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ABSTRACT. In this paper, we study (random) sequences of pseudo s-th powers,
as introduced by Erdds and Rényi in 1960. In 1975, Goguel proved that such
a sequence is almost surely not an asymptotic basis of order s. Our first result
asserts that it is however almost surely a basis of order s + ¢ for any € > 0.
We then study the s-fold sumset sA = A+ ---+ A (s times) and in particular
the minimal size of an additive complement, that is a set B such that sA+ B
contains all large enough integers. With respect to this problem, we prove
quite precise theorems which are tantamount to asserting that a threshold
phenomenon occurs.

1. INTRODUCTION

In their seminal paper of 1960, Erdés and Rényi [7] proposed a probabilistic model
for sequences A growing like the s-th powers. Explicitly, they built a probability
space (U, T,P) and a sequence of independent Bernoulli random variables (&,)nen
with values in {0, 1} such that

P&, =1) = %mlﬂ/s and P(&, =0)=1- énflﬂ/%
To any u € U, they associate the sequence of integers A = A, such that n € A,
if and only if £,(u) = 1. In other words, the events {n € A} are independent
and the probability that n is in A is equal to P(n € A) = n~!*1/%/s. The counting
function of these random sequences A satisfies almost surely the asymptotic relation
|AN[1,z]| ~ 2% as z tends to infinity [7] (see also [10]), whence the terminology
pseudo s-th powers.

In 1975, Goguel [8] proved that, almost surely, the s-fold sumset
sA={a1+ -+ as; with a; € A}

has density 1 — e~** where
T4(1/s
LT
5% s!
(a quantity appearing everywhere in the present study) and thus, almost surely,
that A is not an asymptotic basis of order s (from now on, the word ‘asymptotic’
will be omitted since there is no ambiguity). Indeed it has been proved recently
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(see [4]) that the sequence (b,)nen of ordered elements in sA has, almost surely,
infinitely many gaps of logarithm size that is,

(1) lim sup bn+1 = bn = i
n—too logby As

In contrast to the result of Goguel quoted above, Deshouillers and Iosifescu, as
a by-product of their study on the probability that an integer is not a sum of s+ 1
s-th powers, proved in [5], however, that almost surely a sequence of pseudo s-th
powers is a basis of order s+ 1. Here we will make more precise this threshold-type
phenomenon by using the concept of a basis of order s+ € introduced in [3]: We say
that A is a basis of order s+ € if any large enough positive integer n can be written
in the form

n=a;+- -+ asy1, with a; € A, as+1 < n.

Our first result is the fact that almost surely a sequence of pseudo s-th powers
is a basis of order s + € for any € > 0. Indeed we prove this result in the following
stronger form.

Theorem 1. Let s > 2 be an integer and ¢ > (A\o(1 —2X,)) . Almost surely, a
sequence of pseudo s-powers A has the following property: any large enough integer
n can be written in the form

n=a;+- -+ ast1, with a; € A, as+1 < (clogn)®.

We have some reason to believe that the above statement is no longer valid if
¢ < A\;'; this point will be discussed at the end of Section 3. Simply notice now
that A\s < 1/2 for s > 2.

A second aim of the paper is the study of how fast an additive complement
sequence of sA must grow. We first prove the following theorem.

Theorem 2. Let s be an integer s > 2. Let B be a fized sequence satisfying
B
(n) >\t

hnn_1)1£f logn °

Then a sequence of pseudo s-powers A has, almost surely, the following property:
any large enough integer n can be written in the form

n=a+---+as+b, with distinct a; € A and with b € B.

We then prove that Theorem 2 is sharp in the sense that the constant A !
intervening in this result cannot be substituted by a smaller constant.

Theorem 3. Let s be an integer s > 2. Let B be a fized sequence satisfying

B(n) <AL

lim inf 5

n—oo logn

Then a sequence of pseudo s-powers A has, almost surely, the following property:
there are infinitely many integers n that cannot be written in the form

n=ay+--+as+0, with distinct a; € A and with b € B.

