARY LEMMA AND NOTATION.

Let us denote by r(n) the number of representations of the integer n
as a sum of two squares, i.e. r(n) is the number of lattice points on the
circle x2 + y2 = n. Therefore we shall associate lattice points with Gaussian
integers:

a2 + b2 = n determines a Gaussian integer a+ bi =
√

ne2πiΦ for a suitable
angle Φ.

If
n = 2ν

∏

pj≡1(4)

p
αj

j

∏

qk≡3(4)

qβk

k

is the prime factorization of the integer n, then r(n) = 0 unless all the
exponents βk are even. In that case we have r(n) = 4

∏
(1 + αj).

A prime pj ≡ 1(4) can be represented as a sum of two squares, pj = a2+b2,
0 < a < b, in only one way. Then, for each pj , the angle Φj ,such that
a + bi = √

pje
2πiΦj is well defined.

With this notation we proved in [1] the following lemma:

Lemma.
If

n = 2ν
∏

pj≡1(4)

p
αj

j

∏

qk≡3(4)

q2βk

k

then the Gaussian integers corresponding to the 4
∏

(1+αj) lattice points on
the circle x2 + y2 = n are given by the formula

√
ne

2πi{Φ0+
∑

j
γjΦj+

t
4}
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where Φj is the angle corresponding to pj,
γj runs over the set {γ ∈ Z; |γ| ≤ αj γ ≡ αj(2)}
t takes the values 0, 1, 2, 3 and

Φ0 =
{

0 if ν is even
1
8 if ν is odd

3. PROOF OF THEOREM 1.

i) Let us suppose that for the integer

n0 = 2ν
∏

pj≡1(4)

p
αj

j

∏

qk≡3(4)

q2βk

k

there is an arc, on the circle of radius R0 =
√

n0 centered at the origin, which

contains three lattice points and whose length is 2 3
√

2R
1
3
0 .

The previous lemma implies that the same must be true for the circle of
radius R =

√
n where n =

∏
pj≡1(4) p

αj

j .
Let ν1, ν2, ν3 be three such lattice points. By the lemma, they have rep-

resentations of the form

√
ne

2πi{
∑

j
γs

j Φj+
ts

4 } (s = 1, 2, 3)

γs
j ∈ {γ ∈ Z; |γ| ≤ αj γ ≡ αj(2)}, ts ∈ {0, 1, 2, 3}

For each pair νs 6= νs′ of such points, let us consider the quantity

Ψs,s′ =
∑

j

Φj{γs
j − γs′

j }+
ts − ts

′

4
= 2{

∑

j

Φj

γs
j − γs′

j

2
+

ts − ts
′

8
}

and observe that γs,s′
j = γs

j−γs′
j

2 takes always integer values.

We can write ts−ts′

8 = δ(s,s′)
8 + ts,s′

4 where ts,s′ is an integer and

δ(s, s′) =

{
0 if ts ≡ ts

′
(2)

1 if ts ≡ ts
′
(2)
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Now, the angles Ψs,s′

2 correspond to a representation as a sum of two
squares of

2δ(s,s′)
∏

j

p
|γs,s′

j
|

j = n2
s,s′ + m2

s,s′ 1 ≤ ns,s′ ≤ ms,s′

Then, Ψs,s′

2 = 1
2π arctg

ns,s′
ms,s′

where

arctg
ns,s′

ms,s′
≥ arctg

1
ms,s′

>
1√

m2
s,s′ + 1

≥ 1√
2δ(s,s′)

∏
p
|γs,s′

j
|

j

And we have

Ψ1,2

2
Ψ1,3

2
Ψ2,3

2
>

1

(2π)3
√

2δ(1,2)+δ(1,3)+δ(2,3)
∏

p
|γ1,2

j
|+|γ1,3

j
|+|γ2,3

j
|

j

.

The maximun value of

|γ1,2
j |+ |γ1,3

j |+ |γ2,3
j | = |γ1

j − γ2
j |

2
+
|γ1

j − γ3
j |

2
+
|γ2

j − γ3
j |

2

is obtained when γ1
j = γ2

j = αj and γ3
j = −αj .

Then |γ1,2
j |+ |γ1,3

j |+ |γ2,3
j | ≤ 2αj .

Also we can observe that δ(1, 2) + δ(1, 3) + δ(2, 3) ≤ 2.
Then we get

Ψ1,2Ψ1,3Ψ2,3 >
1

2π3R2
.

On the other hand, if P1, P2, P3 are three points of the interval [0, 1], we
have

|P1 − P2||P1 − P3||P2 − P3| ≤ 1
4
.

This implies that for three lattice points on an arc of length 2 3
√

2R
1
3 , we

have

Ψ1,2Ψ1,3Ψ2,3 ≤ 1
4
(
2 3
√

2R
1
3

2πR
)3 =

1
2π3R2

and we get a contradiction.
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ii) For each n we consider the circle x2 + y2 = R2
n where

R2
n = 16n6 + 4n4 + 4n2 + 1.

We can see that

16n6+4n4+4n2+1 = (4n3−1)2+(2n2+2n)2 = (4n3)2+(2n2+1)2 = (4n3+1)2+(2n2−2n)2.

The three lattice points (4n3−1, 2n2+2n), (4n3, 2n2+1), (4n3+1, 2n2−2n)
are on an arc of length

Rn{arctg
2n2 + 2n

4n3 − 1
−arctg

2n2 − 2n

4n3 + 1
} = Rnarctg

16n4 + 4n2

16n6 + 4n4 − 4n2 − 1
= 2 3

√
2R

1
3
n +o(1)

and the theorem follows.
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