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Abstract. For a given finite field Fq, we study sufficient conditions to guarantee that the
set {θx1 + θy2 : 1 ≤ x ≤ M1, 1 ≤ y ≤ M2} represents all the nonzero elements of Fq. We
investigate the same problem for θx1 − θ

y
2 and as a consequence we prove that any element

in the finite field of q elements has a representation of the form θx − θy, 1 ≤ x, y ≤
√

2q3/4

whenever θ has multiplicative order at least
√

2q3/4. This improves the previous known
bound for a question possed by A. Odlyzko.

1. Introduction

Let p be a large prime and g a primitive root modulo p. Andrew Odlyzko asked for which
values of M the set

(1) gx − gy (mod p) 1 ≤ x, y ≤M,

contains every residue class modulo p. He conjectured that one can take M to be as small
as p1/2+ε, for any fixed ε > 0 and p large enough in terms of ε.

Some results have been obtained in this direction. Rudnik and A. Zaharescu [5], using
standard methods of characters sums, proved that one can take M ≥ cp3/4 log p for some
c > 0. This range was improved to M ≥ cp3/4 by M. Z. Garaev and K.-L. Kueh [2] and
independently by S. V. Konyagin [4]. Later, V. C. Garćıa [3] showed that c = 25/4 is an
admissible constant and the first author [1], using a combinatorial approach, improved the
constant to

√
2 + ε, but for p large enough in terms of ε > 0.

In this note we exploit properties of Sidon sets, combined with the classic exponential sums
techniques, to obtain new results on a generalization of the original problem of Odlyzko.

We will no longer study differences of powers of primitive roots in prime fields, but differ-
ences of elements of large multiplicative order in arbitrary finite fields Fq. We write ordq(θ)
for the multiplicative order of θ in Fq.
Theorem 1. Let θ be an element of Fq. If min(ordq(θ),M) ≥

√
2q3/4, then

{θx − θy : 1 ≤ x, y ≤M} = Fq.
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Applying the previous result when θ is a primitive root we obtain the announced improv-
ment on the problem of Odlyzko.

Corollary 1. Let g be a primitive root of Fq. If M ≥
√

2q3/4, then

{gx − gy : 1 ≤ x, y ≤M} = Fq.

One can generalize Theorem 1, by considering the set of sums of powers of two elements
in the field.

Theorem 2. Let θ1, θ2 be two elements of Fq. If

min(ordq(θ1), bM1/2c) ·min(ordq(θ2), bM2/2c) ≥ q3/2,

then

F∗q ⊆ {θx1 + θy2 : 1 ≤ x ≤M1, 1 ≤ y ≤M2},
F∗q ⊆ {θx1 − θ

y
2 : 1 ≤ x ≤M1, 1 ≤ y ≤M2}.

Let us note that, if we consider the case θ1 = θ2 and M1 = M2 = M the hypothesis in
Theorem 2, say min(ordq(θ),M) ≥ 2q3/4, are more restrictive that those in Theorem 1. The

loss on the constant
√

2/2 in the hypothesis relies on the fact that the set {θx1 − θ
y
2 : 1 ≤ x ≤

M1, 1 ≤ y ≤M2} is no longer symmetric if θ1 6= θ2 or M1 6= M2.

We observe also that 0 may not belong to these sets. If θ1, θ2 has order (q − 1)/2 and
q is prime, the elements θx1 + θy2 are sum of two squares and 0 is not of this form if q ≡ 3
(mod 4).

2. Preliminaries

Let G be an abelian group. We recall that a set A ⊂ G is a Sidon set if all the non zero
differences a− a′, a, a′ ∈ A are distinct.

Given a set B, it is usual to denote by rB−B(m) to the number of representations of m ∈ G
in the form m = b− b′ with b, b′ ∈ B. Thus, Sidon sets are those sets A with rA−A(m) ≤ 1
for all m 6= 0.

There are many interesting examples of Sidon sets, but we are interested in those described
in the following Lemma.

Lemma 1. Let q be a power of a prime and λ a nonzero element of Fq. For any given g1, g2,
primitive roots of Fq, the sets

A−(g1, g2, λ) = {(x, y) : gx1 − g
y
2 = λ}(2)

A+(g1, g2, λ) = {(x, y) : gx1 + gy2 = λ}(3)

are Sidon sets in G = Zq−1 × Zq−1.

This is a well known fact, see for example [1], but we include the proof for completeness.
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Proof. We will first show the Sidon condition for A−(g1, g2, λ), and the same argument
applies to A+(g1, g2, λ).

For a fixed m = (m1,m2) ∈ G, m 6= 0, we will show that if there exist a = (x, y), a′ =
(x′, y′) ∈ A−(g1, g2, λ) for which m = a− a′, then they are uniquely determined by m.

Observe that m = a − a′ is equivalent to x = x′ + m1 and y = y′ + m2 modulo (q − 1),
which implies that

gx1 ≡ gx
′+m1

1 (mod q) and gy2 ≡ gy
′+m2

2 (mod q).