In view of Theorems 2 and 3 it is a natural question to ask for the behaviour of
those sequences B with

B
(2) imint 20 Z -1

n—oo logn
In our final section, we will show that there are sequences satisfying (2) and the
conclusion of Theorem 2 while there are other sequences that satisfy (2) and the

conclusion of Theorem 3.
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The paper is organized as follows. Section 2 is composed of several lemmas which
will be useful in the proofs of the three theorems. Section 3 contains the proof of
Theorem 1 which will be presented with precise estimates. Section 4 contains the
proof of Theorem 2 and Section 5 that of Theorem 3. Finally, Section 6 contains
the discussion about sequences at the threshold (that is, satisfying (2)). In order to
avoid overcomplicated and lengthy formulations, these proofs, which rely on anal-
ogous but simpler principles and computation, will be written down with slightly
less details.

2. PREPARATORY LEMMAS AND PREREQUISITE

For our purpose, we shall need a few elementary or more or less classical results.
The first one is technical and we shall use the standard Vinogradov <« notation for
“less than a constant time”; in the present paper the constants will always depend
on the parameter s > 2, but only on it. We will not recall this dependency in the
< notation.

Lemma 1. Let s and t be two integers such that s > 2 and 1 <t < s—1. We have
(i) forz >1,
Z (1 @) TS 2T

(ii) for z > 2,

Z (301 .. ~xt)_1+1/s(z _ (961 + .- _|_xt))*2t/s < Z—l/s IOgZ,

1<z1,...,x¢
T14Fre<z

(iii) if g is a positive function satisfying g(z) = o(2) as z tends to infinity, then

lim Z Ty ms) S = g0,
z——+o00 ( ! S) s
z€N g(z)<zs<---<z1

1+ tTs=2

Proof. Points (i) and (ii) in this lemma appear as Lemma 1 of [4], taking a; = --- =
as = 1. The special case g(z) = 1 of (iii) appears there also. To extend it to our
setting, it will be enough to prove that

Z (z1---a5) TS = o(1).

1<z,<g(#)
1<z 1< <1
1t +xs=2

To see this we use (i) with ¢ = s — 1 and bound this sum as

Z (171"'$s)71+1/8 < Z SU;1+1/S Z (xl"'xs—1)71+1/s

1<z,<g(z) 1<z5<g(2) 1<z 1< <z
1<z, 1<--<z1 1+ FTrs_1=2—xs
T1+-+xTs=2
—1+1/s —1/
< g w7 (p — g7V
1<z,<g(2)

< (z-gle))TVr DD at

1§IS<Q(Z)
1/s
< (9(2))
z

= o(1),
as needed. O
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Here are now a few more or less classical tools from probability theory. The first
basic tool is Chebychev’s inequality in the following form, suitable for our purpose:

E[X] 4V(X)
(3) ]P’(X< 5 )S]E[XP'

Here and everywhere in this paper, the symbols P, E and V denote respectively the
probability, the mathematical expectation and the variance.

The Borel-Cantelli Lemma is another basic and well known tool in probability
(see for instance Lemma 8.6.1 in [1]). We recall it here for the sake of completeness.
Theorem 4 (Borel-Cantelli Lemma). Let (F;)ieny be a sequence of events. If

FOP(F) < +oo then,

with probability 1, only finitely many of the events F; occur.

Next, we will need two correlation inequalities due to Janson [9] (see also [2])
which are known as “Janson’s correlation inequalities”. Up to the ordering of the
elements, this is Theorem 8.1.1 in [1].

We shall use the following notation : if € is a set, then for any two subsets w, w’
of Q, the notation w ~ w’ means that w # w’ and wNw’ # @). Moreover, we use the
standard notation E° for the complementary event of an event E.

