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Preface

This memory contains the study of several mathematical problems of
diverse character, structured into three chapters, that could be said to belong
to the areas of Number Theory and of Harmonic Analysis.

But, what does it mean for a problem to be in one area or another?
Perhaps we want to express that it arises in a natural way inside a theory, or
maybe that the methods used in the solution belong to a determined kind of
reasonings.

As anyone who has worked on mathematics knows, these two ways of
understanding the question not always coincide, which is natural, because a
theory grows in part due to questions that escape to it. The unique hope of
going beyond is using any tool at our disposal. The problems we are going
to solve in the following pages are an example of it.

In chapter 1 we treat Fourier series with frequencies in the k-powers, that
are functions of chaotic behaviour. Its comprehension will require to work
with Gauss sums, Large Sieve inequalities and wavelets, things in principle
not related to the regularity of a function.

Class number of a quadratic number field (or equivalently class number
of quadratic binary forms), that is the theme of chapter 2, is an amazing
quantity that measures how far is the ring of integers of being a unique
factorization domain. Nevertheless its behaviour in average can be under-
stood, through some ideas of hyperbolic geometry, as a lattice point problem
a thus can be controlled with Harmonic Analysis’ tools, or through Dirichlet
L functions and the related character sums.

If we are given two small sets A and C of integers, it is easy to decide if
there exists another set B such that the sums of the elements of A and B
give exactly the elements of C. In chapter 3 we shall show that to study this
problem more precisely will require Fourier Analysis in finite fields, as well
as combinatorial an geometric arguments.

Most of the results in this memory can be found in the research papers and
preprints [CCU, CU1, CU2, GU, Ubi]. But their story, as always happens,
has been more involved. I remember very well when, during a research stay in
Montreal, I was sat down with Andrew Granville waiting for him to propose
me a problem to work for the following four months. Instead, he asked me
which questions I was interested in. I told him I wanted to learn things on
L functions, and he answered this was too general. After that I said I had
been reading some papers of B. Green and I. Ruzsa that Javier Cilleruelo
had recommended me, and then he told me the problem on sumsets. For
large sets I soon realized that Green-Ruzsa method worked. For small sets,



Granville said it could probably be treated by means of recurrences. From
that moment I have been working on this problem, giving only small steps
in its understanding.

When I began to research with Fernando Chamizo, he proposed me the
question of studying Fourier series with frequencies in polynomials of degree
larger than two, extending in that way the work done by S. Jaffard. He said
Poisson formula could be used to handle the function near the rationals and
besides, the irrationals could be understood from that simpler case. By my
clumsiness with these analytic tools it took my some time to understand cor-
rectly in which way I had to proceed. In the end we were able to control the
function very near of the rationals, but we were very far from the knowledge
reached in the quadratic case. In the beginning I did not understand Jaf-
fard’s paper completely, in part due to my lack of experience with wavelets.
Although in the end I have realized that wavelets are not strictly necessary,
they have helped me to understand the real dimension of the problem and
to give a partial solution.

In the problem of class number it has been very beautiful to share Gauss’
worries, and to understand the methods of Siegel, Shintani and Chamizo-
Iwaniec, and to be able to apply them to the positive discriminant case.
When finally we obtained the bound for the error term, the natural question
was to discover the actual size and behaviour of that term. First I tried to
use the summation formulas we had obtained to attack this problem, without
success. Later I understood that it was possible (and more natural) to treat
the error term directly through Dirichlet class number formula. This second
option worked, showing once more the importance of adapting ourselves to
the problem we are solving, of using the suitable language and techniques.

Only remains to me the duty of paying the debt I have with the people
that have made possible this project, acknowledging its support profoundly:
in the first place to my thesis advisor, Fernando Chamizo. To say that
Fernando has surpassed the limit of what can be expected of a supervisor, as
person as well as mathematician, would be not accurate. He has taught me,
with patience and dedication, everything I know on Analytic Number Theory.
He has borne my ups and downs, supporting me until the last moment. I
think he is an example to follow. In the second place to Andrew, who showed
me how to do mathematics, thanks to his enthusiasm and firmness. His ideas
made possible chapter 3 of this memory. To Javier Cilleruelo, who guided me
in the beginning and made me understand that Additive Number Theory is
more involved and beautiful than I thought before. To my office colleagues:
Blanca that has taught me so much, Susi, Connie, Nati, Paloma, Jose, Charro
and our Thursday’s talks. Also to my friends Mari Luz and Elena, and to
the rest of graduate students: Ana that cares of everyone of us, Angélica,



Liviu, . . . In general I have felt a great atmosphere in this department. To
my family and friends for their wholehearted support; to Maŕıa for his help
with programming and for everything else; to Hakima and her family, that
treated me as a son; to Manolo for having showed me the amazing world of
number theory; to Paulo for those four months of arguments; to Jorge for
carrying (brilliantly) the hard duty of being the reviewer of this thesis, and
for encouragement.
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Chapter 1

Fourier series with polynomial
frequencies

1.1 Introduction

The first published example of a continuous nowhere differentiable function
was obtained by Weierstrass:

f(x) =
∞∑
n=0

an cos(πbnx),

with b an odd integer, 0 < a < 1 and ab > 1 + 3π/2. But Weierstrass did
not think he was the first mathematician in finding such kind of function,
because in 1873 he sent a letter to Du Bois-Reymond saying that already in
1861 Riemann had stated that

f(x) =
∞∑
n=1

sin(πn2x)

n2

was not differentiable at any point.
In1916 Hardy [Har] gave a great step in the study of Riemann’s function

and understood perfectly the smoothness of Weierstrass’ function. He did so
by associating to any absolutely convergent series

f(θ) = <
∞∑
n=0

ane
inθ

the harmonic function

F (r, θ) = <
∞∑
n=0

anr
neinθ.

3



4 CHAPTER 1. POLYNOMIAL FOURIER SERIES

He showed that the smoothness of f can be measured through the derivative
of F in θ. In a precise way, if for 0 < δ < 1

f(θ)− f(θ0) = o((θ − θ0)
δ)

holds, then
∂F (r, θ)

∂θ

∣∣
θ=θ0

= o
(
(1− r)δ−1

)
r → 1−.

He proved this by writing F (r, θ) as the integral

F (r, θ) = < 1

2π

2π∫
0

f(t)(
2

1− rei(θ−t)
− 1), dt

that is using Poisson’s kernel. These were the beginnings of Hardy’s spaces.
To see the regularity of Weierstrass’ function, Hardy had to study the be-
haviour of the function

∂F (r, θ)

∂θ
= −π

∞∑
n=0

(ab)nrb
n

sin(bnπθ)

where r is near to 1. From that he could prove, without any trouble, that
whenever ab > 1, 0 < a < 1 Weierstrass’ function satisfies

f(x)− f(x0) = Ω(|x− x0|δ) δ =
log(1/a)

log b
< 1

for any x0 ∈ R, deducing in particular its non-differentiability.
In the case of Riemann’s function, all he had to do was to control

π
∞∑
n=1

rn
2

cos(πn2x)

when r approaches 1. But making the change r = e−πy, this becomes

θ(z) =
∑
n∈Z

eiπn
2z z = x+ iy

with y → 0+. This is Jacobi’s theta function, whose behaviour could be
studied very well due to the functional equation

θ(z) = eπi/4z−1/2θ(−1/z).

In fact, combining it with its periodicity we obtain

θ(z) = eπim/4θ(γ(z))q−1/2(z − a

q
)−1/2, (1.1)
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where γ(z) = (rz + s)/(qz − a), r ≡ a (mod 2), s ≡ q (mod 2) holding
ra+ sq = −1 and m is an integer that depends on γ.

Hardy and Littlewood [HL] saw that for every x0 irrational there exist
infinitely many convergents an/qn such that we can take γ(z) = (rnz +
sn)/(qnz − an) with =γ(x0 + i|x0 − an/qn|) > 1/2. But in this area θ has an
stable behaviour, because |θ(z)− 1| < 1/2 if =z ≥ 1/2. So

|θ(x0 + i|x0 − an/qn|)| � q−1/2
n |x0 − an/qn|−1/2,

and since |x0 − an/qn| < 1/q2
n (see [CiCo]), we have

θ(x0 + iy) = Ω(y−1/4).

Hence Hardy deduced that Riemann’s function satisfies

f(x)− f(x0) = Ω(|x− x0|3/4)

for any x0 irrational.
But there was a great difference between both functions. For Weierstrass’

it can be proved directly (as Hardy did) that

f(x)− f(x0) = O(|x− x0|δ) δ = log(1/a)/ log b < 1

for any x0, demonstrating in this way that the regularity is the same at every
point. For Riemann’s function this was not true, and Hardy knew it. For
instance, for some rational numbers

f(x)− f(a/q) = Ω(|x− a/q|1/2),

what did not hold for most of the irrationals. This showed that the regu-
larity of this function changed wildly from one point to another. But there
remained to answer Riemann’s question: what was the behaviour of the frac-
tions in the orbit of 1? For them (the ones a/q with a, q odd integers) we
have

θ(a/q + iy) → 0,

what indicates that the function should be quite regular at these points.
It seems that Hardy did not worry about these questions, and in general
about the regularity of Riemann’s function; he was interested only on its
irregularity. Strangely, it was not until fifty years later, in 1970, that Joseph
Gerver [Ger1, Ger2] while being a student proved that at these rationals
the function is indeed differentiable and the derivative is always −1/2. He
did it by grouping the frequencies in the formula for f(a/q + h) − f(a/q)
according to the different residues modulo q, and estimating the main terms
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in the resulting functions. One year after this H. Queffelec [Que] analyzed
the differentiability of functions

f(x) =
∞∑
n=1

sin(P (n)x)

P (n)
P ∈ Z[x]

but only at some rationals. In 1972 A. Smith [Smi] simplified Gerver’s proof
by means of Poisson’s summation formula.

In 1978 E. Neuenschwander [Neu] undertook the historical study of the
actual knowledge Riemann had about this function. From that account we
can say that Riemann probably knew the difference of behaviour at rationals
and irrationals. After all, it is natural to understand the formal derivative
at a/q

π
∞∑
n=1

cos(πn2a

q
)

as ξ(0), where ξ(s) is the meromorphic extension of

ξ(s) = π
∞∑
n=1

cos(πn2a

q
)n−s <s > 1.

