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Credits

This talk is based mainly on the joint work with A. Ubis:

Multifractal behavior of polynomial Fourier series. Adv. Math.
250 (2014), 1–34.

There is also a (unpublished) part coauthored with S. Ruiz-Cabello
and included in his recent PhD thesis to be defended in two weeks:

Prime generators, approximate identities and multifractal
functions. PhD Thesis 2014.
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Fractal and multifractal functions

A way of constructing fractals is to consider low regularity
functions.

Weierstrass function

∞∑
n=0

sin(2π4nx)

2n

βf (x) = sup
{
γ ≤ 1 : |f (x + h)− f (x)| = O(|h|γ)

}
[Definition to be modified at points of differentiability]
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βf (x) = sup
{
γ ≤ 1 : |f (x + h)− f (x)| = O(|h|γ)

}

Weierstrass function

∞∑
n=0

sin(2π4nx)

2n

βf (x) = 1/2

A function with βf (x) = β (constant) gives a fractal graph of
dimension 2− β.

For Weierstrass function one could suspect that βf (x) = 1/2
because it has almost 1/2 of derivative.
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A multifractal set is a set made of infinitely many interwoven
fractal subsets of different dimensions. We can get one of these
objects when the Hölder exponent βf (x) is constant on fractal sets.

Spectrum of singularities

d(β) = dim{x : βf (x) = β}

where dim is the Hausdorff dimension (dim ∅ = −∞ or undefined).

Multifractal function

It is a function with a non-discrete spectrum of singularities.

d(β)

Pure fractal

d(β)

Multifractal
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Why should I care about multifractals? Multifractal analysis is
employed in many areas, ranging from fluid mechanics to medical
imaging.

Why should I care if I am attending this conference? The
study of the spectrum of singularities of simple functions leads to
highly nontrivial questions about Diophantine approximation.

In this talk the simple function is mainly a Fourier series with
integral polynomial frequencies

F (x) =
∞∑
n=1

e
(
P(n)x

)
nα

, P ∈ Z[x ] where e(x) = e2πix .
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F (x) =
∞∑
n=1

e
(
P(n)x

)
nα

, P ∈ Z[x ] where e(x) = e2πix .

The question: What is the spectrum of singularities of F?

Short answer: I don’t know.

Long answer: The case degP = 2 is settled, there is a general
lower bound, and also an upper bound proving that F is a
multifractal function in certain ranges, there are some conjectural
formulas and heuristics. . . [The rest of the talk].
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What is special in the quadratic case?

The simplest quadratic example is indeed old and famous.

Riemann’s example

R(x) =
∞∑
n=1

sin(2πn2x)

n2

According to Weierstrass (1861), Riemann considered R to be an
example of a continuous nowhere differentiable function.
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Graph of the Riemann example
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R(x) =
∞∑
n=1

sin(2πn2x)

n2

G.H. Hardy (1916): R is not differentiable at any irrational value
and at some families of rational values. J. Gerver (1970): R is
differentiable at the rationals not considered by Hardy.

θ(z) =
∑
n∈Z

e(n2z), =z > 0

Wrong proof, wrong answer

R ′(x)
?
= 2π

∑
cos(2πn2x) does

not converge for any x ∈ R. For

x irrational, cos(2πn2x) is dense

in [−1, 1]. For x ∈ Q it oscillates.

Wrong proof, right answer

z = x + iy

R ′(x) =
(

limy→0+ =
∑ e(n2z)

n2

)′
R ′(x)

?
= π limy→0+ <

(
θ(z)− 1

)
∃ limy→0+ <θ(z)⇔ x = a

2b , 2 - b.
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close to x = 1/2 close to x = 5/14

Some harmonic analysts dub as chirps this kind of oscillations resembling
to the function xα sin x−β .
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R(x) =
∞∑
n=1

sin(2πn2x)

n2

Poisson’s summation
∑
n∈Z

e−πn
2t =

1√
t

∑
n∈Z

e−πn
2/t

l

Modular relation θ(z) =

√
i

2z
θ
(−1

4z

)

Analytic tools → R(h)− R(0) = Ch1/2 + O(h).
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Graph of the Riemann example

F. Chamizo Fractal and multifractal Fourier series



Fractal and multifractal Quadratic case Automorphic Theorem Heuristics Proof Expectations Bibliography

R(x) =
∞∑
n=1

sin(2πn2x)

n2

Expansion at the cusps (Poisson’s summation in arithmetic
progressions), for h > 0

R
(a
q

+ h
)
− R

(a
q

)
= q−1Gh1/2 + O

(
hq1/2

)
with G essentially a Gauss sum.

