Exámen de Teoría de Números

25 de enero de 2010

Problema 1.

- a) Demostrar que $\alpha = \sum_{p \text{ primo } \frac{1}{p!}}$ es un número irracional.
- b) Hallar el comportamiento asintótico de $\sum_{k=1}^{n} \cos^2(2\pi k\alpha)$.

Problema 2. Sea $A = \{n \in \mathcal{N} : (n, 2010) = 1\}.$

- a) Demostrar que $A(x)=\frac{\phi(2010)}{2010}x+O(1).$
- b) Demostrar que existen dos constantes c_1, c_2 tales que

$$\sum_{\substack{n \le x \\ (n,2010)=1}} \frac{1}{n} = c_1 \log x + c_2 + O(1/x).$$

Problema 3. Sea $f(x) = x^2 + x + 1$.

- a) Decidir razonadamente si la congruencia $f(x) \equiv 0 \pmod{91577}$ tiene solución. (Observación: el número 91577 es primo).
- b) Demostrar que la congruencia $f(x) \equiv 0 \pmod{p}$ tiene solución para infinitos primos.

Problema 4. Sea $s=\sigma+it,\ \sigma>1$ y $\zeta(s)=\sum_{n\geq 1}\frac{1}{n^s}.$

- a) Demostrar que $\frac{1}{\zeta(s)} \sum_{n \geq 1} \frac{\mu(n)}{n^s}$.
- b) Demostrar que $\frac{1}{|\zeta(s)|} \le \zeta(\sigma)$ y deducir que la función $\zeta(s)$ no se anula en $\Re(s)>1.$

Problema 5.

- a) Demostrar que si $A \subset \mathbf{Z}_p \times \mathbf{Z}_{p-1}$ es un conjunto de Sidon entonces $|A| \leq p-1$
- b) Sea g una raiz primitiva (mod p). Demostrar que el conjunto $A = \{(x, g^x) : x \in \mathbf{Z}_{p-1}\}$ es un conjunto de Sidon en $\mathbf{Z}_p \times \mathbf{Z}_{p-1}$ con p-1 elementos.

1