Indeed, it can be proved (see theorem 1.14) that the value of the derivative
is ξ(0) at the rational points for which the derivative exists, and it exists
precisely in the ones for which the function ξ(s) does not have a pole at
s = 1.

In 1991 J. J. Duistermaat [Dui] showed the precise behaviour of f near
the rationals and used this result to study the irregularity at the irrationals
and the regularity almost everywhere. He began with the expression

f(x)− f(x0) =
∫
C

1

2
(θ(z)− 1)dz,

where C is any smooth curve contained in the hyperbolic plane that goes
from x0 ∈ R to x ∈ R. From that and (1.1) he got a formula that express
the self-similarity of Riemann’s function:

f(x) = f(
a

q
)+e

iπ
4
mq

−1
2 (x− a

q
)

1
2 − 1

2
(x− a

q
)+e

iπ
4
mq

3
2 (x− a

q
)

3
2f(γ(x))+ψa/q(x)

where ψa/q(x) is a differentiable function and ψa/q(a/q) = 0. From it he could
infer the behaviour of f at the rationals, an taking a/q as the convergents
(with a, q of different parity) of the point x0 obtained

f(x)− f(x0) = Ω(|x− x0|
1
2
+ 1

2r ) (1.2)
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if x0 satisfies |x0 − an/qn| = O(q−rn ) where an/qn are its convergents. This
last point had implicitly been discovered by Hardy and Littlewood in [HL].
Duistermaat also proved from his formula that

f(x)− f(x0) = O(|x− x0|
3
4
(1−r(r−2))), (1.3)

for any x0 satisfying lim infn |x0− an/qn|qrn > 0. This was the first time that
someone showed the regularity at certain irrational points. In particular (1.2)
and (1.3) prove that the Hölder exponent is exactly 3/4 almost everywhere,
but when r > 1 + 2/

√
3 this bound does not give any information, because

we can directly see that f ∈ C1/2(R). Hence in some ranges we are losing
information.

In 1986 P. G. Lemarié and Y. Meyer [LM] characterized for a function
f : R → C to be in the space

Cβ(R) = {f : ∃C > 0, |f(x)− f(y)| ≤ C|x− y|β ∀x, y ∈ R} 0 < β < 1

through decay conditions on the coefficients of the function with respect to a
wavelets basis. Three years later S. Jaffard [Jaf2] used the same techniques
to characterize the local regularity of functions, namely the fact of being in
the space

Cβ(x0) = {f : ∃P ∈ C[x], f(x)− P (x− x0) = O(|x− x0|β)} β > 0

for x0 ∈ R. In 1991 M. Holschneider and Ph. Tchamitchian [HT] used
this characterization for Riemann’s function, rediscovering in this way the
behaviour at the rationals and the irregularity at the irrationals. But they
did not used this characterization to study the behaviour of the function near
the rest of the points.

In 1993, F. Chamizo and A. Córdoba [CC1] showed that the graph of the
function

fα(x) =
∞∑
n=1

sin(n2x)

nα
1 < α ≤ 2

is a fractal set of dimension 9/4−α/2. They did so by using the approximate
functional equation for θ [HL] and properties of Gauss sums.

In 1996, after having read Duistermaat’s paper, Jaffard discovered the
regularity at any point of Riemann’s function by the use of wavelets. To
express correctly her results and our later study we associate to any point x0

its Hölder exponent

βf (x0) = sup{β ≥ 0 : f ∈ Cβ(x0)}. (1.4)
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Jaffard realized that the regularity of any point for Riemann’s function
only depends on the how this point can be approximated by rationals. Let
(an/qn)n∈N be the convergents of x0, and define rn through the formula

|x0 −
an
qn
| = q−rnn ,

then Jaffard considered the spaces

Er = {x ∈ R \Q : lim sup
n
rn = r}, 2 ≤ r ≤ ∞, (1.5)

and proved that

βf (x0) =
1

2
+

1

2r
if x0 ∈ Er. (1.6)

As
R \Q =

⋃
r

Er

this gave the Hölder exponent for each point (already known the regularity
at any rational). Moreover, since the Hausdorff dimension of Er is 2/r (see
[Fal2]), with this she got the spectrum of singularities of the function f ,
which is defined in general as the function

dH(β) = dimH{x ∈ R : βf (x) = β}, (1.7)

that associates to any β the Hausdorff dimension of the set of points with
Hölder exponent equal to β, if it is not the empty set. Whenever {x ∈ R :
βf (x) = β} = ∅ we set dH(β) = −∞. Thus she showed that in the case of
Riemann’s function

dH(β) =


4β − 2 if 1

2
≤ β ≤ 3

4
,

0 if β = 3
2
,

−∞ otherwise.

In this way we see that f is a multifractal function (the function dH is positive
at more than one point) and the irregularity at any point is measured by the
approximation of that point by rational numbers.

Once Riemann’s function was understood, it was undertaken the study
of more general functions. In 1999 Chamizo and Córdoba [CC2] introduced

Fα,k(x) =
∞∑
n=1

e(nkx)

nα
k ∈ N, α > 1.

We have Fα,k ∈ C(α−1)/k(R), but for most points Hölder exponent is
not (α − 1)/k. For k > 2, the function Fα,k was not anymore related to an
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automorphic form, and that made things more complicated. Through Poisson
kernel they were able to characterize the differentiability at any rational
point: Fk,k is differentiable at a/q, with a and q coprimes, if and only if
τ(a/q) = 0 where

τ(
a

q
) =

q∑
d=1

e(
adk

q
). (1.8)

By studying these sums they were capable of deciding (except for a small set
of q) the differentiability at a/q through arithmetical properties of q. They
also studied the regularity of the function at other points, by using bounds
for the sums ∑

n≤N

e(nkx0),

that came from number theory. These bounds depend on how quickly the
convergents of x0 approach this point. For example, they got

β(x0) ≥
α− 1

k
+ 21−kk−1

for any x0 quadratic irrational. Many other bounds can be deduced from their
analysis, as that for any ε > 0 there exists a set Aε with positive Hausdorff
dimension such that

β(x0) ≥
α− 1

k
+ ε

for any x0 ∈ Aε. In the same paper they generalized their 1993 results about
the Minkowski (Box-counting) dimension, by substituting the approximate
functional equation by Large Sieve arguments. They demonstrated that

dimMFα,k = 2 +
1

2k
− α

k

k + 1

2
≤ α ≤ k +

1

2
. (1.9)

In 2001 F. Chamizo [Cha] noticed that the irregularity of Riemann’s function
was a general feature of functions

∞∑
m=1

m−αame(mx)

where f(z) =
∑

m ame(mz) is a classical automorphic form. He showed that
the behaviour of the function at the cusps changes depending on the related
automorphic form being a cusp form, and expressed the derivative through
values of L functions attached to f . Moreover he showed that the derivative
at any cusp essentially depends on its class under the Fuchsian group attached
to the form (for instance, for Riemann’s function the derivate at any rational
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with odd numerator and denominator equals −1/2) . In [MS] S. Miller and
W. Schmid generalize part of these results to distributions coming from more
general automorphic forms.

Finally, in 2003 Gerver [Ger3] studied the function Fα,3 near the rationals,
proving that Fα,3 is almost nowhere differentiable for α < (

√
97 − 1)/4 =

2.212 . . .. He achieved it by using a theorem of Patterson and Heath-Brown
about the uniform distribution of the sums τ(a/q) in the cubic case and also
a diophantine approximation result of Erdős.

In this chapter we will generalize part of the knowledge about the function
Fα,2 to the functions Fα,k, and most results would remain valid for any Fourier
series whose frequencies are given by a polynomial and whose coefficients
decay monotonically and slower than some polynomial. Part of the stated
results in this chapter are contained in [CU2]. To simplify, throughout we
will denote

F (x) =
∞∑
n=1

n−αe(nkx)

whenever there is no danger of confusion.
In the first section we study the sums τ(a/q) and another related sums

that we shall need to control in order to understand the regularity of F .
In the second we shall see in a precise way the behaviour of F very near to

the rationals, and in particular we shall deduce the regularity of the function
at them through the following result.

Theorem 1.1. For 1 < α < k + 1, a/q any irreducible fraction and h > 0
we have

F (
a

q
+ h) = F (

a

q
) + Aq−1τ(

a

q
)h

α−1
k + 2πiζa

q
(α− k)h+ T (h−

1
k )h

α−1/2
k−1

with A the constant defined in (1.20), T an bounded oscillating function
(depending on a, q, α and k) and ζa/q(s) the meromorphic continuation of the
function defined in <s > 1 by the formula

∞∑
n=1

e(nk
a

q
)n−s.

From the result of the first section and this theorem we shall infer

Theorem 1.2. For any rational a/q, a, q coprimes, we have

βF (
a

q
) =

α− 1

k
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if there exists pδ ‖ q such that (k, p− 1) = 1 and δ ≡ 1 (mod k). Otherwise

βF (
a

q
) =

α− 1/2

k − 1

and F is differentiable at a/q if and only if α > k − 1/2, with

F ′(a/q) = 2πiζa/q(α− k).

The regularity of the function at the irrationals can be controlled by
studying its behaviour near its convergents. This amounts to understand the
function T , which depends on sums of the shape

SM(
a

q
) =

∑
m≤M

q∑
d=1

e(
adk +md

q
),

that will be our subject of study in the third section. We shall demonstrate
that these sums are bounded by (Mq)1/2+ε uniformly in M ≤ q for most of
a. The precise result (see proposition 1.22) is

1

q

q∑
a=1

sup
M≤N

|SM(
a

q
)|2 � (Nq)1+ε ε > 0, (1.10)

a particular discrete version of the Kolmogorov-Plessner-Seliverstov theorem
(see [Zyg]) for Fourier Series in L2.

In the fourth section we shall expose the local regularity characterization
in terms of the continuous wavelet transform and use it to see the relation
between the regularity of the functions Fα,k: for each x0 ∈ R the function

βFα,k
(x0)−

α

k
(1.11)

increases in α. Besides, we shall give a characterization of the Minkowski
dimension of the graph of a continuous function in terms of its continuous
wavelet transform. Finally we enlarge the range of validity of the formula
(1.9) to

dimMF = 2 +
1

2k
− α

k

k + 2

4
≤ α ≤ k +

1

2
. (1.12)

In the last section we use the results of previous sections in order to study
the regularity at the irrationals. First we obtain a uniform result: for any
r ≥ 2 and every point x ∈ Er we have (for α < k− 1 in the case of the upper
bound)

α− 1

k
+ 21−k min(

1

k
,

1

2(r − 1)
) ≤ βF (x) ≤ α

k − 1
.