Theorem 5 (Janson’s inequalities). Let (E,)weq be a finite collection of events
indezed by subsets of a set Q and assume that P(E,) < 1/2 for any w € Q. Then
the quantity P((yeq ES) satisfies

(i) the lower bound

P(() Eo) = [ BED)

weN weN
and
(i) the upper bound

P(() E) < ( I1 P(E;)) exp (2 Y P(E, me,)).
weN weN ww' €Q

’
w~w

3. PROOF OF THEOREM 1
Let ¢ > (A(1 —2X,)) ", as in the statement of Theorem 1; we recall that A, <
1/2 when s > 2.

We represent the sets of s + 1 distinct elements in the form w = {x1,..., 2541}
with
Top1 < -+ < T71.

We also denote o(w) =21 + -+ - + 2541 and, for each n, we let

Q,, = {w such that o(w) =n, zs41 < (clogn)® and (clogn)® < z,}.

If we denote by E,, the event w C A and denote I the indicator function of an
event, the function

rin,4) = ¥ I(E,)

wWEN,

counts the number of representations of n of the form n = x; + - - - + 541, where

x; €A, (clogn)’ <zg<---<z, and x441 < (clogn)®.
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By the Borel-Cantelli Lemma, Theorem 1 will be proved as soon as we prove
that the series P(r(n, A) = 0) converges. We follow the strategy introduced in [5].
Using our definition and Janson’s second correlation inequality, we have

P(r(n,A) =0)=P( (] ES) < [] P(ES) x exp(24,,),

wey, weN,
with
(4) A, = Z P(E, N E,).
w,w €Qy,

We first study the product.

Lemma 2. When n tends to infinity, we have

H P(ES) = exp (— (14 o(1))cAslogn).
we,

Proof. We compute

SEE) = Y WY mew)

we, 1<zs41<(clogn)s (clogn)’ <z <<y
Tt FTs=N—Ts41

For each zsy1 < (clogn)®, we may apply Lemma 1 (iii) with 2 = n — z541 ~n
which gives

S RE) = (o) 3wl = (L o()enlogn.

wEN, 1<zs411<(clogn)s

and the result follows from this and the simple relation

I1 P(ES) =exp ( > log(1— (IP(EW))> = exp (—(1 +o(1)) Y P(Ew)>

we, we,

We now come to the correlation term A,, defined in (4).
Lemma 3. When n tends to infinity, one has

A, < (14 0(1))eA? logn.

Proof. In order to decompose the sum defining A,,, we introduce

An(k)= > PE,NEys) and AL(k)= Y  PE,NE,)

w,w' €Q, ww' €Ny,
wrw €Qy wrw' €EQ
Ts41=Ys+1 Ts+17Ys+1

|lwNw’ |=k |wNw’|=k

so that
s—1 s—1
k=1 k=1

We study each term of this formula separately and shall observe that the main
contribution comes from A, (1).
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(i) We compute that

1 —1+1/s
An(1) = §2s+1 Z (@1 ey -oys) Y
(clogn)’<zs<--<z1
(clogn)’<ys<--<y1
zs41<(clogn)®
it FTs=y1+tHYs=n—=Ts41
x;#y; for any indices i and j

IN

1 —141/s
—1+1/s
oy S e

1<zs11<(clogn)* 1<z < <z1
Ti+FTs=n—Tsq1

For each zs41 < (clogn)®, we may apply Lemma 1 (iii) with z =n — 2341 ~n
which yields

IR C1t1/s
An() < (o) gr (A D0 ayY

1<zs41<(clogn)®
< (1+o0(1))cA2logn

as n tends to infinity.
(ii) For 2 < k < s — 1, we have

ol —14+1/s
1

Anlk) = e DL > Hlf” I v

K,K'c{l,....,s} (clogn)’<zs<--<xz1 iZK’
|K|=|K'|=k—1 (clogn)®<ys<--<y1
1<7s11<(clog n)*
Zigk Ti=D g yi:ni(ZiEK mi)f‘/’:sﬂ
x;7y; for any indices igK and j¢K’
{z; for ieK}={y; for ieK'}