Combining this observation with the fact that both a and a′ are in A−(g1, g2, λ), we have
that

(4) gy
′

2 (gm1
1 − gm2

2 ) ≡ λ (1− gm1
1 ) .

If m1 6= 0, then y′ is uniquely determined by equation (4) (and so x, x′ and y). If m1 = 0,
equation (4) implies that m2 = 0, which contradicts the assumption m 6= 0. �

For a real nonzero number x, let us denote by e(x) the complex number e2πix. The
additive characters ψ in G = Zq−1 × Zq−1 are all of the form ψr,s(x, y) = e

(
rx+sy
q−1

)
, where

0 ≤ r, s ≤ q − 1 and the character corresponding to r = s = 0 is the principal character.

Proposition 1. For any Sidon set A described in Lemma 1 and for any non principal
character ψ in G, we have ∣∣∣∣∣∑

a∈A

ψ(a)

∣∣∣∣∣ ≤ q1/2.

Proof. We first consider the case (2) with g1 = g2: A = A−(g1, g1, λ). Note that for any
nontrivial character ψ in G = Zq−1 × Zq−1 we have that

(5)
∣∣∑
a∈A

ψ(a)
∣∣2 =

∑
a,a′∈A

ψ(a− a′) =
∑
m∈G

rA−A(m)ψ(m) =
∑
m∈G

(rA−A(m)− 1)ψ(m).

Since A is a Sidon set, we have that rA−A(m) ≤ 1 for all m 6= 0 and rA−A(0) = |A|. It
follows from (5) that ∣∣∣∑

a∈A

ψ(a)
∣∣∣2 = |A| − 1−

∑
m/∈A−A

ψ(m).(6)

Thus we need to study the set A − A. Observe that the 3(q − 2) elements of the form
(z, 0), (0, z) and (z, z), 1 ≤ z ≤ q− 2 do not belong to A−A. Indeed, if (z, 0) = (x+ z, y)−
(x, y) for some (x + z, y), (x, y) ∈ A we would have that gx+z − gy = gx − gy = λ, which
is impossible unless z ≡ 0 (mod q − 1). The same argument applies to the elements of the
form (0, z) and (z, z).
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Furthermore, since |G| − |A −A| = |G| − (|A|2− |A|+ 1) = 3(q− 2), it follows that those
are the only elements m 6∈ A − A. Therefore, for a given ψ = ψr,s, we have

∑
m/∈A−A

ψ(m) =

q−2∑
z=1

e
( rz

q − 1

)
+

q−2∑
z=1

e
( sz

q − 1

)
+

q−2∑
z=1

e
((r + s)z

q − 1

)
≥ −3,

since every such sum is either −1 or q − 2, depending on the values r and s.

Combining this bound with the expression in (6), we obtain the desired result∣∣∣∑
a∈A

ψ(a)
∣∣∣ ≤ (|A|+ 2

)1/2
= q1/2.

The case (2) for g1 6= g2 can be reduced the previous one. Given (r, s) 6= (0, 0) let t be
the integer such that gt1 = g2. We observe that (x, y) ∈ A−(g1, g2, λ) ⇐⇒ (x, ty) ∈
A−(g1, g1, λ). Then, for any a = (x, y) ∈ A−(g1, g2, λ) we have ψr,s(x, y) = ψr,st−1(x, ty).
Thus

max
a∈A−(g1,g2,λ)

|ψr,s(a)| = max
a∈A−(g1,g1,λ)

|ψr,st−1(a)| ≤ q1/2.

The case (3) is easier. It is clear that (x, y) ∈ A+(g1, g2, λ) ⇐⇒ (x, y) + (0, (q − 1)/2) ∈
A−(g1, g2, λ) and that ψ(a+ (0, (q − 1)/2)) = ψ(a)ψ(0, (q − 1/2)). Thus

max
a∈A+(g1,g2,λ)

|ψ(a)| = max
a∈A−(g1,g1,λ)

|ψ(a+ (0, (q − 1)/2))| = max
a∈A−(g1,g1,λ)

|ψ(a)| ≤ q1/2.

�

As usual, for any set B we define B +B = {b+ b′ : b, b′ ∈ B}.

Proposition 2. Let A be any Sidon set described in Lemma 1 and let B any subset of
Zq−1 × Zq−1. If (B +B) ∩ A = ∅ then

|B| < q3/2 − q + q1/2 + 1/2.

Proof. The number of pairs (b, b′) ∈ B ×B with b+ b′ ∈ A is given by

∑
ψ

∑
b,b′∈B

∑
a∈A

ψ(b+ b′ − a) =
|B|2|A|
|G|

+
1

|G|
∑
ψ 6=ψ0,0

∑
a∈A

∑
b,b′∈B

ψ(b+ b′ − a).
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Since (B +B) ∩ A = ∅ it follows from the previous equation and Proposition 1 that

|B|2|A|
|G|

=
∣∣∣ 1

|G|
∑
ψ 6=ψ0,0

∑
a∈A

ψ(−a)
∑
b,b′∈B

ψ(b+ b′)
∣∣∣

≤ 1

|G|
∑
ψ 6=ψ0,0

∣∣∣∑
a∈A

ψ(−a)
∣∣∣∣∣∣∑
b∈B

ψ(b)
∣∣∣2

≤ q1/2

|G|
∑
ψ 6=ψ0,0

∣∣∣∑
b∈B

ψ(b)
∣∣∣2

=
q1/2

|G|
(
|G||B| − |B|2

)
.