After this we shall see the regularity of F in Er almost everywhere:
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Theorem 1.3. For any r ≥ 2:
i) Almost everywhere in Er (with Hausdorff H2/r measure) we have

βF (x) ≥ min
(α− 1/2

k
,
α− 1

k
+

1

2r

)
.

ii) Suppose r ≥ k. Then there exists a subset Er,0 of Er with positive
measure such that for any x ∈ Er,0 we have

βF (x) ≥ α− 1/2

k
. (1.13)

iii) Suppose r ≥ k. Then there exists a subset Er,1 of Er with positive
measure such that for any x ∈ Er,1 we have

βF (x) =
α− 1

k
+

1

2r
. (1.14)

This result is a generalization of what can be obtained by the Funda-
mental Theorem of Calculus for r = 2 and α > k + 1/2, and proves also
that F is a multifractal function. But we shall see that the regularity at any
point, in contrast with the case k = 2, not only depends of the convergents’
approach speed but above all on what kind of numbers are these convergents.
The rationals whose denominators are k-powers represent the extreme case,
giving

Theorem 1.4. For any r ≥ 2, there exists Dr ⊂ Er such that

βF (x) =
α− 1

k
+

1

kr
for every x ∈ Dr

with

1 +
1

2k
≤ dimHDr ≤ 1 +

1

k
.

This theorem offers a lower bound for the spectrum of singularities

dH(β) ≥ k(1 +
1

2k
)(β − α− 1

k
) β ∈ (

α− 1

k
,
α− 1/2

k
).

If we could prove that actually dimHDr = (1 + k−1)/r (we have dimMDr =
(1 + k−1)/r) that bound would improve to

dH(β) ≥ k(1 +
1

k
)(β − α− 1

k
) β ∈ (

α− 1

k
,
α− 1/2

k
),

what corresponds to what we expect for the function F in that range.
Moreover for the points x at which we have proved that βF (x) > 1 we

have
F ′(x) = lim

n→∞
ζan/qn(α− k),

where the limit is over the convergents of x.
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1.2 Complete sums

We shall see that in the study of the regularity of the function F play an
important role the trigonometric sums

τm(
a

q
) =

q∑
d=1

e(
adk +md

q
) (a, q) = 1, m ∈ Z.

The special case τ0 = τ is the sum considered in the introduction. We are
going to begin explaining some known results (see [Vau]) for these sums. In
some places we shall assume that k ≥ 3, that are the cases in which we are
interested.

Lemma 1.5. Suppose q1, q2 are coprime natural numbers. Then

τm(
a

q1q2
) = τm(

aqk−1
2

q1
)τm(

aqk−1
1

q2
).

Proof: By Euclid’s algorithm, every integer u with 1 ≤ u ≤ q can be
written in a unique way as

u = Aq1 +Bq2 1 ≤ A ≤ q2, 1 ≤ B ≤ q1.

In this way, the Lemma follows from the identity

e(
auk +mu

q1q2
) = e(

aqk−1
2 Bk +mB

q1
)e(

aqk−1
1 Ak +mA

q2
).

2

The sum τ behaves in a special way when q is prime.

Lemma 1.6. Suppose q is a prime number. Then

τ(
a

q
) =

∑
χ∈G

χ(a)τχ. (1.15)

where G is the group of Dirichlet characters whose order divide (k, q−1) and
τχ the Gauss sum

τχ =

q∑
d=1

χ(d)e(
d

q
).

Since |τχ| ≤ q1/2, then

|τ(a/q)| ≤ kq
1
2 .
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Proof: We have

|{1 ≤ n ≤ q : nk = m}| =
∑
χ∈G

χ(m).

Therefore

τ(
a

q
) =

∑
m

(
∑
χ∈G

χ(m))e(
am

q
) =

∑
χ∈G

q∑
m=1

χ(m)e(
am

q
).

Taking into account the bijection x 7→ a−1x from Fq to Fq we get (1.15).
Moreover for non-principal character χ we have

|τχ|2 =
∑

1≤d,j≤q−1

χ(d)χ(j)e(
d− j

q
)

and making the change d 7→ jd we arrive at

|τχ|2 =
∑

1≤d≤q−1

χ(d)
∑

1≤j≤q−1

e(
(d− 1)j

q
) = q.

2

If q is a sufficiently high power then the sum τ(a/q) behaves regularly. In
a precise way, we have the following

Lemma 1.7. Let q = pd, p prime, pδ ‖ k and

d ≥


2 if δ = 0

δ + 2 if δ > 0, p > 2
δ + 3 if δ > 0, p = 2.

Then

τ(a/pd) =

{
pd−1 if d ≤ k

pk−1τ(a/pd−k) if d > k.

Proof: Every residue modulo pd can be represented in a unique way as

bpd−δ−1 + c with 1 ≤ b ≤ pδ+1, 1 ≤ c ≤ pd−δ−1.

Besides, we have

(bpd−δ−1 + c)k ≡ ck + kck−1bpd−δ−1
(
mod pd

)
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if d satisfies the hypothesis of the Lemma. Hence

τ(
a

q
) =

pd−δ−1∑
c=1

e(
ack

pd
)

pδ+1∑
b=1

e(
ak

pδ
ck−1b

p
) = pδ+1

pd−δ−2∑
λ=1

e(a
pk

pd
λk)

which proves the result noticing that δ + 2 ≤ k. 2

These results give us an optimal upper bound for τ(a/q).

Lemma 1.8. We have
τ(
a

q
) � q1− 1

k .

for any a coprime to q.

Proof: By the Lemma 1.5 we can write

τ(
a

q
) = τ(

aqk−1
2

q1
)τ(

aqk−1
1

q2
)

being q1 the product of the primes dividing q with exponent greater than one
and also dividing k. By the Lemmata 1.6 and 1.7 we deduce that

τ(
aqk−1

1

q2
) � q

1− 1
k

2

and also

τ(
aqk−1

2

q1
) ≤ k2q

1− 1
k

1 .

2

Now, by using the previous Lemmata we are going to study for which
values a and q the sum τ(a/q) vanishes. This proposition completes Lemmata
4.6 and 4.7 in [CC2]:

Proposition 1.9. τ(a/q) = 0 if and only if there exists p prime such that
pδ ‖ q with (k, p− 1) = 1 and δ ≡ 1 (mod k).

Proof: By Lemma 1.5 we can write

τ(
a

q
) =

∏
pd‖q

τ(
ap
pd

)

with (ap, p) = 1. Thus we reduce the proof of the proposition to the case
q = pd. Besides, by Lemma 1.7 we only need to consider the case 1 ≤ d ≤ k,
since k ≥ δ + 2.
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If d = 1, as e(a/p) is the root of the irreducible polynomial xp−1 +xp−2 +
. . .+1 the unique possibility for τ(a/p) to be zero is that the homomorphism

Fp → Fp

n 7→ nk

will be also automorphism, an this happen only if (k, p− 1) = 1.
If 1 < d ≤ k and τ(a/pd) = 0 for some a, p coprime integers, by using the

automorphisms of the Galois group of Q(e(1/pd)) we deduce that

τ(a/pd) = 0 for every a, (a, p) = 1.

On the other hand

∑
(a,p)=1

τ(
a

pd
) =

pd∑
n=1

∑
(a,p)=1

e(
nka

pd
) = p2d−2,

contradiction. Hence τ(a/pd) 6= 0 whenever 1 < d ≤ k. 2

Let us see some special cases in which τm is very simple:

Lemma 1.10. Suppose p is a prime not dividing k and a an integer coprime
to p. Suppose also that j, d ∈ Z, j ≥ 0 , 1 ≤ d ≤ k and pj(k−1)+d−1 | m. Then

τm(
a

pjk+d
) = pj(k−1)+d−1.

Proof:

τm(
a

pjk+d
) =

pjk+d∑
u=1

e(
auk +mu

pjk+d
)

We can represent each residue modulo pjk+d as

u = Apjk+d−1 +B 1 ≤ A ≤ p, 1 ≤ B ≤ pjk+d−1

hence

τm(
a

pjk+d
) =

∑
B

e(
mB

pjk+d
)e(

aBk

pjk+d
)
∑
A

e(
kBk−1A

p
)

= p

pjk+d−2∑
C=1

e(
mC

pjk+d−1
)e(

apkCk

pjk+d
).
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If j = 0 this equals pd−1, and if j > 0 equals

pk−1τmp−k+1(
a

p(j−1)k+d
).

This allows us to prove the Lemma by induction. 2

For our subsequent study, in the third section, of the sums
∑

m≤M τm we
need to handle a special double sum.

Lemma 1.11. Let n ∈ N and

%n(q) =

q∑
m=1

|
q∑

a=1

τn(
a

q
)τm(

a

q
)|.

The function %n is multiplicative. Moreover, let q = pv with p a prime not
dividing k and v = jk + d for some positive j ∈ Z, 1 ≤ d ≤ k. We have

%n(p
v) =

{
2(k, p− 1)(p2v − p2v−j−1) if pv−j−1 - n

2(k, p− 1)(p2v − p2v−j−1) + p3v−j−1 otherwise.

Proof: By Lemma 1.5 we see that

%n(q) =

q∑
m=1

∏
pv‖q

|
pv∑
a=1

τn(
a

pv
)τm(

a

pv
)| =

∏
pv‖q

( pv∑
m=1

|
pv∑
a=1

τn(
a

pv
)τm(

a

pv
)|
)
,

which proves the multiplicativity of %n. On the other hand

%n(q) = q

q∑
m=1

|
∑

1≤c,d≤q
ck≡dk (mod q)

e(
nc−md

q
)|.

If q = pv we divide the sum into two parts %n(p
v) = S1 + S2 where

S1 = pv
∑

Ωk≡1 (mod pv)

pv∑
m=1

|
∑

1≤c≤pv

(c,p)=1

e(
(n− Ωm)c

pv
)|

= pv(k, p− 1)

pv∑
N=1

|
∑

1≤c≤pv

(c,p)=1

e(
Nc

pv
)|

= pv(k, p− 1)(φ(pv) + (p− 1)
φ(pjk+d)

p− 1
)

= 2(k, p− 1)φ(pv)pv
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and

S2 = pv
pv∑
m=1

|
∑

1≤c,d≤pv−1

ck≡dk (mod pv−k)

e(
nc−md

pv−1
)|.