< Z (xl"'xs+1yk"'ys)71+1/sv

(clogn)®<zs<---<my
(clogn)’ <ys <<y
1<zs41<(clogn)®
T+ FTs=yk+ o tys=n—(z1++Tr-1+Ts41)

after regrouping together similar terms. Thus,

—1+41/s —141
NI SRt SRR
1<zs11<(clogn)® (clogn)®<w1,...,xk—1
1+ +Tr—1<N—Ts41
2
X Z (xk...xs)71+1/3
(clogn)®<zk,...,xs
T+ +Ts=N—T1— " —Tp_1—Tst1
We first use Lemma 1 (i) with z =n—21 — - —xp_1 — 2511 > 1 to bound the last
term. We obtain
—1+1/s —1+1
An(k) < S w Y 3 (1 - apmg) T
1<z 41<(clogn)s 1<z1,...,Tk—1

Ti+ o+ T 1<n—Tsq1

X (n — g1 — (x1 4+ -+ Ik_l))ﬂ(kfl)/s
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and we apply now Lemma 1 (ii) with z = n — 2541 > 2 which gives

Auk) < X0 a7 - men) T log(n — waga)
1<z, 41 <(clogn)®
< nVs log n Z ms—ﬁrl/s

1<z 41<(clogn)s

< n Y% log?n.

(iii) Finally, for 1 < k < s — 1, using a similar decomposition, we obtain

An(k) < > (@1 Tosryrr1 - Yorr) T

1<z <<z
1<ys < <yr+1
1<z 41,Yk+1<(clogn)®
Tpp1+FTsp1=Ypp1+ - FYspr=n—(T1+--+xK)

Thus,
/ —141 . 2
AL (k) < Z (z1--xp) Y58 (n ey, a)
1<z1,...,zk
1+ +rE<n
where
—141
S(n;x1,...,x8) = Z (Thg1- - Toqq) T /s,
1<@pi1,...,s
1<z 41<(clogn)®

Thp1+FTsp1=n—(T1++Tk)

We now study this sum and distinguish two cases.

(a) First, if 21 +--- + 21 <n —2(clogn)® then

Stiar,..ow)= Y amt Yy (whg1 o) T

1<z 41<(clogn)s 1<zp41,...,%s
Thp1t o Frs=n—xsp1—(T1+---+Tk)

which can be bounded above, using Lemma 1 (i) for each internal sum with z =
n—ast1 — (14 +x) > 1by

< > e T () — ) T
1<z +1<(clogn)®

< (n—(x1+ - +ap) " logn.

(b) Second, in the case n —2(clogn)® < 1 +- -+ 1z} < n, we have using Lemma
1 (1) withz=n—(x1 4+ 4+x) > 1,

S(n;wy,...,x) < > (Tt - Topr) 1Y

1<Tht1,--,Ts41
T+ trspi=n—(x1++xK)

< (n_ (1-1 ++1’k))(1_k)/s
< 1.
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From these bounds (a) and (b) on the sums S(n;z1,...,zx) we derive
AlL(k) < Z (21 ---ap) Y S (s, a)?
1<z1,...,xk
z1+-+zr<n—2(clogn)®
+ Z (z1---ap) Y S (s, a)?

1<z1,...,zk
n—2(clogn)’<z1+-+xzr<n

< 10g2n Z (xl..,xk)*lJrl/s(n_(xl_‘_._._i_xk))ka/s
1<z1,...,xk
z1+--+rp<n—2(clogn)®

+ ) Y (wray) T

n—2(clogn)s<r<n 1<z1,...,Tg
TiteFTR="

< 10g2n Z (951 .. '-Tk>_1+1/s(n _ (371 +... +$k))_2k/s

1<z1,..., 2k
it txr<n

+ Z p1tk/s

n—2(clogn)s<r<n
< n Y%log® n+n" "R/ (logn)®
< nYlog*tn
where we use Lemma 1 (ii) applied with ¢ = k and z = n in the first term and
Lemma 1 (i) with ¢ = k and z = r for each internal term of the second sum.

The conclusion of the lemma follows from collecting the estimates of (i), (ii) and
(iii) just obtained. O

Gathering the results of Lemma 2 and Lemma 3, we obtain
P(r(n,A) =0) <exp(—(1+ o(1))cAs(1 — 2X;) logn),

which is the general term of a convergent series as soon as cAs(1—2X;) > 1; this ends
the proof of Theorem 1. As was noticed in [5], the factor 2 occurring in Janson’s
inequality may be reduced to any constant larger than 1; however, the correlation
term is still of the same order of magnitude as the main term.