Diophantine approximation → characterization of the Hölder
exponent in terms of the continued fraction.
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x = 1/2 x = 1/3

x = 2/5 x = 1/4
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R
(a
q

+ h
)
− R

(a
q

)
= q−1Gh1/2 + O

(
hq1/2

)
To give a chance to the differentiability the Gauss sum has to
vanish. This happens when q ≡ 2 (mod 4).

In the rest of the cases, we have something like q−1/2h1/2. The
typical approximation by rationals has h ≈ q−2. Then for the most
of the points the expected Hölder exponent is 3/4 and d(3/4) = 1.

Quicker approximations by rationals, say h ≈ q−r , give h1/2+1/2r .
If r is large, this suggests d(1/2) = 0 and a continuous variation
with r .
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Jaffard (1996) → The function R(x) is multifractal.

Rα(x) =
∞∑
n=1

sin(2πn2x)

nα
, α > 1.

The general quadratic case is treated with other θ-functions.
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The automorphic setting

J.-P. Serre, H.M. Stark (1977): θ-functions and modular forms of
weight 1/2 are the same thing.

quadratic case ↔ weight 1/2

Natural question: What happen with other weights?

f (z) =
∑

ane(nz) automorphic

fractional integral → fα(x) =
∑ an

nα
e(nx).
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Some results

Ch. (2004) If f is a cusp form, fα(x) is pure fractal and not
multifractal.

Petrykiewicz (2013) If f is a classical Eisenstein series then the
Hölder exponent can be determined at every point in some ranges.

Ch. & Ruiz-Cabello (2014) If f is not a cusp form, fα is a
multifractal under strict conditions on α and the weight.
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In the last result, we only treat the case with βf ≤ 1 and it forces the

restrictions on the ranges. We plan to extend the result in a near future.

The spectrum of singularities of fα

w = weight of the modular form.
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Why the case of higher degree is completely different?

In the case of degree k , Poisson summation allows to control the
(asymptotics of the) oscillation of the function on each interval

(a
q
− h,

a

q
+ h
)
, h <

1

qk
.

If k = 2, they define a covering of R. In general, the union of
these intervals has Hausdorff dimension 2/k . Very thin for k > 2.

A more important barrier to treat the case k > 2 is that the error
term after using Poisson’s summation, is better than trivial only
when h < q−k/2 while for the Diophantine approximation process
we have to deal with h almost like q−1.
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What have we actually proved?

F (x) =
∞∑
n=1

e
(
P(n)x

)
nα

.

Define ν0 = max(νF , 2) with νF the maximal multiplicity of a zero
of P ′.

Theorem

For 1 + k/2 < α < k, 0 ≤ β < 1/2k ,

d
(
β +

α− 1

k

)
≥ (ν0 + 2)β.
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F (x) =
∞∑
n=1

e
(
P(n)x

)
nα

.

We have also an upper bound. We think that in the “typical case”
the lower bound gives the true dimension.

Proved
F is multifractal

Conjectured in the “typical case”
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What are the ideas under the proof?

The proof of the theorem is long and technical and involves several
different ingredients (Poisson summation, variants of large sieve,
Turán’s method, Weyl’s inequality, generalized Cantor sets. . . )

Instead of reviewing the steps and the role of these ingredients in
the proof we try to motivate the result.

The subsequent slides do not reflect the scheme of the actual proof
but they give some hints about the underlying ideas. The point is

How could one imagine the result?
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Assume h > 0 and write k = degP

F
(a
q

+h
)
−F

(a
q

)
=
∑

e
(aP(n)

q

)
wh(n), wh(n) =

e
(
hP(n)

)
− 1

nα

wh oscillates for n > h−1/k , and it is small for n small. The bulk of
the contribution comes from n � h−1/k where wh(n) � hα/k .