Repeating this process j times, we arrive at

τn(p
v) = pv

[
2(k, p− 1)

( j∑
i=0

φ(pv−i)
)

+

pv∑
m=1

|
∑

1≤c,d≤pv−j−1

e(
nc−md

pv−j−1
)|
]
,

and this gives the result. 2

1.3 Regularity at the rationals

We are going to see that Poisson summation formula allows us to understand
quite well F (x) whenever

|x− a

q
| < q−k,

for some rational a/q, and helps us in order to understand the behaviour of
F in the range |x− a/q| < q−1−ε, ε > 0. By applying it there will appear the
sums τm studied in the previous section, as well as the zeta function defined
by

ζa/q(s) =
∞∑
n=1

e(
a

q
nk)n−s (1.16)

in the half plane <s > 1. By splitting it into the different residues modulo q
and using Poisson formula in arithmetic progressions we can write

ζa/q(s) =
τ

q
(

1∫
0

φ(x)x−s +
1

s− 1
) +

∑
m6=0

τm
q

∞∫
0

φ(x)x−se(−m
q
x)dx (1.17)

where φ is any function in C∞0 ((0,∞]) which takes the value 1 inside the
interval [1,∞], and inner integrals are understood as oscillatory integrals
(see [Hör]). Moreover this representation holds for every s ∈ C, providing
the meromorphic continuation of ζa/q(s). We see that ζa/q has a pole at s = 1
precisely when τ(a/q) 6= 0.

After applying Poisson formula to the function F near the rational point
a/q we shall have to deal with the Fourier transform of the distribution (see
[Hör])

g(x) =
e(xk)− 1− 2πixk

xα
I(0,∞)(x).

So we proceed to study it in the following
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Lemma 1.12. There exists a sequence (cj)
∞
j=0 of complex numbers depending

on α and k such that for λ > 1 and n ∈ N we have

ĝ(λ) = λα−1

n∑
j=2

ajλ
−jk + i1/2λ−

1
2
−α−1/2

k−1 e(−Cλ
k

k−1 )
n∑
j=0

cjλ
−j k

k−1 +On(λ
α−n−1)

with C = (1− 1/k)k−1/(k−1) and

aj = Γ(jk − α+ 1)(2πi)α−1+(1−k)j(j!)−1.

Moreover

ĝ(−λ) = λα−1

n∑
j=2

ajλ
−jk +O(λα−n).

Proof: We divide the integral into two parts

ĝ(λ) = I(ψ) + I(η),

where ψ ∈ C∞0 ([0,∞)), ψ(x) = 1 for 0 ≤ x ≤ 1, η = 1−ψ and I(f) = ĝf(λ).
Expanding uαg(u) in power series we have

I(ψ) =
n∑
j=2

(2πi)j

j!
Ikj−α(ψ) +

∞∫
0

un+1−αgn(u)ψ(u)e(−λu)du,

where gn(u) is an entire function and

Iβ(ψ) =
∞∫
0

xβψ(x)e(−λx)dx = (2πλ)−β−1
∞∫
0

xβe−ixdx− Iβ(η).

Integrating by parts we see that Iβ(η) �β,n λ
−n. By Cauchy’s theorem and

the definition of the Γ function we can calculate the first integral, obtaining

Iβ(ψ) = (2πiλ)−β−1Γ(β + 1) +O(λ−n).

Finally integrating by parts n+ 1− [α] times we get

∞∫
0

un+1−αgn(u)ψ(u)e(−λu)du� λα−n−1.

On the other hand, another time integrating by parts

I(η) =
∞∫
0

η(x)x−αe(xk − λx)dx+O(λ−n).
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Making the change x→ λ1/(k−1)x we arrive at

I(η) = λ−
α−1
k−1

∫
u(x)e(λ

k
k−1 (xk − x))dx+O(λ−n)

with u(x) = η(λ1/(k−1)x)x−α. Writing u as a sum of three functions of
C∞0 ((0,∞)) it is clear that we can substitute u in the integral by a func-
tion u0 ∈ C∞0 ((0,∞)) with support contained in the interval (1/2k, 2) and
u0 = u inside (1/k, 1), and in such a way that the change in the integral
is O(λ−n). Now, applying stationary phase (see Theorem 7.7.5 in [Hör]) we
have

I(η) = λ−
α−1
k−1

e(−Cλ
k

k−1 )

(−ik2Cλ
k

k−1 )1/2

∑
j≤n

c̃j(λ
k

k−1 )−j +O(λ−n−1)

where C = (1− 1/k)k−1/(k−1) and c̃j are real numbers only depending on α
and k. In particular c̃0 = u(k−1/(k−1)) = kα/(k−1).

In the same way we calculate ĝ(−λ), taking into account that in this case
ĝη(−λ) � λ−n, due to the non-vanishing of the derivative of xk − (−λ)x in
[0,∞).

2

When using this result in the proof of the following Lemma we shall need
to know that a certain sum converges. This will be assured by the inequality∑

m≤N

e(b(m+ θ)
k

k−1 ) � b
1
2N

1
2
+ 1

2(k−1) (1.18)

uniform in 0 ≤ θ ≤ 1 and b ≥ 1, which is deduced from van der Corput’s
lemma (see [GK]). Now we are going to see two results concerning the be-
haviour of F (a/q + h) − F (a/q) for h > 0. We get the equivalent ones for
h < 0 through the formula

F (a/q + h)− F (a/q) = F (−a/q − h)− F (−a/q). (1.19)

Proposition 1.13. Let x ∈ R. For any pair of coprime integer a, q we have

F (x) = F (
a

q
) + 2πiζa

q
(α− k)h+ A

τ

q
h

α−1
k + h

α−1
k

∑
m6=0

τm
q
ĝ
( m

qh1/k

)
where h = x− a/q > 0 and

A =
( i
2π

) 1−α
k

1

k
Γ(

1− α

k
). (1.20)
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Proof: Let φ ∈ C∞0 ((0,∞]) with φ = 1 in [1,∞). We write

F (x)− F (
a

q
) = lim

N→∞
SN

SN =
∑
n∈Z

φN(n)e(
ank

q
)
e(nkh)− 1

nα
.

with φN ∈ C∞0 ((0,∞)), φN(t) = φ(t) if 0 < t < N and φ
(j)
N (t) � N−j for

j ∈ N and t ≥ N . Applying Poisson formula in arithmetic progressions

SN =
∑
m∈Z

τm
q

∞∫
0

φN(t)t−α(e(htk)− 1)e(−m
q
t)dt

which we can express as

SN = DN +
τ

q

∞∫
0

φN(t)
e(htk)− 1

tα
+
∑
m6=0

h
α−1

k
τm
q

∞∫
0

φN(h−
1
k t)g(t)e(− m

qh1/k
t)dt

where
DN = 2πih

∑
m6=0

τm
q

∫
φN(t)tk−αe(−m

q
t)dt.

Lemma 1.12 and (1.18) allow to take the limit N → +∞. Appealing to
(1.17) we obtain

lim
N
DN = 2πihζa

q
(α− k)− 2πih

τ

q
(

1

α− k − 1
+

1∫
0

φ(t)tk−αdt).

Finally, for φ→ 1 and considering that

∞∫
0

t−α(e(tk)− 1)dt = A

the result is proven. 2

The following theorem is a direct consequence of the two previous results
(taking into account (1.18)).

Theorem 1.14. Let x ∈ R, a, q ∈ Z coprimes, 1 < α < k+1. If h = x−a/q,
then for 0 < h < q−k and n > α

F (x) = F (
a

q
)+h

α−1
k
Aτ

q
+

n∑
j=1

(2πih)jζa
q
(α−kj)+(qh)β

n∑
j=0

cjTj(qh
1
k )+O((qh

1
k )n)
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with

Tj(y) = y
jk

k−1

∞∑
m=1

τm
q1/2

e((my−1)
k

k−1 )m− 1
2
−β−j k

k−1

and
β = (α− 1/2)/(k − 1).

This theorem permits to measure the regularity of the function at any
rational.

Corollary 1.15. Let α, k and a/q as in the previous theorem. Then:

i) If τ 6= 0 then F ∈ C α−1
k (a/q) and F 6∈ Cδ(a/q) for δ > (α− 1)/k.

ii) If τ = 0 then F ∈ C
α−1/2

k−1 (a/q) and F 6∈ Cδ(a/q) for δ > α−1/2
k−1

.

iii) F is differentiable at a/q if and only if τ = 0 and α > k − 1/2. In
this case

F ′(
a

q
) = 2πiζa

q
(α− k).

Proof: By 1.14 we only have to demonstrate that F is not differentiable
at a/q when α = k − 1/2, τ = 0. This is due to the fact that T0 oscillates.
In order to prove it, we take m0 6= 0 such that τm0 6= 0 (it is always possible
because

∑q
m=0 τm = q). Then

2Y∫
Y

T0(y
−1)e(C(m0y)

k
k−1 )dy = q−

1
2 τm0m

− 1
2
−β

0 Y +O(1).

Hence limy→∞ T (y−1) does not exist. 2

We see that the smoothness of the function at a/q depends on the van-
ishing of the sum τ(a/q). This vanishing can be fully characterized in terms
of arithmetical properties of q. By the previous corollary and Proposition
1.9 we conclude:

Theorem 1.16. For any rational a/q, a, q coprime integers, we have

βF (x0) =
α− 1

k

if there exists a prime p such that pδ ‖ q, (k, p − 1) = 1 and δ ≡ 1 (mod k).
Otherwise

βF (x0) =
α− 1/2

k − 1
.
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As in Proposition 1.13, but in a simpler way, the following result can be
proved.

Proposition 1.17. Let h = x− a/q > 0 and 1 < α < k. Then

F (x) = F (
a

q
) + A

τ

q
h

α−1
k + q−1h

α−1
k

∑
m6=0

τmĝ0(
m

h1/kq
)

where g0(x) = x−α(e(xk)− 1).

Let us see that whenever h is small with respect to q−1, actually the term
Aq−1h(α−1)/k is the main one in F (a/q + h)− F (a/q).