What about a reverse result? Janson’s first correlation inequality leads to
(5) P(r(n,A) =0) > exp (—(1 4+ o(1))cAs logn),

which is the general term of divergent series as soon as cAs < 1. A first minor point
is that r(n, A) only counts special representations (pairwise distinct summands and
only one which is less than (clogn)®) but it is not difficult to obtain a bound like (5)
taking into account all the representations. More seriously, to apply the "reverse”
Borel-Cantelli Lemma, some independence between the events {r(n,A) = 0} is
required; unfortunately, we just miss the condition given in [6].

4. PROOF OF THEOREM 2
By assumption, there is some
c> A1
such that the fixed sequence B has a counting function satisfying

(6) B(n) > ¢(1+ 0o(1)) logn.
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For each integer n, we define m = m(n) to be the smallest positive integer such
that
c+ A7t

Bm) = | <5 og

We observe, by (6) and the definition of m, that

1.
m = proM =212 _ o(n),
which will be used through the proof.
We represent the sets of s distinct elements in the form w = {z1,...,z,} with

x1 > -+ > x,. We also denote o(w) = x1 + -+ + x5 and for each n let
Q,, = {w such that o(w) =n — b for some b € B, b < m},

where

If we denote by E,, the event w C A, then the event “n cannot be written in the
formn=a;+ --+as+bwithay >--->a,, a; € A, b€ B, b <m”, which we
denote by F),, can be expressed in the form

F,= () ES.
weN,

We start with two lemmas.

Lemma 4. One has
cAs +1

> P(EL) = (1+0(1))

weN,

log n.

Proof. Indeed, using Lemma 1 (iii), we compute

YRE) = Y Y @)

WEQN, b<m 1I<z1<-<xs
T1+-+Ts=n—b

(L4 0(1))B (m) As
(1+ 0(1))6)\3 +1

log n.

Lemma 5. One has

Z P(E, N E,) < n~*(logn)3.

’
w~~w

w,w' €Qy
Proof. We can write
s—1
S P(ENES)= Y > An(ksbb)
wrw! b<b' <m k=1
w,w' €Qy b €B
where
Ay (ks b, b) = > P(E, N E,).
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Thus,
/ —1+1 141
Ap(k;b, V) < Z (21 ap) LT Z (Tpopr -+ wg) " 1HS
1<z < <wp TptlssTs
@14ty <n—b’ Tpt1ttTs=n—b—(z1+ +zK)

X > (Yrr1---ys) 1HY0

Yk+15--3Ys
Y1t tys=n—b'—(z1+-+zk)

But Lemma 1 (i) gives, for ( =bor ¥/,
> (s 2) Y € (= ()M

1<zpp1,..,Ts
Tpy1+Frs=n—C—(x1++xp)

< (n=b (x4 4p) "

and applying this bound and later Lemma 1 (ii) we obtain

A, (kb b)) < S ()Y = = () T

1<z <<z
T+ +zp<n—b’

< (n—=b)"Ylog(n —b).
Adding all the contributions, it follows

Z P(E,NE,) < Z (n—b")"*log(n — ') < B(m)*n="*logn.

wrw' b<b'<m
w,w €Qp b,b'eB
and using B(m) < logn concludes the proof of the lemma. O

We now come to the very proof of the Theorem. By Janson’s second inequality
(Theorem 5 (ii)) we obtain the following upper bound for P(F},), namely

P(F,) < [[ O=P(E))exp |2 Y P(E,NEy)
weEN, wrw'
w,w' €Ny

which, using the inequality log(1 — z) < —xz (valid for z > 0) yields

(7) logP(F,) < — Y P(E,)+2 Y P(E,NEy).
wEN, wrw’
© w,w' €Qp

Plugging in (13) the estimates obtained in Lemmas 4 and 5 we get
chs +1

logIP(F,,) < —(1+0(1)) logn,

so that
P(Fn) < - (1+o(1) 25+
If ¢ > A\; ! then (cAs+1)/2 > 1 and the sum Y, P(F,) is finite. The Borel-Cantelli

Lemma implies that, almost surely, only a finite number of events F}, can occur and
we are done.



