ARCS CONTAINING NO THREE LATTICE POINTS

Javier Cilleruelo
Departamento de Matematicas. Universidad Autonoma de Madrid.
28049-Madrid, Espana.

1. INTRODUCTION.

In [1], A.Cordoba and myself developed a method to study the location of lattice points on circles centered at the origin. There we proved the following theorem:

Theorem A.

On a circle of radius R centered at the origin, an arc whose length is not greater than

$$
\sqrt{2} R^{\frac{1}{2}-\frac{1}{\left.4 \frac{1}{2} \right\rvert\,+2}}
$$

contains, at most, m lattice points.
We could not prove wether the exponent $\frac{1}{2}-\frac{1}{4\left[\frac{m}{2}\right]+2}$ is sharp for each m. In particular, we do not know if the number of lattice points on arcs of length $R^{\frac{1}{2}}$ is bounded uniformly in R or not. Probably it is not.

Obviously, theorem A is sharp for $m=1$. The case $m=2$ was first proved by A.Schinzel and used by Zygmund [2] to prove a Cantor-Lebesgue theorem in two variables.

It is not too hard to prove that the exponent $\frac{1}{3}$ can not be improved.
In this paper we get the best constant C, such that an arc of length $C R^{\frac{1}{3}}$ can not contain three lattice points.

Theorem 1.

i) On a circle of radius R centered at the origin, an arc whose length is not greater than $2 \sqrt[3]{2} R^{\frac{1}{3}}$, contains, at most, two lattice points.
ii) For every $\epsilon>0$, there exist infinitely many circles $x^{2}+y^{2}=R_{n}^{2}$ with arcs of length $2 \sqrt[3]{2} R_{n}^{\frac{1}{3}}+\epsilon$ containing three lattice points.

2 PRELIMINARY LEMMA AND NOTATION.

Let us denote by $r(n)$ the number of representations of the integer n as a sum of two squares, i.e. $r(n)$ is the number of lattice points on the circle $x^{2}+y^{2}=n$. Therefore we shall associate lattice points with Gaussian integers:
$a^{2}+b^{2}=n$ determines a Gaussian integer $a+b i=\sqrt{n} e^{2 \pi i \Phi}$ for a suitable angle Φ.

If

$$
n=2^{\nu} \prod_{p_{j} \equiv 1(4)} p_{j}^{\alpha_{j}} \prod_{q_{k} \equiv 3(4)} q_{k}^{\beta_{k}}
$$

is the prime factorization of the integer n, then $r(n)=0$ unless all the exponents β_{k} are even. In that case we have $r(n)=4 \prod\left(1+\alpha_{j}\right)$.

A prime $p_{j} \equiv 1(4)$ can be represented as a sum of two squares, $p_{j}=a^{2}+b^{2}$, $0<a<b$, in only one way. Then, for each p_{j}, the angle Φ_{j}, such that $a+b i=\sqrt{p_{j}} e^{2 \pi i \Phi_{j}}$ is well defined.

With this notation we proved in [1] the following lemma:

Lemma.

If

$$
n=2^{\nu} \prod_{p_{j} \equiv 1(4)} p_{j}^{\alpha_{j}} \prod_{q_{k} \equiv 3(4)} q_{k}^{2 \beta_{k}}
$$

then the Gaussian integers corresponding to the $4 \prod\left(1+\alpha_{j}\right)$ lattice points on the circle $x^{2}+y^{2}=n$ are given by the formula

$$
\sqrt{n} e^{2 \pi i\left\{\Phi_{0}+\sum_{j} \gamma_{j} \Phi_{j}+\frac{t}{4}\right\}}
$$

where Φ_{j} is the angle corresponding to p_{j},
γ_{j} runs over the set $\left\{\gamma \in Z ; \quad|\gamma| \leq \alpha_{j} \quad \gamma \equiv \alpha_{j}(2)\right\}$
t takes the values $0,1,2,3$ and

$$
\Phi_{0}=\left\{\begin{array}{llll}
0 & \text { if } & \nu & \text { is even } \\
\frac{1}{8} & \text { if } & \nu & \text { is odd }
\end{array}\right.
$$