Proposition 1.18. Let k/2 < α < k and h > 0. Then

F (x)− F (
a

q
) =

Aτ

q
h

α−1
k +O(h

α
k q

1
2
+ε)

for any ε > 0.

Proof: By Lemma 1.12 we get ĝ0(λ) � λ−δ with δ > 1, and applying
Proposition 1.13 we arrive at

F (x)− F (
a

q
) =

Aτ

q
h

α−1
k +

h
α−1

k

q
O(
∑
m6=0

|τm|min(1, (
|m|
h1/kq

)−δ))

From Riemann hypothesis for curves over finite fields it can be deduced (see
[Vau] ) the bound

τm � (m, q)q
1
2
+ε,

for any ε > 0, whence the proposition follows. 2

From this proposition we could proved Jaffard’s result regarding the reg-
ularity of the function F in the case k = 2 (see (1.6)). However it is not
true anymore for any k ≥ 3. In this case is not enough to bound the sum∑

m≤M τm by controlling the size of τm. In the following section we are going
to prove hat in that sum there is a lot of cancelation, at least for most of the
rationals a/q.

1.4 Incomplete sums

As we have just seen, the term τ(a/q) determines in part the behaviour of
the function F . Whenever q is prime, this sum behaves in a complicated
way. We are going to show that for most of the residues a the size of τ(a/q)
is near q1/2 except in the case (k, q − 1) = 1, in which τ vanishes.
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Proposition 1.19. Let 1 ≤ N ≤ q, q prime and l = (k, q − 1) > 1. Then∑
a≤N

|τ(a
q
)|2 = l(q − 1)N +O(l2q3/2 log q).

Proof: We start completing the sum:∑
a≤N

|τ(a
q
)|2 =

q∑
a=1

|τ(a
q
)|2
∑
s≤N

1

q

q∑
r=1

e(
(a− s)r

q
)

=
1

q

q∑
r=1

∑
s≤N

e(
−sr
q

)

q∑
a=1

e(
ra

q
)|τ(a

q
)|2.

By using (1.15) follows that

q∑
a=1

|τ(a
q
)|2 =

∑
χ,ψ∈G

τχτψ

q∑
a=1

χ(a)ψ(a) = q(q − 1)l

and for any r 6= q

q∑
a=1

e(
ra

q
)|τ(a

q
)|2 =

∑
χ,ψ∈G

τχτψ

q∑
a=1

χ(a)ψ(a)e(
ra

q
)

=
∑
χ,ψ∈G

χ(r)ψ(r)τχτψτχψ

Therefore

|
∑
a≤N

|τ(a
q
)|2 −N(q − 1)l| ≤ l2q1/2

q−1∑
r=1

|
∑
s≤N

e(
−sr
q

)|

≤ l2q1/2

q−1∑
r=1

| sin(π
r

q
)|−1

and the result follows from the equivalence sinx ∼ x. 2

As an outcome of this proposition and Lemma 1.6 we have the following

Proposition 1.20. Let I ⊂ R be a closed interval with |I| < 1. For any
ε > 0 there exists C = C(ε, k) > 0 such that for every prime q > C|I|−2−ε

holding (q − 1, k) 6= 1 we have

|{1 ≤ a ≤ q :
a

q
∈ I, |τ(a

q
)| ≥ q1/2

2
}| ≥ q

2k2
|I|.
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We have already understood (see 1.17) that the sums
∑

m τmf(m/Y ) have
a great importance in order to understand the irregularity of the function F .
We are going to see that in that sums there is much cancelation for most
of the residues a. In the proof of this fact we shall use a Large Sieve-Type
inequality, widely used in number theory. It is a generalization of Bessel’s
inequality (see [Dav2])

Lemma 1.21. Let u a vector in an euclidean space. For any set of l vectors
v1, v2, . . . , vl in this space we have the inequality

l∑
i=1

|〈u, vi〉|2 ≤

(
max
1≤i≤l

∑
j≤l

|〈vi, vj〉|

)
‖u‖2.

We proceed to prove the main result of this section.

Proposition 1.22. Let f : [0,∞] → C continuous function such that its
Mellin transform is in L1 and represents f through the inversion formula in
the line <s = 1/2. Defining

S∗a/q(x) = sup
Y ∈[x,2x]

|
q∑

m=1

τm(
a

q
)f(

m

Y
)|

we have
1

q

q∑
a=1

|S∗a/q(x)|2 � xqkω(q)d(q)2 log q.

Proof: We write

q∑
m=1

τm(
a

q
)f(

m

Y
) =

∑
q0|q

q∑
m=1

(m,q)=q0

τm(
a

q
)f(

m

Y
)

and by Cauchy’s inequality

q∑
a=1

|S∗a/q(x)|2 ≤ d(q)2 max
q0|q

q∑
a=1

|S∗a/q(x, q0)|2

with

S∗a/q(x, q0) = sup
Y ∈[x,2x]

|
q∑

m=1
(m,q)=q0

τm(
a

q
)f(

m

Y
)|.
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Let

B =
k⋃
d=1

∞⋃
j=0

{(jk + d, n) ∈ N2 : n ≥ jk + d− j − 1},

and A its complementary set in N2. Let q0 = qAqBqC and q = q0lAlBlC ,
with qC lC | k, (qAlA, qBlB) = (qAlA, k) = (qBlB, k) = 1, with qAlA =

∏
p p

vp ,
qA =

∏
p p

up with (vp, up) ∈ A for any p | qAlA y qBlB =
∏

p p
mp , qB =

∏
p p

np

with (mp, np) ∈ B for every p | qBlB.
Then

τm(
a

q
) = τm(

a(qBlB)k−1

∆
)τm(

a∆k−1

qBlB
) = τm(

a(qBlB)k−1

∆
)η(qBlB)

with ∆ = qAlAqC lC and η the multiplicative function satisfying η(pv) =
pv−j−1. In this way we have

q∑
a=1

|S∗a/q(x, q0)|2 ≤ η(qBlB)2q∆−1 ‖w∗‖2 (1.21)

where ‖w∗‖2 =
∑∆

a=1 |w∗(a)|2, w∗(a) = supY ∈[x,2x] |wY (a)| and

wY (a) =

qq−1
0∑

λ=1
(λ,qq−1

0 )=1

τλq0(
a

∆
)f(

λq0
Y

).

We can write
‖w∗‖ = 〈w∗, g〉

where g a vector with ‖g‖ = 1. Besides, as f is continuous, for each a we
have w∗(a) = |wY (a)(a)| for a certain Y (a). Thus

‖w∗‖ =
∆∑
a=1

wY (a)(a)g(a).

By using Mellin inversion formula

f(u) =
1

2πi

1/2+i∞∫
1/2−i∞

u−sMf (s)ds

we can write

wY (a)(a) =
1

2πi

1/2+i∞∫
1/2−i∞

Mf (s)

qq−1
0∑

λ=1
(λ,qq−1

0 )=1

Y (a)s

(λq0)s
τλq0(

a

∆
)ds.
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Therefore

‖w∗‖ =
1

2πi

1/2+i∞∫
1/2−i∞

Mf (s)

qq−1
0∑

λ=1
(λ,qq−1

0 )=1

Ts(λ)(λq0)
−sds, (1.22)

where

Ts(λ) =
∆∑
a=1

Y (a)sg(a)τλq0(
a

∆
).

But by Cauchy’s inequality

|
qq−1

0∑
λ=1

(λ,qq−1
0 )=1

Ts(λ)(λq0)
−s|2 ≤ q−1

0 log q

qq−1
0∑

λ=1
(λ,qq−1

0 )=1

|Ts(λ)|2

Now we apply Lemma 1.21 to deduce that

qq−1
0∑

λ=1
(λ,qq−1

0 )=1

|Ts(λ)|2 ≤ x ‖g‖2 max
(n,q)=q0

qq−1
0∑

λ=1
(λ,qq−1

0 )=1

|
∆∑
a=1

τn(
a

∆
)τλq0(

a

∆
)|.

But
qq−1

0∑
λ=1

(λ,qq−1
0 )=1

|
∆∑
a=1

τn(
a

∆
)τλq0(

a

∆
)| ≤ lB%n(∆)

hence

|
qq−1

0∑
λ=1

(λ,qq−1
0 )=1

Ts(λ)(λq0)
−s|2 ≤ xq−1

0 (log q)lB%n(∆). (1.23)

As (n, q) = q0, by Lemma 1.11 we have

%n(∆) = %n(qC lC)%n(qAlA) ≤ (qC lC)4kω(qAlA)(qAlA)2 � kω(q)(qAlA)2.

So substituting into (1.22) we conclude

‖w∗‖2 � xq−1
0 (log q)lBk

ω(q)(qAlA)2

and by (1.21) we get

q∑
a=1

|S∗a/q(x, q0)|2 � η(qBlB)2q∆−1(log q)xq−1
0 lBk

ω(q)(qAlA)2.
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It always holds η(qBlB) ≤ qB, hence

q∑
a=1

|S∗a/q(x, q0)|2 � xq2
Bl

2
BqAl

2
Ak

ω(q)(log q) ≤ xq2(log q)kω(q)

and the result follows. 2

In a similar way we demonstrate the following statement:

Proposition 1.23. Let D ∈ Z, D ≥ 1, 1/2 ≤ c < 1 and f : [0,∞] → C a
continuous function such that its Mellin transform is in L1 and represents f
through the inversion formula in the line <s = c. Defining

S∗a/q(x) = sup
Y ∈[x,2x]

|
q∑

m=1

τm(
a

q
)f(

m+Dq

Y
)|

we have
1

q

q∑
a=1

|S∗a/q(x)|2 � D−2cxqkω(q)d(q)2.

Proof: Proceeding as in the proof of Proposition 1.22, but using the
Mellin inversion formula in <s = c we arrive at

‖w∗‖ =
1

2πi

c+i∞∫
c−i∞

Mf (s)

qq−1
0∑

λ=1
(λ,qq−1

0 )=1

Ts(λ)(λq0 +Dq)−sds, (1.24)

which is the substitute of equation (1.22). Now when applying Cauchy’s
inequality we obtain

|
qq−1

0∑
λ=1

(λ,qq−1
0 )=1

Ts(λ)(λq0 +Dq)−s|2 ≤ q−1
0 q(Dq)−2c

qq−1
0∑

λ=1
(λ,qq−1

0 )=1

|Ts(λ)|2

qq−1
0∑

λ=1
(λ,qq−1

0 )=1

|Ts(λ)|2 ≤ x2clB%n(∆).