Model

If h = q−r , r > k, F (a/q + h)− F (a/q) should behave like

hα/k
∑

n�qr/k
e
(aP(n)

q

)
.
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The analytic theory of exponential sums appeals very often to the
heuristics of square root cancellation.

[The (unproved, out of reach) (ε, 1/2 + ε) exponent pair]

It would solve the Gauss circle problem, the Lindelöf hypothesis
for ζ, etc.

Rough idea in many contexts

A really oscillatory exponential sum S with N terms should verify
|S | ≤ CεN

1/2+ε, and typically |S | ≥ C ′εN
1/2−ε.

Quadratic Gauss sum

q∑
n=1

e
(n2
q

)
=

1 + (−i)q

1− i

√
q.
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Model

If h = q−r , r > k , F (a/q + h)− F (a/q) should behave like

hα/k
∑

n�qr/k
e
(aP(n)

q

)
.

Note that e
(
aP(n)/q

)
is q-periodic. The square root cancellation

heuristics applied to each q-block, leads to

hα/kqr/k−1q1/2 = h(α−1)/k+1/2r

Jarńık-Besicovitch theorem

dim
{
x :

∣∣x − a

q

∣∣ < q−r infinitely often
}

=
2

r
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If h = q−r , r > k , F (a/q + h)− F (a/q) should behave like

hα/k
∑

n�qr/k
e
(aP(n)

q

)
≈ h(α−1)/k+1/2r .

Hölder exponent
α− 1

k
+

1

2r
in a set of dim =

2

r

Writing β = 1/2r we have the lower bound

d
(
β +

α− 1

k

)
≥ 4β

that is part of the theorem.
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This bound can be improved if P has multiple zeros because in this
case the square root cancellation is violated.

Model example: q = pk , p - a, p - k
q∑

n=1

e
(ank

q

)
= q1−1/k

In this case

hα/k
∑

n�qr/k
e
(aP(n)

q

)
≈ h(α−1)/k+1/kr
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In general, if ν > 1 the maximal multiplicity of a zero of P ′, and
q = pν+1, the model suggests that if h = q−r , r > k ,
F (a/q + h)− F (a/q) should behave like

hα/k
∑

n�qr/k
e
(aP(n)

q

)
� h(α−1)/k+1/(ν+1)r .

(Modified) Jarńık-Besicovitch theorem

dim
{
x :

∣∣x − a

q

∣∣ < q−r , q = pν+1 inf. often
}

=
1

r
+

1

(ν + 1)r
.
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Hölder exponent
α− 1

k
+

1

(ν + 1)r
in a set of dim =

1

r
+

1

(ν + 1)r

Writing β = 1/(ν + 1)r we have the lower bound

d
(
β +

α− 1

k

)
≥ (ν + 2)β

that is the remaining part of the theorem.
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What are the main steps in the actual proof?

1. Local analysis

Tools: Poisson’s summation, Weyl’s inequality.
Output: Approximation around rational values.

2. Average oscillation

Tools: Variants of large sieve inequality.
Output: Some control of the oscillation averaging over thin sets.

3. Lower bounds for exponential sums

Tools: Turán’s method, polynomials over finite fields.
Output: General lower bound for families of exponential sums.
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What are the main steps in the actual proof?

4. Some Cantor-like sets

Tools: Elementary measure theory.
Output: Dimension of general limit set of sequences of nested
intervals.

5. Construction of the fractal set

Tools: Jarńık-Besicovitch, Diophantine approximation.
Output: A fractal set in which the Hölder exponent is constant.
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What is the theorem that we have not proved?

Some artificial examples with unbalanced multiplicities
produce a serious obstruction to the square root cancellation
philosophy and its modification. We have not a clear
conjecture for the general case but it seems to be exact for
most polynomials (including those with successive derivatives
having simple zeros).

Our approach only can deal with irrationals very well
approximated by rationals. We expect maximal cancellation in
the rest of the cases.

The behavior in the rationals depends on the non-vanishing of
a finite exponential sum.
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Near to Q: Cancellation in terms of multiplicities.

Far away from Q: Maximal cancellation.

In Q: Arithmetical properties.

Conjecture for the “typical case”
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