3. PROOF OF THEOREM 1.

i) Let us suppose that for the integer

$$
n_{0}=2^{\nu} \prod_{p_{j} \equiv 1(4)} p_{j}^{\alpha_{j}} \prod_{q_{k} \equiv 3(4)} q_{k}^{2 \beta_{k}}
$$

there is an arc, on the circle of radius $R_{0}=\sqrt{n_{0}}$ centered at the origin, which contains three lattice points and whose length is $2 \sqrt[3]{2} R_{0}^{\frac{1}{3}}$.

The previous lemma implies that the same must be true for the circle of radius $R=\sqrt{n}$ where $n=\prod_{p_{j} \equiv 1(4)} p_{j}^{\alpha_{j}}$.

Let $\nu_{1}, \nu_{2}, \nu_{3}$ be three such lattice points. By the lemma, they have representations of the form

$$
\sqrt{n} e^{2 \pi i\left\{\sum_{j} \gamma_{j}^{s} \Phi_{j}+\frac{t^{s}}{4}\right\}} \quad(s=1,2,3)
$$

$\gamma_{j}^{s} \in\left\{\gamma \in Z ; \quad|\gamma| \leq \alpha_{j} \quad \gamma \equiv \alpha_{j}(2)\right\}, \quad t^{s} \in\{0,1,2,3\}$
For each pair $\nu_{s} \neq \nu_{s^{\prime}}$ of such points, let us consider the quantity

$$
\Psi^{s, s^{\prime}}=\sum_{j} \Phi_{j}\left\{\gamma_{j}^{s}-\gamma_{j}^{s^{\prime}}\right\}+\frac{t^{s}-t^{s^{\prime}}}{4}=2\left\{\sum_{j} \Phi_{j} \frac{\gamma_{j}^{s}-\gamma_{j}^{s^{\prime}}}{2}+\frac{t^{s}-t^{s^{\prime}}}{8}\right\}
$$

and observe that $\gamma_{j}^{s, s^{\prime}}=\frac{\gamma_{j}^{s}-\gamma_{j}^{s^{\prime}}}{2}$ takes always integer values.
We can write $\frac{t^{s}-t^{s^{\prime}}}{8}=\frac{\delta\left(s, s^{\prime}\right)}{8}+\frac{t^{s, s^{\prime}}}{4}$ where $t^{s, s^{\prime}}$ is an integer and

$$
\delta\left(s, s^{\prime}\right)=\left\{\begin{array}{lll}
0 & \text { if } & t^{s} \equiv t^{s^{\prime}}(2) \\
1 & \text { if } & t^{s} \equiv t^{s^{\prime}}(2)
\end{array}\right.
$$

Now, the angles $\frac{\Psi^{s, s^{\prime}}}{2}$ correspond to a representation as a sum of two squares of

$$
2^{\delta\left(s, s^{\prime}\right)} \prod_{j} p_{j}^{\left|\gamma_{j}^{s, s^{\prime}}\right|}=n_{s, s^{\prime}}^{2}+m_{s, s^{\prime}}^{2} \quad 1 \leq n_{s, s^{\prime}} \leq m_{s, s^{\prime}}
$$

Then, $\frac{\Psi^{s, s^{\prime}}}{2}=\frac{1}{2 \pi} \operatorname{arctg} \frac{n_{s, s^{\prime}}}{m_{s, s^{\prime}}}$ where

$$
\operatorname{arctg} \frac{n_{s, s^{\prime}}}{m_{s, s^{\prime}}} \geq \operatorname{arctg} \frac{1}{m_{s, s^{\prime}}}>\frac{1}{\sqrt{m_{s, s^{\prime}}^{2}+1}} \geq \frac{1}{\sqrt{2^{\delta\left(s, s^{\prime}\right)} \prod p_{j}^{\mid \gamma_{j}^{s, s^{\prime} \mid}}}}
$$