Since x ≤ q we infer that q−1
0 q(Dq)−2cx2c ≤ D−2cq−1

0 x and thus

|
qq−1

0∑
λ=1

(λ,qq−1
0 )=1

Ts(λ)(λq0 +Dq)−s|2 ≤ D−2cq−1
0 xlB%n(∆),

that substitutes equation (1.23) and proves the result by ending as in the
proof of Proposition 1.22. 2
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Corollary 1.24. Let J ∈ N. Let f : [0,∞] → C be a continuous function
such that its Mellin transform is in L1 and represents f through the inversion
formula in the line <s = c for any 1/2 ≤ c < 1. Defining

S∗a/q(x) = sup
Y ∈[x,2x]

|
Jq∑
m=1

τm(
a

q
)f(

m

Y
)|

we have
1

q

q∑
a=1

|S∗a/q(x)|2 � xqkω(q)d(q)2 log(Jq).

Proof: By Cauchy’s inequality

|S∗a/q(x)|2 ≤ sup
Y ∈[x,2x]

(|
q∑

m=1

τm(
a

q
)f(

m

Y
)|2 + (log J) max

1≤L≤J
|

2Lq∑
m=Lq

τm(
a

q
)f(

m

Y
)|2).

Also

|
2Lq∑
m=Lq

τm(
a

q
)f(

m

Y
)|2 ≤ L

2L∑
D=L

|
q∑

m=1

τm(
a

q
)f(

m+Dq

Y
)|2.

Thus, by using Propositions 1.22 and 1.23 we deduce

1

q

q∑
a=1

|S∗a/q(x)|2 � xqkω(q)d(q)2(log(q) + log(J)J2(1−c)),

and choosing c = 1− (log J)−1 the corollary is proved. 2

In order to apply this result to the functions ĝ and ĝ0 of the previous
section, first we need to handle its Mellin transform. For this purpose we
shall use these two lemmata:

Lemma 1.25. Let 0 < c < 1, f ∈ L1([0,∞]), f(u)u−c ∈ L1([0,∞]). Then

M bf (s) = (2πi)−sΓ(s)Mf (1− s)

on the line <s = c.

Proof: For any L > 0 we have

L∫
0

f̂(x)xs−1dx =
∞∫
0

f(u)
L∫
0

e(−xu)xs−1dx =
∞∫
0

f(u)u−sdu
Lu∫
0

e(−x)xs−1dx.
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Since the inner integral is uniformly bounded in the region L ≥ 0, by the
dominated convergence theorem we have

∞∫
0

f̂(x)xs−1dx =
∞∫
0

e(−x)xs−1dx
∞∫
0

f(u)u−sdu.

But deforming the integration domain into the complex plane we notice that

∞∫
0

e(−x)xs−1dx = (2πi)−sΓ(s).

2

Lemma 1.26. Let 0 < c < 1, f ∈ L1([0,∞]), f(u)u−c ∈ L1([0,∞]). Then
we can write

f̂(x) =
1

2πi

c+i∞∫
c−i∞

M bf (s)x−sds
with M bf (s) = (2πi)−sΓ(s)Mf (1− s).

Proof: Let ρ ∈ C∞0 (R) with
∫
ρ = 1. We define ρM(u) = Mρ(Mu). By

Mellin inversion formula

f̂(x) = lim
M→∞

1

2πi

c+i∞∫
c−i∞

M bf∗ρM
(s)x−sds.

Since f ∈ L1 and ρ ∈ C∞0 then f̂ ∗ ρM(x) = (fρ̌M)b(x). Applying Lemma
1.25 we deduce that

M bf∗ρM
(s) = (2πi)−sΓ(s)Mfρ̌M

(1− s).

Moreover ρ̌M(u) = ρ̂(−uM−1) and

∞∫
0

|u−c−itf(u)ρ̂(− u

M
)|du�

∞∫
0

|f(u)|u−cdu <∞,

whence by dominated convergence we complete the proof, due to the decay
of Γ(s). 2

Corollary 1.24 allow us to understand the behaviour of the function F
near most of the rational numbers.
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Proposition 1.27. Let q ∈ N, 0 < H < 1 and δ > 1. Let 1 < α1 < k and
k + 1/2 < α2 < k. There exists a set B = B(δ, q,H) contained in

{a ∈ Z : 1 ≤ a ≤ q, (a, q) = 1}

with |B| � qδ−2d(q)2kω(q) log(qH−1), such that for any a 6∈ B and every
H < h < 2H we have

Fα1(
a

q
+ h)− Fα1(

a

q
) = A

τ

q
h

α1−1
k +O(δh

α1−1/2
k ) (1.25)

and

Fα2(
a

q
+ h)− Fα2(

a

q
) = A

τ

q
h

α2−1
k + 2πiζa/q(α− k)h+O(δh

α2−1/2
k ). (1.26)

Proof: Let J = (H−1q)(k−1)/(α1−1), and B the set of a such that

sup
Y ∈[H1/kq,2H1/kq]

|
∑

1≤|m|≤qJ

τm(
a

q
)ĝ0(

m

Y
)|+ |

∑
1≤|m|≤qJ

τm(
a

q
)ĝ(

m

Y
)| ≥ δ(H

1
k q)

1
2 q

1
2 .

with g0(x) = x−α1(e(xk)−1) and g(x) = x−α2(e(xk)−1−2πixk). By Lemma
1.26 it is plain that we can apply Corollary 1.24 to the functions ĝ0(x) and
ĝ0(−x). In the case of g we split this function as

g(x) = g(x)I[0,1](x) + x−α2(e(xk)− 1)I(1,∞)(x)− η(x),

where η(x) = 2πixk−α2I(1,∞)(x). Lemma 1.26 can be applied to the first two
functions. Moreover writing

η̂(y) = lim
N→∞

η̂N(y)

with ηN = ηI[0,N ] and using Lemma 1.26 for ηN we see that it is possible to
apply Corollary 1.24 to ĝ(x) and to ĝ(−x). Thus

|B| � qδ−2d(q)2kω(q) log(qH−1).

If a 6∈ B, by appealing to Propositions 1.13 and 1.17 and to the inequality
(1.18) we prove (1.26) and (1.25) respectively. 2

1.5 Wavelets

As in Hardy’s work [Har], Poisson’s integral has been frequently employed in
the study of the global regularity of functions (see [Ste]). Certain generaliza-
tions of this tools were already known by A. P. Calderón [Cal] but were not
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rediscovered until twenty years later, with the name of wavelet transform,
by A. Grossmann and J. Morlet [GM]. Later this was used in order to build
orthonormal basis of smooth well-localized functions for the space L2(Rn)
(see [Mey, HW]).

This transform has proven to be a convenient tool for the study of the
local regularity of functions [JM]. We shall use it in order to find out the
precise smoothness of the function F , although not in a direct way as Jaffard
does in [Jaf1] but to extend results when varying α.

We define wavelet as a function ϕ : R → C differentiable and with some
decay

|ϕ(t)|+ |ϕ′(t)| = O(
1

1 + |t|1+δ
) for some δ > 0 (1.27)

and oscillation
∞∫
−∞

ϕ(t)dt = 0. (1.28)

From it we can build up a family of wavelets

1

a
ϕ(
t− b

a
) a > 0, b ∈ R

that are going to be used to express a lot of different functions. For that
we consider the continuous wavelet transform of a function f ∈ L∞(R) with
respect to ϕ

T (b, a) =
+∞∫
−∞

f(t)ϕ(
t− b

a
)
dt

a
. (1.29)

The function f can be recovered from the transform T : we choose a function
g such that g(t) log(2 + |t|) ∈ L1(R), a−1ϕ̂(a)ĝ(a) ∈ L1(R) and

∞∫
0

ϕ̂(a)ĝ(a)
da

a
= 1 if suppϕ ∩ (0,∞) 6= ∅ (1.30)

∞∫
0

ϕ̂(−a)ĝ(−a)da
a

= 1 if suppϕ ∩ (−∞, 0) 6= ∅. (1.31)

Any function g holding this requirements is called reconstruction wavelet for
ϕ. There always exists such a function, and we can even take g ∈ C∞0 (R)
which is what we do throughout. We have (see [HT]) the following inversion
formula.

Theorem 1.28. Let f be a bounded and weakly oscillating function around
0, which means that

lim
u→∞

1

2u

t+u∫
t−u

f(y)dy = 0 uniformly in t.



1.5. WAVELETS 33

Then

f(t) = lim
ε→0
ρ→∞

ρ∫
ε

da

a

+∞∫
−∞

T (b, a)
1

a
g(
t− b

a
)db.

for each t where f is continuous.

In order to study the local regularity until exponent n ∈ N we shall
require tnϕ(t) ∈ L1(R) and moreover that

∞∫
−∞

tmϕ(t)dt = 0 m = 0, 1, . . . , n− 1 (1.32)

the first n moments vanish (is an “atom ”). In this way the local regularity
of f can be characterized by the decay of the transform T (see [HT], [Jaf1]):

Theorem 1.29. Let f be a bounded function satisfying

f ∈ Cβ(x0) β ∈ (0, n)

for every x0 ∈ R. Then

T (b, a) � aβ(1 +
|b− x0|

a
)β,

where T is the transform of f with respect to a wavelet holding (1.32).

Proof: Since f ∈ Cβ(x0) there exists a polynomial p of degree n−1 such
that

f(x)− p(x− x0) � |x− x0|β. (1.33)

By 1.29 and (1.32) we have

|T (b, a)| = |
∞∫
−∞

(f(x)− p(x− x0))ψ(
x− b

a
)
dx

a
|,

and by (1.33)

T (b, a) �
∞∫
−∞

|x− b|β|ψ(
x− b

a
)|dx
a

+ |b− x0|β
∞∫
−∞

|ψ(
x− b

a
)|dx
a

whence we deduce the result, because tnψ(t) ∈ L1. 2

Theorem 1.30. Let f be a bounded weakly oscillating function and f ∈
Cγ(R) for some γ > 0. Let β′ < β and β ∈ (0, n), β 6∈ Z such that

T (b, a) � aβ(1 +
|b− x0|

a
)β

′
, (1.34)
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with T the transform of f with respect to a wavelet satisfying (1.32). Then

f ∈ Cβ(x0).

