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AN OVERLAPPING THEOREM WITH APPLICATIONS

Javier Cilleruelo and Gérald Tenenbaum

Abstract

We establish a general and optimal lower bound for the complete
sum of the probabilities of k-intersections of n events. We then
describe various applications to additive and multiplicative num-
ber theory, graph theory, coding theory, study of lattice points on
circles, and divisors of polynomials.

1. Introduction

Let µ be a positive measure on a set Ω, {Ej}
k
j=1 a family of measurable

subsets, and set

τm :=
∑

16j1<···<jm6k

µ(Ej1 ∩ · · · ∩ Ejm
) (m > 1).

We address here the problem of obtaining lower bounds for τm in terms
of τ1. For m > 2, the quantity τm may be thought of as the global
amount of m-overlapping in the family {Ej}

k
j=1.

Many problems in Combinatorial Number Theory may be tackled by
using estimates for τm. According to the specific situation under consid-
eration, appropriate choices of the set Ω, the family of subsets {Ej}

k
j=1

and the measure µ may be performed.
The integer parameter m > 1 being fixed, our results will be conve-

niently described in terms of the continuous, piecewise linear, interpola-
tion of the binomial coefficients

(

n
m

)

(n ∈ N). Thus, we define

Qm(x) :=

(

⌊x⌋

m

)

+

(

⌊x⌋

m−1

)

〈x〉=

(

⌊x⌋

m

)

(1−〈x〉)+

(

⌊x+1⌋

m

)

〈x〉 (x∈R
+)
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where ⌊x⌋ and 〈x〉 denote respectively the integer part and the fractional
part of x. We have

Qm(x) >

(

x

m

)

(x ∈ R
+),

for the right-hand side is a convex function of x, with equality when
x is an integer. We also note that Q1(x) = x, and that, for all m, the
function Qm is continuous, convex and satisfies Qm(x) = 0 whenever
x 6 m − 1.

We state our main result in a probabilistic setting.

Theorem 1.1 (Overlapping Theorem). Let (Ω,A, P) be a probability

space and let {Ej}
k
j=1 denote a family of events. Write

σm :=
∑

16j1<···<jm6k

P(Ej1 ∩ · · · ∩ Ejm
) (m > 1).

Then we have

(1.1) σm > Qm(σ1).

The case m = 2 is essentially due to Gillis [6]. The general bound
has been outlined by Klazar in [7]. By a different method, we prove,
the above result in the next section, together with the fact that inequal-
ity (1.1) is optimal in its generality.

In Section 3, we describe various applications. The results obtained
there are not all new: our main purpose is to point out that they all
allow a unified approach.

2. The overlapping theorem

We first prove Theorem 1.1. Put f(ω) :=
∑

16j6k 1Ej
(ω). Then

(1 + t)f(ω) =
∏

16j6k

(1 + 1Ej
(ω)t) (ω ∈ Ω).

Equating coefficients of tm on both sides, we obtain

Qm(f(ω)) =

(

f(ω)

m

)

=
∑

16j1<···<jm6k

1Ej1
1Ej2

· · ·1Ejm
(ω ∈ Ω).

Integrating with respect to dP(ω), we obtain σm = E(Qm(f)).
Since Qm is convex, we may apply Jensen’s inequality (see, e.g., [11,

Theorem 3.3]) to get

Qm(σ1) = Qm(E(f)) 6 E(Qm(f)) = σm.
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It is not difficult to see that Theorem 1.1 cannot be improved. Let
I = R/Z be equipped with the Haar measure. For given 0 < σ < k ∈ N

and all integers j, 1 6 j 6 k, we define

Ej := {x ∈ I : 0 6 x + j/k < σ/k (mod 1)},

so that each Ej has measure σ/k. Put ν = ⌊σ⌋. Then each x ∈ I belongs
to exactly ν or ν + 1 sets Ej , the latter case being excluded if σ ∈ N.
Thus

f(x) =
∑

16j6k

1Ej
(x) ∈ {ν, ν + 1} (x ∈ I).

Writing Aκ := f−1({κ}), we infer that

E(f) = σ = νP(Aν) + (ν + 1)P(Aν+1) = ν + P(Aν+1).