This implies that

|B| ≤ |G|q1/2

|A|+ q1/2
=

(q − 1)2q1/2

q − 2 + q1/2
< q3/2 − q + q1/2 + 1/2.

The easiest way to check the last inequality is multiplying q− 2 + q1/2 times q3/2− q+ q1/2 +
1/2. �

3. Proofs of the results

We will prove the theorems by a direct application of Proposition 2 to appropriate sets B.

3.1. Proof of Theorem 2. Let us assume that there exists a fixed nonzero element λ of
Fq with no solutions to

(7) θx1 + θy2 = λ in Fq with 1 ≤ x ≤M1, 1 ≤ y ≤M2,

where

(8) min(ordq(θ1), bM1/2c) ·min(ordq(θ2), bM2/2c) ≥ q3/2.

Let us denote by n1 = (q− 1)/ordq(θ1) and let g1 be a generator of F∗q satisfying θ1 = gn1
1 .

We define n2 and g2 analogously. Consider the Sidon set

A = A+(g1, g2, λ)

and the set

B = {(n1x, n2y) : 1 ≤ x ≤ bM1/2c, 1 ≤ y ≤ bM2/2c} .

It is clear that under the previous assumption above we have that (B+B)∩A = ∅. Then
we apply Proposition 2 to this case taking into account that

|B| = min(ordq(θ1), bM1/2c) min(ordq(θ2), bM2/2c) < q3/2 − q + q1/2 + 1/2 < q3/2

for q ≥ 2, which contradicts (8). The same argument holds for the set of differences by fixing
A = A(g1, g2, λ)−.
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3.2. Proof of Theorem 1. It is clear that the zero element has a representation of the
desired form. Let us assume that

min(ordq(θ),M) ≥
√

2q3/4

and that there exists a fixed nonzero element λ of Fq with no solutions to

(9) θx − θy = λ in Fq with 1 ≤ x, y ≤M.

Let us denote by n = (q − 1)/ordq(θ) and let g be a generator of F∗q satisfying θ = gn.
Consider the Sidon set

A = A−(g, g, λ)

and the set B = B1 ∪B2 where

B1 = {(nx, ny) : 1 ≤ x, y ≤ bM/2c, }
B2 = B1 + ( q−1

2
, q−1

2
).

We claim that

(10) (B +B) ∩ A = ∅.
Indeed, any element of B +B is of the form(

nx+ δ q−1
2
, ny + δ q−1

2

)
,

where δ ∈ {0, 1} and 1 ≤ x, y ≤M . If one of these elements would belong to A, then

gnx+δ
q−1
2 − gny+δ

q−1
2 = λ.

Since g
q−1
2 = −1, then either θx − θy = λ or θy − θx = λ occur in Fq, according to the value

of δ. Therefore equation (9) would have a solution.

Proposition 2 and (10) imply an upper bound for |B|:
|B| < q3/2 − q + q1/2 + 1/2.(11)

We will get now the lower bound:

(12) |B| ≥ q3/2 −
√

2q3/4 + 1/2.

If M ≥ ordq(θ) = q−1
n
>
√

2q3/4, then{
(nx, ny) : 1 ≤ x, y ≤ q−1

2n

}
⊂ B1,{(

nx+ q−1
2
, ny + q−1

2

)
: 1 ≤ x, y ≤ q−1

2n

}
⊂ B2.

Since both sets on the left side are disjoint, we have that

|B| ≥ 2

⌊
q − 1

2n

⌋2
≥ 2

⌊
ordq(θ)

2

⌋2
If M < ordq(θ) = q−1

n
, the sets B1 and B2 are disjoint and we have

|B| = 2

⌊
M

2

⌋2
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In both cases we have that

|B| ≥ 2

⌊
min(ordq(θ),M)

2

⌋2
≥ 2

(
q3/4√

2
− 1

2

)2

=
(
q3/4 − 1/

√
2
)2

= q3/2 −
√

2q3/4 + 1/2

as we wanted to show.

Next we observe that if (11) and (12) hold then

q <
√

2q3/4 + q1/2.

This inequality does not hold for q ≥ 16 and it proves the theorem for q in this range.

When q < 16, we observe that by assumption min(ordq(θ),M) ≥
√

2q3/4 > q/2 (since
q/2 ≥ 2q3/4 implies q ≥ 64). Suppose that λ 6∈ D −D where D = {θx : 1 ≤ x ≤ M} and
|D| = min(ordq(θ),M) > q/2. Then D ∩ (D + λ) = ∅ and we have that

q ≥ |D ∪ (D + λ)| = 2|D| = 2 ·min(ordq(θ),M) > q,

which is a contradiction.
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