Besides, if β > 1 we can express the derivative f at x0 as

f ′(x0) =
∞∫
0

da

a

∞∫
0

T (b, a)g′(
x0 − b

a
)
db

a2

Proof: By Theorem 1.28 we have

f(x) =
∞∫
0

ω(a, x)
da

a

with

ω(a, x) =
∞∫
−∞

T (b, a)g(
x− b

a
)
db

a
.

From inequality (1.34) we deduce that

ω(a, x) � aβ+aβ−β
′|x−x0|β

′
+aβ

∞∫
−∞

|b− x

a
|β′|g(x− b

a
)|db
a
� aβ(1+

|x− x0|
a

)β
′

and in the same way for each j ≥ 0 we have( ∂
∂x

)j
ω(a, x) = a−j

∞∫
−∞

T (b, a)g(j)(
x− b

a
)
db

a
� aβ−j(1 +

|x− x0|
a

)β
′
. (1.35)

Therefore defining

p(t) =
m−1∑
j=0

tj

j!

∞∫
0

( ∂
∂x

)j
ω(a, x0)

da

a
=

∞∫
0

υ(a, t)
da

a

where m is the integer satisfying m− 1 < β < m, we have

f(x)− p(x− x0) =
∞∫
0

(ω(a, x)− υ(a, x− x0))
da

a
,

hence by (1.35) and Taylor’s formula we see that up to a constant f(x) −
p(x− x0) is bounded by

|x− x0|β
′
|x−x0|∫

0

aβ−β
′ da

a
+

m−1∑
j=0

|x− x0|j
|x−x0|∫

0

aβ−j
da

a
+ |x− x0|m

∞∫
|x−x0|

aβ−m
da

a

and then
f(x)− p(x− x0) � |x− x0|β.

2

We therefore arrive at the following theorem:
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Theorem 1.31. Let f bounded, f ∈ Cγ(R) for some γ > 0 and 0 < βf (x0) <
n. Then

βf (x0) = sup{β ∈ R : T (x0 + b, a) = O((a+ |b|)β)}.

Let us apply this characterization of regularity to our family of functions

F (x) = Fα(x) =
∞∑
n=1

n−αe(nkx).

For this purpose we consider a suitable wavelet.

Lemma 1.32. Let r > 0 and

ϕr(t) =
1

(2π)r+1

Γ(1 + r)

(1 + it)r+1
.

If T is the wavelet transform of the function

f(x) =
∞∑
m=1

ame(mx),

with
∑∞

m=1 |am| <∞, with respect to ϕr then

T (b, a) = arθ(b+ ia)

where

θ(z) =
∞∑
n=1

amm
re(mz).

Proof:

T (b, a) =
∞∑
m=1

ame(mb)ϕ̂r(−ma). (1.36)

We consider the function

Gr(x) = e−2πxxrI[0,∞](x).

By deforming the integration domain into C we realize

Ĝr(u) = ϕr(u)

and by the wavelet inversion formula

ϕ̂r(−x) = Gr(x).

Substituting this formula in (1.36) we finish the proof. 2

By Theorem 1.31 and Lemma 1.32 we get a relation between the regularity
of Fα,k when varying α:
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Corollary 1.33. Let x0 ∈ R, 1 < α and v > 0. Then

βFα+v,k
(x0) ≥ βFα,k

(x0) +
v

k
.

Proof: Let Tα,k be the transform of Fα,k with respect to ϕd+α/k, for any
d > 0. We have

Tα,k(b, a) = a
α
k
+dθd(b+ ia)

where θd(z) =
∑∞

n=1 n
dke(nkz), whence

Tα+v,k(b, a) = a
v
kTα,k(b, a).

By Theorem 1.29 we deduce that if Fα,k ∈ Cβ(x0) then

Tα+v,k(b, a) � a
v
k
+β(1 +

|b− x0|
a

)β

and by Theorem 1.30 we obtain the corollary. 2

We have just observed that wavelet transform can be applied to deal with
the smoothness of functions. Let us see that we can take advantage of it in
order to determine the fractal dimension of graphs of continuous functions.

Let E ⊂ R2 be a bounded set and Nh(E) the minimum number of sets
with diameter not larger than h that cover E. Then we define the fractal
dimension or Minkowski dimension of E as

dimM(E) = lim
h→0

logNh(E)

log h−1

whenever the limit exists. Anyway we can consider upper dimension dimM

and lower dimension dimM given by the upper and lower limits respectively.
Let f : [0, 1] → C be continuous. Defining Γf = {(x, f(x)) ∈ R2 : 0 ≤ x ≤ 1}
we have

logNh(Γf ) ∼ log(h−1(Vh(f) + 1))

where

Vh(φ) = sup{
∑
j<h−1

|φ(xj)− φ(yj)| : xj, yj ∈ Ij,∀j < h−1}

and
Ij = [(j − 1)h, jh] j ∈ N.

We are going to learn in which way Vh(f) is related to Sh(T, a) where T is
the wavelet transform of f and

Sh(T, a) = sup{
∑
j<h−1

|T (bj, a)| : bj ∈ Ij ∀j < h−1}.
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We have

lim
h→0

hSh(T, a) =
1∫
0

|T (b, a)|db

and since tSt(T, a) is decreasing in t we conclude

1∫
0

|T (b, a)|db ≤ tSt(T, a) for any t > 0. (1.37)

Lemma 1.34. Let f : R → C be a periodic function of period one. If T (b, a)
is its wavelet transform with respect to the wavelet ϕ satisfying

ϕ(t) = O(t−2−ε),

then

Sh(T, a) � Vh(f)

uniformly in a < h.

Proof: We have

T (b, a) =
+∞∫
−∞

1

a
ϕ(
u

a
)(f(b+ u)− f(b)) du

hence ∑
j<h−1

|T (bj, a)| ≤
+∞∫
−∞

1

a
|ϕ(

u

a
)|
∑
j<h−1

|f(bj + u)− f(bj)| du

But ∑
j<h−1

|f(bj + u)− f(bj)| � Vh(f),

and therefore ∑
j<h−1

|T (bj, a)| � Vh(f).

2

Lemma 1.35. Let f be a periodic function of period 1, with f ∈ Cγ(R) for
some γ > 0. If T (b, a) is its wavelet transform, then

Vh(f) � (log h−1)
(
sup
a<h

Sh(T, a) + sup
h<a<1

Sa(T, a)
)
.
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Proof: We can assume γ to be small enough. Then

T (b, a) � aγ a→ 0.

Therefore by Theorem 1.28∑
j≤h−1

|f(xj)− f(yj)| ≤
h∫
ε

I1(a)
da

a
+

ρ∫
h

I2(a)
da

a
+O(h−1εγ),

where

I1(a) =
∞∫
−∞

|g(u
a
)|1
a

∑
j<h−1

(|T (xj − u, a)|+ |T (yj − u, a)|) du,

I2(a) =
∞∫
−∞

|T (b, a)|1
a

∑
j<h−1

|g(xj − b

a
)− g(

yj − b

a
)| db.

We have I1(a) � Sh(T, a). By the periodicity of T and the Mean Value
Theorem we infer

I2(a) �
h

a

1∫
0

|T (b, a)|db
a

sup{
∑
j∈Z

|g′(ξj
a

)| : h ≤ |ξj+1 − ξj| ≤ 2h∀j ∈ Z}

hence

I2(a) �
1∫
0

|T (b, a)|db
a
.

Taking into account (1.37) follows that

1∫
0

|T (b, a)|db
a
≤ Sa(T, a), a < 1

and finally taking ε = h−1/γ we conclude the proof. 2

As outcome of the two last lemmata we deduce:

Proposition 1.36. Let f ∈ Cγ(R), |ϕ(t)| � (1 + |t|)−2−ε and

L(h) = sup
a≤h

Sh(T, a).

Then

dimM(Γf ) = lim
h→0

log
(
h−1(L(h) + 1)

)
log h−1

if the limit exists. Moreover the limit exists whenever dimM(Γf ) does.
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In [CC2] it is calculated the fractal dimension of the graph Γ in the
interval [0, 1] of the function

∞∑
n=1

cne(n
kx)

nα
where 0 < limcn ≤ limcn <∞

for any α > (k + 1)/2. In fact this proves that the bound for the lower
dimension

dimM(Γ) ≥ 2 +
1

2k
− α

k
holds in the whole range α > 1. We are going to extend the calculation of
this dimension, although we write the result only in the case cn = 1. Inside
the proof we shall use a Large Sieve inequality (see [Dav2]) different from
Lemma 1.21.

Lemma 1.37. Let S : [0, 1] → R be a function with continuous derivative.
If x1, x2, . . . , xR are h-spaced points, then

R∑
j=1

|S(xj)|2 ≤
1

h

1∫
0

|S(x)|2dx+ (
1∫
0

|S(x)|2dx)1/2(
1∫
0

|S ′(x)|2dx)1/2.

We shall also use, as it was done in [CC2] to prove the lower dimension,
that

(
1∫
0

|
∑
n≤N

cne(n
kx)|4 dx)1/4 � N

1
2
+ε. (1.38)

This inequality is deduced from the fact r(n) � nε, where r(n) is the number
of representations of n as a sum of two k-powers, because if n = ak + bk then
a+b divide n when k is odd and ak/2+ibk/2 divide n in the ring Z[i] whenever
k is even.

If we had the same result for the norm in L2k then we would get the
fractal dimension in the range α > 1. In general, bounds for different norms
provide upper bounds for the fractal dimension (see [CU1]). By using (1.38)
we arrive at the following statement:

Proposition 1.38. Suppose α > (k + 2)/4. Then

dimM(ΓF ) = max(1, 2 +
1

2k
− α

k
).

Proof: The wavelet transform of F with respect to ϕ1+α/k is T (b, a) =
a1+α/kθ(b+ ia) where

θ(b+ ia) =
∞∑
n=1

nke(nk(b+ ia)).
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We divide the sum into dyadic intervals

θ(b+ ia) =
∞∑
l=0

P2l(b),

with
PM(b) =

∑
M≤n<2M

nke−2πnkae(nkb).

By Hölder’s inequality∑
j<h−1

|PM(bj)| � h−
3
4 (
∑
j<h−1

|PM(bj)|4)1/4.