ADDITIVE PROPERTIES OF SEQUENCES OF PSEUDO s-TH POWERS 11

5. PROOF OF THEOREM 3

We use the same kind of notation as in the proof of Theorem 2 but now

Q,, = {w such that o(w) =n — b for some b € B}.

We define the event F,: “n cannot be written in the formn=x7 +---+ x5+

with z1,...,2s € A, s < --- < x; and b € B.” In other words,
F,= () ES.
weNy,

The hypothesis of Theorem 3 is tantamount to writing
B(n)

lim inf =c
n%+u>bgn

for some ¢ < A\;!. Then there exists a sequence (IV;) ;en of integers such that
(8) B(N;) = ¢(1+ o(1))log N;.

In all this proof, if N is some integer, we shall say that a positive integer n is
good (for N)if N/2 <n < N and

In — b > (log N)**

for all b € B. In the opposite case, n will be said to be bad (for N).

We consider the random variable (recall I is the indicator function of an event)

Xy= Y IF,).

N/2<n<N
n is good

We use the notation
pn =E(Xy) and o3 =V(Xy).
Our strategy is to prove that

(9) lim oy, = 400
1—>—+00
and that
2
HN,
10 3 =y
(10) oN; << log N;
Then, using Chebychev’s inequality in the form (3), we get
2
KN, 4oy, 1
11 P (X , < ) < : —_—
(11) N 2 1, < log N;

Now, Theorem 3 follows immediately from (11) and (9).

From now on, we let N be a term of the sequence (NV;),; -
5.1. Estimate of uy.

Proposition 1. We have

N > N (1—cAs)(1+0(1))

Proof. We have
(12) UN = Z P(Fy).

N/2<n<N
n good
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Let n be a good integer for N. Using Janson’s first inequality (Theorem 5 (i))

we observe that

P(F,) > [ 01 -P(E.)).

WEN,

Using that log(1 — z) = —z + O(z?) we have

(13)

log(P(F,)) > — »_ P(E,)+0

( > P(wa) .
weR,

weR,

On the one hand, since n is good, we compute

. 1 —1+1/s
(W D RE) = D >, (wmw)
WEQ, b<n—(log N)** 1<z <<z
beEB T1+Fxs=n—>b
1
= 5 > s Al 40(1)
b<n—(log N)**
beB
< As(T+0(1)B(N)
< (1 +o0(1))log N.
On the other hand,
2
1
s - w () e
wWEN, b<n—(log N)4S § 1<z < <a1
beB z1+-+xs=n—>b
< Z (TL _ b)72+2/s Z (I2 .ms)72+2/s

b<n—(log N)**

1<z, < <m2

beB xo+-Fxs<n—b

by noticing that ;1 > (n — b)/s in each term of the internal sum. We further

compute, n being good,

Z P(E,)? <
weEN,

<

<

<

<

Thus, (13) and (14) imply
(15)
when n is good.

One computes that

{N/2 <n < N: nbad}

n

b s—1
Z (77, o b)f2+2/s < sL,2Jr2/s>
r=1

b<n—(log N)**
beB

b<n
beB

Z(log N)785+8(10g N)871

b<n
beB

(1og N) "+ B(V)
(log N)~S.
that
P(F,) > N —cAs(1+o(1)

H{N/2<n < N: |n—b| < (logN)* for some b € B}

< ) 2(log N)*
b<N
< (log N)*st1,
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Thus, using equations (12), (15) and this, we obtain

UN = Z N —eAs(140(1))
N/2<n<N
n good

> Z N—cAs(1+o(1)) _ Z N—cAs(1+o(1))

N/2<n<N N/2<n<N

n bad
> N(l—&-o(l))(l—c)\S) -0 ((log N)4s+1)
> N(1+o(1))(1—c)\3)
since 1 — cAs > 0. O

5.2. Estimate of 0%. Let us recall now that, given a set B, its difference set B— B
is defined by

B-B=1{b—V with b,V € B}.