This implies in turn, with w := P(Aν+1) = σ − ν,

E(Qm(f)) =

(

ν + 1

m

)

w +

(

ν

m

)

(1 − w) = Qm(σ).

Actually, equality holds if and only if f =
∑

1Ej
takes no more than

two consecutive integer values and E(f) = σ.

For most the applications, the next corollary, which is also optimal,
is sufficient.

Corollary 2.1. Let (Ω,A, P) be a probability space and let {Ej}
k
j=1 de-

note a family of events. Then, for each m > 1, we have
(

k

m

)

max
16j1<···<jm6k

P(Ej1 ∩ · · · ∩ Ejm
) > Qm(σ1).

Proof: This is obvious since σm is a sum with
(

k
m

)

summands.

We now proceed with our optimality assertion.

Theorem 2.2. Let 0 < σ 6 k ∈ N. There exist a probability space and

a sequence of events {Ej}
k
j=1 such that every intersection

Ej1 ∩ · · · ∩ Ejm
, 1 6 j1 < · · · < jm 6 k

has probability Qm(σ)/
(

k
m

)

.

Proof: Let k ∈ N, A := [1, k] ∩ N, Ω := P(A), and define

Ej := {J ⊂ A : j ∈ J} ∈ Ω (1 6 j 6 k).
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Let ν := ⌊σ⌋, w := σ − ν, and let Ων denote the subset of Ω comprising
all sets E with ν elements. Then, obviously,

f(E) =
∑

16j6k

1Ej
(E) = ν,

∑

j1<···<jm

1Ej1
(E) · · · 1Ejm

(E) =

(

ν

m

) (E ∈ Ων).

Hence, selecting P as the uniform measure µν supported on Ων ,

σm = E

((

f

m

))

=

(

ν

m

)

.

Furthermore, by symmetry, all Ej1 ∩· · ·∩Ejm
have the same probability.

By linear combination, the above is also true for P = wµν+1 +(1−w)µν .
Therefore we get for this choice

σm = w

(

ν + 1

m

)

+ (1 − w)

(

ν

m

)

= Qm(σ).

3. Applications

3.1. Primes. Our first application is an unusual proof of a well-known
estimate for the sum of the reciprocals of primes.

Theorem 3.1. For n > 3, we have

∑

p6n

1

p
6

log log(2n + 1)

log 2
+ 1.

Proof: Let X denote the random variable defined by

P(X = r) =

{

1/n for 1 6 r 6 n

0 otherwise,

and, for each prime p 6 n, select Ep := {ω : X(ω) ≡ 0 (mod p)}. We
have,

σm =
∑

pi1
<···<pim6n

P(Epi1
· · ·Epim

)

=
1

n

∑

pi1
<···<pim 6n

⌊

n

pi1 · · · pim

⌋

6
∑

16r6n
ν(r)=m

1

r
,
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where ν(r) denotes the number of prime factors of r. This also holds
for m = 0 if we set σ0 = 1. Therefore

2σ1 =
∑

m>0

(

σ1

m

)

6
∑

m>0

σm 6
∑

16r6n

1

r
6 log(2n + 1),

the stated bound follows, since we have from above

σ1 =
1

n

∑

p6n

⌊

n

p

⌋

>
∑

p6n

1

p
− 1.

3.2. Graphs. The study of extremal problems in graph theory was
initiated by Erdős and Turán. The theorem below was originally proved
by Kővari, Sós and Turán [8]. The complete bipartite graph Kr,s is a
graph with two sets of vertices, one with r members and one with s, such
that each vertex in one set is adjacent to every vertex in the other set
and to no vertex in its own set.

Theorem 3.2. Let r, s be positive integers and G be a graph with n ver-

tices containing no subgraph Kr,s. Then G contains at most

1
2 (r − 1)1/sn2−1/s + 1

2 (s − 1)n

edges.

