AN ADDITIVE PROBLEM IN FINITE FIELDS WITH POWERS OF
ELEMENTS OF LARGE MULTIPLICATIVE ORDER
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ABSTRACT. For a given finite field F,, we study sufficient conditions to guarantee that the
set {07 + 932’ : 1<z <M, 1<y < My} represents all the nonzero elements of F,. We
investigate the same problem for #7 — 63 and as a consequence we prove that any element
in the finite field of ¢ elements has a representation of the form 6% — 0¥, 1 < z,y < /2¢%/*
whenever # has multiplicative order at least v/2¢3/%. This improves the previous known
bound for a question possed by A. Odlyzko.

1. INTRODUCTION

Let p be a large prime and ¢ a primitive root modulo p. Andrew Odlyzko asked for which
values of M the set

(1) g*—¢’ (modp) 1<z,y<M,

contains every residue class modulo p. He conjectured that one can take M to be as small
as p'/2t¢, for any fixed € > 0 and p large enough in terms of e.

Some results have been obtained in this direction. Rudnik and A. Zaharescu [5], using
standard methods of characters sums, proved that one can take M > ¢p¥*logyp for some
¢ > 0. This range was improved to M > cp** by M. Z. Garaev and K.-L. Kueh [2] and
independently by S. V. Konyagin [4]. Later, V. C. Garcia [3] showed that ¢ = 2%/ is an
admissible constant and the first author [1], using a combinatorial approach, improved the
constant to v/2 + ¢, but for p large enough in terms of € > 0.

In this note we exploit properties of Sidon sets, combined with the classic exponential sums
techniques, to obtain new results on a generalization of the original problem of Odlyzko.

We will no longer study differences of powers of primitive roots in prime fields, but differ-
ences of elements of large multiplicative order in arbitrary finite fields F,. We write ord,(6)
for the multiplicative order of 6 in IF,.

Theorem 1. Let 6 be an element of F,. If min(ord,(0), M) > /2¢**, then
{0 —0": 1 <z,y<M}=F,.
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Applying the previous result when 6 is a primitive root we obtain the announced improv-
ment on the problem of Odlyzko.

Corollary 1. Let g be a primitive root of By. If M > ~/2¢*/*, then
{¢"—¢": 1<z,y<M}=F,

One can generalize Theorem 1, by considering the set of sums of powers of two elements
in the field.

Theorem 2. Let 0,0, be two elements of F,. If
min(ord,(61), | M1/2]) - min(ord,(02), | M2/2]) > g2,
then
Fy C{07+0605:1<2<M,1<y< M},
F; C{O7—0Y:1<z< M, 1<y<M}
Let us note that, if we consider the case ; = 0y and M; = My = M the hypothesis in
Theorem 2, say min(ord, (), M) > 2¢**, are more restrictive that those in Theorem 1. The

loss on the constant v/2/2 in the hypothesis relies on the fact that the set {67 — 6y : 1 < z <
M, 1 <y < M} is no longer symmetric if 6y # 0y or My # M.

We observe also that 0 may not belong to these sets. If 61,6, has order (¢ — 1)/2 and
q is prime, the elements 67 + 03 are sum of two squares and 0 is not of this form if ¢ = 3

(mod 4).

2. PRELIMINARIES

Let G be an abelian group. We recall that a set A C G is a Sidon set if all the non zero
differences a — d/, a,d’ € A are distinct.

Given a set B, it is usual to denote by rg_pg(m) to the number of representations of m € G
in the form m = b — & with b,0’ € B. Thus, Sidon sets are those sets A with r4_4(m) <1
for all m # 0.

There are many interesting examples of Sidon sets, but we are interested in those described
in the following Lemma.

Lemma 1. Let q be a power of a prime and A a nonzero element of F,. For any given g1, g2,
primiative roots of |y, the sets

(2) A7 (91,92, ) = {(7,y) : 9i — g5 = A}
(3) AT (91,92, N) = {(z,9) + g7 + 95 = A}

are Sidon sets in G = Zg_1 X Lg_1.

This is a well known fact, see for example [1], but we include the proof for completeness.



AN ADDITIVE PROBLEM IN FINITE FIELDS 3

Proof. We will first show the Sidon condition for A~ (g1, g2, A), and the same argument
applies to AT (g1, g2, A).