Lemma 6. Let By = {b < N with b € B}. Let n < m < N be two positive
integers such that m —n & By — By then

P(F N\ Fp) SP(F)P(Fp)exp |2 Y P(E, N Ey)

w,w €Q,UQm,
wrw!

Proof. We observe that
FoNFn= (] E

UJEQn UQm

and that the condition m — n € By — By implies that ©,, N Q,, = . Janson’s
second inequality (Theorem 5 (ii)) applied to Q = ,, UQ,,) implies that

P(F, N Fy) < H P(ES)exp | 2 Z P(E, N E,)
WweN,L,UQ,, w,w €U,
= J] e [ pEexp |2 Y P(E,NE)
weN, WEQm w,w €ENUQ,
< P(F)P(Fn)exp |2 Y P(E,NE.)

w,w €Q U
wrw’

using Janson’s first inequality (Theorem 5 (i)) applied to £2,, and to ,,. The lemma
is proved. O

Lemma 7. Let N,n,m be integers. If n and m are good for N, then

Y PE,NE.)

WEN,w EQm,
wNU.)/

log N~
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Proof. We can write

s—1
> PENE)= Y > Apmlk;bb)
WEQp,w EQn 1<b<n k=1
wrw’ 1<b'<m
bb'eB

where, for k> 1,

A (K3 b,b) = > P(E,NE,).
WEQ,w EQ
o(w)=n—b, o(w')=m-0b’

|wNw’|=k
Assume that n — b < m — b'. Thus,
Apm(Bsb V) < Y (g eay) T > (Thar - wg) T
1<zy,...,xx 1<Tpq1,..,%s
z14-Fxp<n—b Tpt1+-Frs=n—b—(x1+ -+xz))
X > (g ys) "0

1<yr+t1,5Ys
Yey1+Fys=m—b'—(z1++axy)

Lemma 1 (i) applied twice shows that

R

Apom(k;b V) < Z (z1-2p) i n—b— (2144 ap) (= — (214 F3p)”

1<zyq,...,zk
14 txEp<n—>b

< Z (xl...xk)*lJrl/s(n_b_(I1+...+Ik))72k/s

1<z, .., 2k
z1+-+zp<n—b

< (n—0b)"Y*log(n —b)
1

<< T.

log®™ N

since (log N)* <n —b< N.

If m — o < n — b we proceed in the same way. Thus,

1
P(E,NE,) <
£ neom) < ¥ 8 o
WEN,,w' EQm, 1<b<n 1<b' <m
wrw beB vVeB
B(N))?
< BV
log® N
1
log N’
hence the result. O

Corollary 1. Let N,n,m be integers. If n and m are good for N and m —n &
By — By then

]P(Fn N Fm) - IP)(1;‘71)]}])(}7‘771) <

Tog NIP’(Fn)IP(Fm).
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Proof. Lemma 6 implies that

P(FuNF)~P(F)P(Fr) < P(F)P(Fy) |exp |2 Y P(E,NE,) | -1

w,w €QnUQm,

/
wnw

We observe that

> PELNEy) = Y PENEs)+ Y, P(E,NEy)

w,w €N U w,w' €Ny w,w' EQm
(/JNUJ/ UJNUJI (IJNUJI
+ E P(Ew NE, ) .
WEQRy, ,w €,

’
wn~w

We finish the proof applying Lemma 7 to the three sums (with n = m or not) and
using the estimate e — 1 ~ & when x approaches 0. (]

Proposition 2. The following estimate holds
5%

2

Proof. A standard calculation shows that

k=2 3 (IP(F" NE,) - lP’(Fn)IP(Fm)) _ (]P’(Fn) - }P’Q(Fn)).
N/2<n<m<N N/2<n<N
n,m good n good