Proof: Let V be the set of vertices of G, so that |V | = n, and E be the set
of edges. Define a random variable X : Ω = V → V with law P(X = v) =
1/n and, for each v ∈ V , let Ev := {ω : {X(ω), v} ∈ E}, deg(v) := |Ev|.
Then P(Ev) = deg(v)/n and

σ1 =
1

n

∑

v∈E

deg(v) =
2|E|

n
.

Since G contains no subgraph of type Kr,s, we have P(Ev1
· · ·Evs

) 6

(r − 1)/n whenever the Evj
are pairwise distinct. Therefore,

σs 6
r − 1

n

(

n

s

)

.

Now we apply the overlapping theorem to obtain

(3.1)
r − 1

n

ns

s!
>

r − 1

n

(

n

s

)

> σs >

(

σ1

s

)

=

(

2|E|/n

s

)

>
(2|E|/n − (s − 1))s

s!
.

This yields the required inequality.
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Remark. It is known that the constant (r − 1)1/2/2 is sharp for s = 2.

3.3. Sidon sets. A set of integers A is called a Sidon set if all sums

a + a′ (a 6 a′, a ∈ A, a′ ∈ A)

are distinct. A major problem in this theory consists in estimating the
size F (N) of the largest Sidon set contained in {1, . . . , N}. Erdős [5]
proved the upper bound

F (N) 6 N1/2 + O(N1/4)

and Lindström [10] gave a more precise estimate (stated and proved
below) which has not been improved in 37 years. Ruzsa [12] gave a new
proof of it, using an easy but interesting lemma, which we prove via the
overlapping theorem.

Lemma 3.3. Let A and B be two finite sets of integers. If A is a Sidon

set then

|A + B| >
|A|2|B|

|A| + |B| − 1
.

Proof: Let X denote the integer random variable with law given by

P(X = m) =

{

1/|A + B| if m ∈ A + B

0 otherwise.

For each b ∈ B we set Eb = {X ∈ A + b}. Then P(Eb) = |A|/|A + B|
and

σ1 =
|A||B|

|A + B|
.

On the other hand, if b 6= b′, P(EbEb′) 6 1/|A + B|, for A is a Sidon set,

whence σ2 6
(

|B|
2

)

/|A + B|. Finally,
(

|B|

2

)

1

|A + B|
> σ2 > Q2(σ1) >

σ1(σ1 − 1)

2
=

|A||B|

2|A + B|

(

|A||B|

|A + B|
−1

)

,

and the stated inequality follows.

Theorem 3.4 (Lindström). If A ⊂ [1, N ] is a Sidon set, then |A| 6

N1/2 + N1/4 + 1.

Proof: Write |A| = m, take B = {1, . . . , n} with n =
⌊

(mN)1/2
⌋

+1 and
apply above lemma. We get

N + (Nm)1/2
> N + n − 1 > |A + B| >

m2n

m + n − 1
>

m2(mN)1/2

m + (mN)1/2
,

from which we derive that m6

(
√

N1/2 + 1
4 + 1

2

)2

<N1/2+N1/4+1.
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3.4. Coding theory. Write Zq := [1, q] ∩ N. The Hamming dis-
tance d(w, w′) of two words w, w′ ∈ Zn

q of length n, is the number of
locations at which the letters from w and w′ are different. A classical
problem in coding theory is to estimate the cardinality Aq(n, d) of the
largest code in Zn

q with given minimal Hamming distance d. Applying
the overlapping theorem, we establish an upper bound for this problem,
known as Plotkin bound.

Theorem 3.5 (Plotkin bound). Assume qd > n(q − 1). Then

Aq(n, d) 6
qd

qd − n(q − 1)
.

Proof: Let Ω := {(k, h) : 1 6 k 6 n, 0 6 h 6 q−1} and define a random
variable X such that

P(X = (k, h)) =
1

nq
.

Assume C :={wi : 16 i6Aq(n, d)} is a code such that mini6=j d(wi, wj)=
d. Writing ki for the kth letter, or k-component, of wi we consider the
events

Ei :=
⋃

16k6n

{X = (k, ki)}
(

1 6 i 6 Aq(d, n)
)

.

Then P(Ei) = 1/q and σ1 = Aq(n, d)/q. Also

EiEj =
⋃

16k6n

{X = (k, ki) = (k, kj)},

so

P (EiEj) =
n − d(wi, wj)

qn
6

n − d

qn
.