For a fixed m = (my,ms) € G, m # 0, we will show that if there exist a = (z,y),d’ =
(«',y') € A= (g1, 92, A) for which m = a — @', then they are uniquely determined by m.

Observe that m = a — @’ is equivalent to x = 2’ + m; and y = 3’ + my modulo (¢ — 1),
which implies that

x’'+my y' +ma

9 =9 (mod ¢) and g5 = g (mod g).

Combining this observation with the fact that both a and o' are in A~ (g1, g2, A), we have
that

(4) g2 (91" —g*) = A (L —g™).
If my # 0, then ¢’ is uniquely determined by equation (4) (and so z, 2z’ and y). If m; =0,
equation (4) implies that my = 0, which contradicts the assumption m # 0. g

For a real nonzero number z, let us denote by e(x) the complex number ™. The
additive characters ¢ in G = Z,_; X Z,_; are all of the form v, ((z,y) = e(”;%i’y), where
0 <r,s <q—1 and the character corresponding to r = s = 0 is the principal character.

Proposition 1. For any Sidon set A described in Lemma 1 and for any non principal
character ¢ in G, we have

<q'2

> i(a)

acA

Proof. We first consider the case (2) with g; = g2: A = A (g1,01, ). Note that for any
nontrivial character ¥ in G = Z,_1 X Z4—1 we have that

) D w@f =Y wa-d)=3 raampm) =Y (ra_a(m) — Dy(m).

acA a,a’€A meG meG

Since A is a Sidon set, we have that r4_4(m) < 1 for all m # 0 and r4-4(0) = |A]. It
follows from (5) that

(©) Sv@| =14 -1 X ).

acA mg¢A-A

Thus we need to study the set A — A. Observe that the 3(¢ — 2) elements of the form
(2,0),(0,2) and (z,2), 1 < z < g—2 do not belong to A— A. Indeed, if (2,0) = (z+ z,y) —
(x,y) for some (x + z,y), (z,y) € A we would have that ¢g""* — ¢g¥ = ¢* — ¢g¥ = A, which
is impossible unless z = 0 (mod ¢ — 1). The same argument applies to the elements of the
form (0, z) and (z, z).
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Furthermore, since |G| — |A — A| = |G| — (JA]* — |A] + 1) = 3(q — 2), it follows that those
are the only elements m ¢ A — A. Therefore, for a given ¢ = 1), 5, we have

(2 (5 2 ((rts)z
mgAw(ﬂﬁ:;e(q_l) +Z:16(q_1> +Z:1€< 1 >Z —3,

since every such sum is either —1 or ¢ — 2, depending on the values r and s.

Combining this bound with the expression in (6), we obtain the desired result

|3 v

acA

< (|41 +2)"* = g2

# (0,0) let ¢ be
— (z,ly) €
) = wr,st*1 (I’,ty)

The case (2) for g1 # g2 can be reduced the previous one. Given (r,s)
the integer such that ¢! = go. We observe that (z,y) € A (91,92, \)
A~ (91,91,A). Then, for any a = (z,y) € A" (g1,92,A) we have ¢, (2, y
Thus

ma. a — ma _ a < 1/2
a€A7(91%92,)\) ‘wT’S( )‘ a‘EAi(gl},{gl7A) ‘wr75t 1( )’ — q

The case (3) is easier. It is clear that (z,y) € AT(g1,92,\) <= (z,y) +(0,(¢ —1)/2) €
A~ (g1,92,A) and that ¢ (a + (0, (q — 1)/2)) = ¥(a)i(0, (¢ — 1/2)). Thus

max  [¢(a)] =  max |Yla+(0,(¢—1)/2))|= max |¢(a)] < ¢

a€At(g1,92,\) a€A=(g1,91,)\) a€A~(g1,91,7)

As usual, for any set B we define B4+ B ={b+1b: bt € B}.

Proposition 2. Let A be any Sidon set described in Lemma 1 and let B any subset of
Zq,1 X qul- [f (B + B) NA= @ then

IB| < ¢*? —q+¢"*+1/2.