And we have

$$
\frac{\Psi^{1,2}}{2} \frac{\Psi^{1,3}}{2} \frac{\Psi^{2,3}}{2}>\frac{1}{(2 \pi)^{3} \sqrt{2^{\delta(1,2)+\delta(1,3)+\delta(2,3)} \prod p_{j}^{\left|\gamma_{j}^{1,2}\right|+\left|\gamma_{j}^{1,3}\right|+\left|\gamma_{j}^{2,3}\right|}}}
$$

The maximun value of

$$
\left|\gamma_{j}^{1,2}\right|+\left|\gamma_{j}^{1,3}\right|+\left|\gamma_{j}^{2,3}\right|=\frac{\left|\gamma_{j}^{1}-\gamma_{j}^{2}\right|}{2}+\frac{\left|\gamma_{j}^{1}-\gamma_{j}^{3}\right|}{2}+\frac{\left|\gamma_{j}^{2}-\gamma_{j}^{3}\right|}{2}
$$

is obtained when $\gamma_{j}^{1}=\gamma_{j}^{2}=\alpha_{j}$ and $\gamma_{j}^{3}=-\alpha_{j}$.
Then $\left|\gamma_{j}^{1,2}\right|+\left|\gamma_{j}^{1,3}\right|+\left|\gamma_{j}^{2,3}\right| \leq 2 \alpha_{j}$.
Also we can observe that $\delta(1,2)+\delta(1,3)+\delta(2,3) \leq 2$.
Then we get

$$
\Psi^{1,2} \Psi^{1,3} \Psi^{2,3}>\frac{1}{2 \pi^{3} R^{2}}
$$

On the other hand, if P_{1}, P_{2}, P_{3} are three points of the interval $[0,1]$, we have

$$
\left|P_{1}-P_{2}\right|\left|P_{1}-P_{3}\right|\left|P_{2}-P_{3}\right| \leq \frac{1}{4}
$$

This implies that for three lattice points on an arc of length $2 \sqrt[3]{2} R^{\frac{1}{3}}$, we have

$$
\Psi^{1,2} \Psi^{1,3} \Psi^{2,3} \leq \frac{1}{4}\left(\frac{2 \sqrt[3]{2} R^{\frac{1}{3}}}{2 \pi R}\right)^{3}=\frac{1}{2 \pi^{3} R^{2}}
$$

and we get a contradiction.
ii) For each n we consider the circle $x^{2}+y^{2}=R_{n}^{2}$ where

$$
R_{n}^{2}=16 n^{6}+4 n^{4}+4 n^{2}+1
$$

We can see that
$16 n^{6}+4 n^{4}+4 n^{2}+1=\left(4 n^{3}-1\right)^{2}+\left(2 n^{2}+2 n\right)^{2}=\left(4 n^{3}\right)^{2}+\left(2 n^{2}+1\right)^{2}=\left(4 n^{3}+1\right)^{2}+\left(2 n^{2}-2 n\right)^{2}$.
The three lattice points $\left(4 n^{3}-1,2 n^{2}+2 n\right),\left(4 n^{3}, 2 n^{2}+1\right),\left(4 n^{3}+1,2 n^{2}-2 n\right)$ are on an arc of length
$R_{n}\left\{\operatorname{arctg} \frac{2 n^{2}+2 n}{4 n^{3}-1}-\operatorname{arctg} \frac{2 n^{2}-2 n}{4 n^{3}+1}\right\}=R_{n} \operatorname{arctg} \frac{16 n^{4}+4 n^{2}}{16 n^{6}+4 n^{4}-4 n^{2}-1}=2 \sqrt[3]{2} R_{n}^{\frac{1}{3}}+o(1)$
and the theorem follows.

REFERENCES.

[1] J.CILLERUELO and A.CORDOBA. Trigonometric polynomials and lattice points, Proceedings of the A.M.S., to appear.
[2] A.ZYGMUND. A Cantor-Lebesgue theorem for double trigonometric series, Studia Math. 64 (1972).