Therefore,
(

Aq(n, d)

2

)

n − d

qn
> σ2 > Q2(σ1) >

(

Aq(n, d)/q

2

)

,

and the required bound follows.

3.5. Divisors. Given integers a1, . . . , ak, we denote by (a1, . . . , ak)
their greatest common divisor.

Theorem 3.6. Let α ∈]0, 1[, n ∈ N
∗ and {dj}

k
j=1 a set of divisors of n

such that min16j6k dj > nα. Then, for all m > 1, we have

max
16j1<···<jm6k

(dj1 , . . . , djm
) > nαm

where αm := Qm(kα)/
(

k
m

)

.
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Proof: Let X denote the random variable defined by

(3.2) P(X = pν) =
log p

log n
(pν | n).

Let Ej = {ω : X | dj}. Then P(Ej) = (log dj)/ log n and

P(Ej1 · · ·Ejm
) =

log(dj1 , . . . , djm
)

log n
.

We observe that σ1 =
∑k

j=1 P(Ej) > kα. We may hence apply Corol-
lary 2.1 to infer that there exist dj1 , . . . , djm

such that

log(dj1 , . . . , djm
)

log n
= P(Ej1 · · ·Ejm

) > Qm(σ1)

(

k

m

)−1

> Qm(kα)

(

k

m

)−1

.

For all values of k, m and α, the exponent αm is optimal.

Theorem 3.7. For any positive integer k, and for any α, 0 6 α 6 1,
there exists infinitely many integers n with k divisors nα < d1 < · · · <
dk 6 n and such that, for each m, 2 6 m 6 k and for any di1 < · · · < dim

we have (di1 , . . . , dim
) 6 nαm+o(1), where αm := Qm(kα)/

(

k
m

)

.

Proof: The result is obtained in a straightforward manner by adapting
the construction of Theorem 2.3. We omit the details.

The case m = 2 was studied in [3], where the following result was
stated.

Corollary 3.8. For α > 0, k ∈ N
∗, α2 = Q2(kα)/

(

k
2

)

, the inter-

val ]nα, nα + nα2 ], contains at most, k − 1 divisors of n.

Proof: Apply Theorem 3.6 for m = 2, noticing that if di, dj belong to
an interval I, then (di, dj) 6 |I|.

Remark. It is an interesting and difficult problem to decide whether the
exponent α2 in the corollary is sharp.

It is a natural problem to consider the divisors of an integer lying
in an arithmetic progression. We give an easy proof of the following
theorem of Lenstra [9].

Corollary 3.9 (Lenstra). Let α > 1/4, n, q ∈ N
∗, q > nα. Then,

the number of divisors d of n such that d ≡ a (mod q) is bounded by a

function of α alone.
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Proof: Write q = n(1/4)+2ε. We prove that the number of divisors in the
form di = a + miq lying in the interval Ir = [nrε, n(r+1)ε] is bounded
by 1 + 1/ε for each integer r with 0 6 r 6 1/ε. This indeed implies that
the total number of divisors in the arithmetic progression a (mod q) is
bounded by (1 + 1/ε)2.

Let k be the number of divisors in Ir . Then, there exist i, j such that

n(r+1)ε
> di − dj = q(mi − mj)

> q(mi, mj) > q(di, dj) > n(1/4)+2εnQ2(krε)/(k

2
).

Thus, rε+ε >
1
4 +2ε+{krε(krε−1)}/{k(k−1)}, which may be rewritten

as

1

k − 1
>

(1/4) + ε

rε(1 − rε)
− 1.

Since rε(1 − rε) 6 1/4, we obtain k 6 1 + 1/ε, as required.

The following result was suggested by R. de la Bretèche and was used
in [1].

Corollary 3.10. Let ε ∈]0, 1] and α ∈ [0, 1]. For all n ∈ N
∗ and all a, q

such that (a, q) = 1, q > nα−α2+2ε, we have

∣

∣

{

d | n : d ≡ a (mod q), nα < d 6 nα+ε
}∣

∣ 6 (α − α2 + ε)/ε.