Proof. The number of pairs (b,b') € B x B with b+ b’ € A is given by

SN St —a) = lG‘,A' DD IP T

P bbeBacA w;éwo 0 aEAbYEB
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Since (B + B) N A = () it follows from the previous equation and Proposition 1 that

IBPIA] _ ‘L SN wl-a) S v+ )
Gl S Womflprer byEB
< 2T vl Suo|
V#doo  acA beB
<17 S|
’G| PY#ipoo bEB
= (I~ 187,

This implies that
Glg'? _ (¢—1)%¢"?

B| < _
Bl < [Al+¢'? q=2+¢'"7

<q3/2_q+q1/2+1/2

The easiest way to check the last inequality is multiplying ¢ — 2+ ¢'/? times ¢*/% — ¢+ ¢*/* +
1/2. 0

3. PROOFS OF THE RESULTS
We will prove the theorems by a direct application of Proposition 2 to appropriate sets B.

3.1. Proof of Theorem 2. Let us assume that there exists a fixed nonzero element A\ of
[F, with no solutions to

(7) 07 + 05 =XinF, with 1 <o < M;, 1 <y < My,
where
(8) min(ord,(6:), [ M:/2]) - min(ord,(62), | M2/2]) > q3/2.

Let us denote by ny = (¢ —1)/ord,(6;) and let g; be a generator of F}, satisfying 6, = gy
We define ny and g, analogously. Consider the Sidon set

A:A+(gla927)\)
and the set
B ={(mz,noy): 1 << |M/2], 1<y<|My/2]}.

It is clear that under the previous assumption above we have that (B+ B)N.A = (). Then
we apply Proposition 2 to this case taking into account that

|B| = min(ord,(6;), | M, /2]) min(ord,(6y), | M2/2]) < ¢** — g+ ¢"* +1/2 < ¢*/?

for ¢ > 2, which contradicts (8). The same argument holds for the set of differences by fixing
A= A(.gla 92, )‘)_
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3.2. Proof of Theorem 1. It is clear that the zero element has a representation of the
desired form. Let us assume that
min(ord,(6), M) > V2%
and that there exists a fixed nonzero element A of F, with no solutions to
9) " —0Y =Xin F, with 1 <z,y < M.
Let us denote by n = (¢ — 1)/ord,(f) and let g be a generator of F; satisfying § = g¢".
Consider the Sidon set
A=A"(g.9,})

and the set B = By U By where

By = {(nz,ny): 1 <z,y<|[M/2],}

By, = B+ (%141,

We claim that
(10) (B+B)nA=10.
Indeed, any element of B + B is of the form
(na + 6% ny + 051,

where § € {0,1} and 1 < z,y < M. If one of these elements would belong to A, then

q—1 q—1
nr+0 5 ny—+49 2 — \.

g -9
Since gq%l = —1, then either 6 — 0¥ = X or Y — 6* = X occur in F,, according to the value

of §. Therefore equation (9) would have a solution.

Proposition 2 and (10) imply an upper bound for |B]:

(11) 1Bl < ¢** —q+q"*+1/2.
We will get now the lower bound:
(12) 1Bl > ¢** — V2¢** +1/2.

If M > ord,(0) = &1 > v/2¢%4, then
{(nx,ny): 1§x,y§%} C By,
{(n:chtq;—l,nerq;Ql): 1§x,y§%} C Bas.

Since both sets on the left side are disjoint, we have that
2 2
|B| > 2 E > 9 M
2n 2
If M < ord,(0) = %, the sets By and B, are disjoint and we have

el
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In both cases we have that
in(ord, (9), M) | 34 1\? 2
|B[22{mm(0r 2q( ); )J > 2(%_5) :(q3/4—1/\/§>
— q3/2 _\/§q3/4+ 1/2

as we wanted to show.
Next we observe that if (11) and (12) hold then

q < V28 + ¢'/2.
This inequality does not hold for ¢ > 16 and it proves the theorem for ¢ in this range.

When ¢ < 16, we observe that by assumption min(ord,(#), M) > v/2¢** > q/2 (since
q/2 > 2¢*/* implies ¢ > 64). Suppose that A € D — D where D = {#* : 1 <2 < M} and
|D| = min(ord,(6), M) > ¢/2. Then DN (D + \) = () and we have that

q>|DU(D+ N)| =2|D| =2-min(ord,(#), M) > ¢,

which is a contradiction.
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