We decompose

oy =251 + 2%, + X3,

where

S = 3 (IP(Fn NFp) — IP(Fn)IP(Fm)),
N/2<n<m<N
n—m¢gBN—BnN
n,m good

Bo= Y (B(R.NE.) - B(FIR(E)).
N/2<n<m<N
n—meBN—Bn
n,m good

S o= Y (P(Fn)—IPQ(Fn)).
N/2§n%N
n goo

It is clear that

Mg < un-.
To bound X5 from above, we use the trivial upper bound

P(F, N Fy,) — P(F,)P(F,,) < P(F,,)
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and get, for X,
¥y < Z P(F,,)|[{N/2 <n < N such that n € By — By + m}|

N/2<m<N
m good
< |Bn — By| Z P(Fn)
N/2<m<N
m good
< [By[* ) PB(Fn)
N/2<m<N
m good
< 1Og2N MUN-

Finally, by Corollary 1, we have

21<<IOgLN Y PER(E,) < ! ( 3 ]P’(Fn))zz BN

~ log N log N
N/2<n<m<N N/2<n<N
n—mg&Bn—Bn n good
n,m good

Adding the three contributions X1, Y, and X3 we have

2 2
KN 2 2 1 log” N
16 2 log® N .
(16) GN<<logN+ og ,uN+uN<<uN(IOgN+ e

We let
1 —ch

3 >0

9

and notice that Proposition 1 implies
(17) py > N2 5 10g3 N.
We obtain the Proposition after plugging (17) in the last term of (16). O

6. THE LIMIT CASE OF THEOREMS 2 AND 3:
SEQUENCES AT THE THRESHOLD

Theorems 2 and 3 being proved, it is natural to wonder what happens for se-
quences B at the threshold, namely satisfying
B (n) )\—1

lim inf =
n—oo logn

In this paragraph, we show how to build sequences at the threshold satisfying either
the conclusion of Theorem 2 or of Theorem 3.
Indeed, consider for example the sequence B defined by the counting function
B(n) = |A;'logn + 2] loglogn]| .
We can mimic the proof of Theorem 2 (although we have to change m = n/2 now).
We'll use the following refinement of Lemma 1, (iii)

(18) Z (z1--xg) s = 650 4 O(n~ Y/ (5+D),

1<z <<z

T1+-+xs=n
Hint: we let g(n) = n'/(+1) | break the sum over z, at g(n). In the sum with z, >
g(n) we recognize (up to the right gamma factor) a Riemann sum for the integral
[ [(t .. ts)TIHY5dt, ... dts over the part of the hyperplane t1 + -+ + t5 = 1
limited by g(n)/n < ts < --+ < t; < 1; the error in the approximation of the
integral by the Riemann sum is O(1/g(n)); the error in the truncation of the sum
(cf. the proof of part (iii) of Lemma 1) is O((g(n)/n)'/*) and so is the error in the
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truncation of the integral. The resulting global error is O(nl/ (SH), which is enough
for our purpose. By looking carefully at what occurs around 0 and integrating the
error in the approximation, one can reduce the error term to O(n=/%).

Equation (18) leads to

> P(E) = th Do (wremy) Y

wey, b<n/2 1<z <<z
Ti+-txs=n

~ btosn (0o
= logn + 2loglogn + O(1).

Following the same reasoning as in Theorem 2 we get

]P)(Fn) < e—(logn+210glogn+0(1)) < .
- nlog®n

Thus, ), P(F,) < oo and we can apply the Borel Cantelli Lemma to conclude that
the sequence B is almost surely complementary sequence of a pseudo s-th power.

Conversely, consider for example a sequence B defined by the counting function
B(n) = L)\S_l logn — t(n)],

where t(n) is an increasing function with ¢(n) = o(logn). We can mimic the proof
of Theorem 3 with the only difference that now the exponent 2¢ + o(1) in (17) is
2en ~ Ast(N)/log N. So, we can take for ¢(n) any function such that uy > NV >
log® N. For example, the choice

_1loglog N
tHN) =4\t —=——
( ) S IOgN
is satisfactory.
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