Proof: Let dj = a+mjq (1 6 j 6 k) be divisors of n in ]nα, nα+ε[. From
Theorem 3.6 with m = 2, we see that

max
16i<j6k

(di, dj) > nα2 .

However, we have (di, dj) = (miq + a, (mi − mj)q) 6 |mi − mj | 6

nα+ε/q 6 nα2−ε for all i, j with i 6= j. This is sufficient.

Changing the probability measure in Theorem 1.1, we get interesting
variants of the above results. An example, given here without proof, is
the following, where ν(d) denotes the number of distinct prime factors
of d.

Theorem 3.11. Let 0 < α < 1 and n > 1. Assume {dj}
k
j=1 is a set of

distinct divisors of n with ν(dj) > αν(n) for all j. Then

max
16i<j6k

ν((di, dj)) > α2ν(n).
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3.6. Lattice points on circles. It is known that the number of lattice
points on the circle x2 + y2 = n is not bounded uniformly in n. Schinzel
proved that, on the circle x2 + y2 = R2, an arc of length R1/3 contains
at most two lattice points. In [2], Córdoba and the first author proved
a more general result for which we now provide a simpler proof using
Theorem 1.1.

Theorem 3.12. Let x2 + y2 = R2 be a circle, k ∈ N
∗, and γk :=

1/(4[k/2]+2). Then, an arc of length R1/2−γk contains at most k lattice

points.

Proof: Let x2 + y2 = R2 = n =
∏

16s6t |πs|
2ms be a circle, where the

πs ∈ Z[i] are Gaussian primes, and ms ∈ N
∗ (1 6 s 6 t). Assume that

there are k + 1 lattice points ν1, . . . , νk+1 of Z[i] on an arc of length Rγ .
Let X denote the random variable defined by

P(X = πs
a) = P(X = πb

s) = log |πs|/ log n (1 6 s 6 t, 1 6 a, b 6 ms).

For each j ∈ [1, k + 1] put Ej := {X : X |νj}. Then

P(Ej) =
log |νj |

log n
=

1

2

and

P(EiEj) =
log |(νi, νj)|

log n
6

log |νi − νj |

log n
<

log Rγ

log n
=

γ

2
.

Thus, σ2 < 1
2

(

k+1
2

)

γ and σ1 = (k + 1)/2. Therefore
(

k + 1

2

)

γ

2
> σ2 > Q2(σ1) > Q2

(

k + 1

2

)

,

and so γ > 2Q2(
k+1
2 )/

(

k+1
2

)

= 1
2 − 1/(4[k/2] + 2).

We do not know whether the number of lattice points on arcs of
length R1/2 can be bounded independently of R. The above theorem
yields that the number of lattice points on such arcs is ≪ log R.

3.7. Polynomials. The overlapping theorem may be used to provide
an alternative proof of the following result, due to Jiménez and the first
author [4].

Theorem 3.13. Let γ > 0, M(x) ∈ Z[x] and F1(x), . . . , Fk(x) be k divi-

sors of M(x) in Z[x] such that min16j6k deg Fj > γ deg M . Then there

exist i, j ∈ [1, k], i 6= j, such that

deg(Fi − Fj) > (deg M)Q2(kγ)

(

k

2

)−1

> deg M

{

γ2 −
γ(1 − γ)

k − 1

}

.
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Proof: Write M = pα1

1 · · · pαt

t a decomposition of M(x) as a product of
irreducible factors in Z[x]. Let X denote the random variable defined by

P(X = pα
s ) =

deg ps

deg M
(1 6 s 6 t, 1 6 α 6 αs).

Let Ej = {ω : X | Fj(x)}. Then P(Ej) = (deg Fj)/ deg M > γ. By
Corollary 2.1, there exist distinct indices i, j such that

P(EiEj) > Q2(σ1)

(

k

2

)−1

> Q2(kγ)

(

k

2

)−1

> γ2 −
γ(1 − γ)

k − 1
.

We complete the proof by observing that

P(EiEj) =
deg(Fj , Fi)

deg M
6

deg(Fi − Fj)

deg M
.
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