Applying Lemma 1.37 to PM(x)2 and inequality (1.38) we realize that when-
ever bj are h-spaced∑

j<h−1

|PM(bj)|4 �M4k+ε(h−1 +Mk)e−M
kaM2.

Then for a < h we have

Sh(T, a) � a
α
k h−

3
4 (a−1− 2

k )
1
4
+ε = h−

3
4a

α
k
− 1

4
− 1

2k
−ε,

and since α > (k + 2)/4 we infer

sup
a<h

Sh(T, a) � h−1− 1
2k

+α
k
−ε.

Appealing to Lemma 1.35 is enough to conclude. 2

The previous proposition could have been demonstrated in much the same
way without the use of wavelets. But this tool provides a relation between
the dimensions of the graphs of the functions Fα,k:

Proposition 1.39. Let α2 > α1 > 1. Then

dimΓFα2
≤ dimΓFα1

− α2 − α1

k
.

Proof: If T1 and T2 are the wavelet transforms of Fα1 and Fα2 with
respect to ϕ1+α1/k and ϕ1+α2/k respectively, then

T2(b, a) = a
α2−α1

k T1(b, a)

hence
Sh(T2, a) = a

α2−α1
k Sh(T1, a)

and taking the supremum on a < h we deduce the result. 2
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1.6 Regularity at the irrationals

We say that f : R → C is a multifractal function whenever the associated
function

dH(β) = dimH{x ∈ R : βf (x) = β}

is positive for more than one point.
Until now we have only studied the smoothness of the function near the

rationals, hence we cannot say that Fα,k is a multifractal function. Through-
out this section we shall see that, as in the case k = 2, any function Fα,k
is multifractal and in fact its regularity at any point depends on how this
point is approached by the rationals. The main difference between the cases
k = 2 and k > 2 is that in the former the irrationals always have the same
kind of irregularity whereas in the latter there are infinitely many possible
behaviours.

We are going to start obtaining upper and lower bounds for the Hölder
exponent at any point. For this aim we recall the following result on the
control of trigonometric sums (see [Vau]).

Lemma 1.40. (Weyl’s inequality). If P polynomial of degree k with main
coefficient A, and a/q is an irreducible fraction such that

|A− a

q
| ≤ q−2,

then ∑
n≤N

e(P (n)) � (Nq−1/K +N1−1/K +N1−k/Kq1/K)N ε

for each ε > 0 with K = 2k−1.

This is the upper bound we get for the regularity at a point x0, which
depends on which space Er is that point.

Proposition 1.41. For any point x of Er we have

βF (x) ≥ α− 1

k
+ 21−k min(

1

k
,

1

2(r − 1)
).

Proof: By Mean Value Theorem

F (x+ h)− F (x+
h

2
) � h|

∑
n≤h−1/k

2πink−αe(nkξ1)|+ |
∑

n>h−1/k

n−αe(nkξ2)|

(1.39)
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for certain x+h/2 ≤ ξ1, ξ2 ≤ x+h. We consider the consecutive convergents
an/qn and an−1/qn−1 of x such that

q−rnn = |x− an
qn
| ≤ |h| ≤ |x− an−1

qn−1

| = q
−rn−1

n−1 .

Since

|an
qn
− an−1

qn−1

| = 1

qnqn−1

and the convergents are on different sides of x we see that

1

2
q
rn−1−1
n−1 ≤ qn ≤ q

rn−1−1
n−1 . (1.40)

There are two cases: the first is when h satisfies

q−rnn ≤ |h| ≤ q−2
n

which can be transformed into

h−
1

rn ≤ qn ≤ h−
1
2 .

In this case by dividing the sums in (1.39) into dyadic intervals and summing
by parts we can apply Lemma 1.40 with an/qn approximating ξj, j = 1, 2,
obtaining in that way

F (x+ h)− F (x+
h

2
) � h

α−1
k (h

1
kK + h

1
rnK + h(1− 1

2
) 1

K ).

The second case is when h is near an−1/qn−1, namely

q−2
n ≤ |h| ≤ q

−rn−1

n−1 ,

which by (1.40) can be transformed into

h
− 1

2rn−1−2 � qn−1 ≤ h
− 1

rn−1 .

Proceeding as in the previous case, but using as approximation the rational
an−1/qn−1, we obtain

F (x+ h)− F (x+
h

2
) � h

α−1
k (h

1
kK + h

1
(2rn−1−2)K + h

(1− 1
rn−1

) 1
K ).

Thus, taking the maximum of both of them we arrive at

F (x+ h)− F (x+
h

2
) � h

α−1
k (h

1
kK + h

1
(2rn−1−2)K + h

1
rnK + h

(1− 1
rn−1

) 1
K ).
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Taking into account that lim supn rn = r and that

F (x+ h)− F (x) =
∞∑
j=0

(
F (x+ h2−j)− F (x+ h2−j−1)

)
we conclude the proof. 2

We can also see that the function cannot be very smooth at any point.

Proposition 1.42. Let α < k − 1. For any x we have

βF (x) ≤ α

k − 1
.

Proof: We are going to prove that

F (x+ h)− F (x) = Ω(|h|
α

k−1 | log |h||−2).

Consider Féjer’s kernel

fM(x) =
∑
|n|≤M

(1− |n|
M

)e(nx) =
1

M

(sin(πMx)

sin(πx)

)2
withM = Nk−1, N > 1.

Note that for n 6= N we have |Nk − nk| ≥ Nk − (N − 1)k > M , hence

1/2∫
−1/2

e(Nkt)fM(t)(F (x− t)− F (x))dt = N−αe(Nkx).

If |F (x− t)−F (x)| = O(tα/(k−1)(log |t|)−2), then the previous integral would

beO(
∫
|t|α/(k−1)(log |t|)−2|fM(t)|dt). Dividing it into dyadic intervals of length

M−1 we deduce that the integral is O(M−α/(k−1)(logM)−1) and this is not
possible. 2

The bounds we have obtained are far from being sharp, at least for most
of the points. Since F ′1/2+ε,k ∈ L2([0, 1]), by the Fundamental Theorem of
Calculus we have Fk+1/2+ε,k is differentiable almost everywhere, hence

Fk+1/2+ε,k ∈ C1(x0)

for almost every x0. By Corollary 1.33 we obtain for α ≥ k + 1/2 that for
almost every x ∈ R we have

βF (x) ≥ α− 1/2

k
. (1.41)

We shall see this kind of result can be generalized for the function F to every
α > 1 and Er with r ≥ 2. In order to understand it we first need to deal
with the Hausdorff measure of these sets.
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Definition 1.43. Let E ⊂ R. For any s > 0 define its exterior s-dimensional
Hausdorff measure as

Hs(E) = sup
δ>0

Hs
δ(E) = lim

δ→0+
Hs
δ(E)

with

Hs
δ(E) = inf{

∞∑
i=1

|Ui|s : E ⊂
⋃
i

Ui, |Ui| ≤ δ}.

It can be demonstrated (see [Fal1]) that any Borel set in R isHs-measurable,
and we shall only deal with these type of sets. For any γ > 0 and δ < 1 we
have

Hs+γ
δ (E) ≤ δγHs

δ.

HenceHs(E) is a non-decreasing function and sinceHs(E) = 0 for any s > 1,
it has sense to define the Hausdorff dimension of E as

dimH(E) = inf{s > 0 : Hs(E) = 0}.

Let us see the basic result for handling the Hausdorff dimension of a set

Lemma 1.44. (Example 4.6 in [Fal2]) Let [0, 1] = G0 ⊃ G1 ⊃ G2 ⊃ . . .,
where each Gj is a finite union of intervals (whose maximum length to zero
when j tends to infinity) such that each interval of Gj−1 contains at least
mj ≥ 2 two intervals of Gj and these are separated by a distance larger than
εj, with 0 < εj < εj−1. Defining

sj =
log(m1 . . .mj−1)

− log(mjεj)
, s = lim inf

j
sj

we have

dimH(
∞⋂
j=0

Gj) ≥ s.

If moreover sj ≥ s for every j sufficiently large then Hs(∩Gj) > 0.

Lemma 1.45. For any r ≥ 2 we have dimHEr = 2/r and

H2/r(Er) > 0.

Proof: For the upper dimension, observe that for any r′ < r holds

Er ⊂
∞⋂
N=1

AN
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where

AN =
⋃
n≥N

1≤a≤n

[
a

n
− 1

(n log n)r′
,
a

n
+

1

(n log n)r′
].

But
H2/r′(AN) � (logN)−1

hence H2/r′(Er) = 0 and therefore dimHEr ≤ 2/r.
For the lower one consider a sequence (nj)j∈N defined by nj = njj−1 and

build the sets
Gj =

⋃
nj<p<2nj

⋃
1≤a<p

Ir(a, p)

with

Ir(a, p) = [
a

p
− e(log p)1/2

pr
,
a

p
− 1

pr
] ∪ [

a

p
+

1

pr
,
a

p
+
e(log p)1/2

pr
]. (1.42)

Then

Er ⊃
∞⋂
j=1

Gj

and we can use Lemma 1.44 withmj � n2
j(log nj)

−1 exp((log nj−1)
1/2)(nj−1)

−r

and εj � n−2
j . Thus for j sufficiently large

sj ≥
2 log nj−1 − r log nj−2 − log log nj−1

r log nj−1 − (log nj−1)1/2 + log log nj
≥ 2

r
,

hence H2/r(Er) > 0. 2

We can already state the following result on the regularity of F almost
everywhere in Er.

Theorem 1.46. For any r ≥ 2, we have:
i) For almost every x in Er (with the measure H2/r) we have

βF (x) ≥ min
(α− 1/2

k
,
α− 1

k
+

1

2r

)
.

Besides, if α > k + 1/2 and (α− 1)/k + 1/(2r) > 1 then

F ′(x) = lim
n→∞

ζan/qn(α− k). (1.43)
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ii) If r ≥ k, there exists a set Er,0 inside Er of positive measure and such
that for any x ∈ Er,0

βF (x) ≥ α− 1/2

k
. (1.44)

iii) if r > k, there exists a set Er,1 inside Er of positive measure such that
for any x ∈ Er,1

βF (x) =
α− 1

k
+

1

2r
. (1.45)

Proof: We begin proving i). Let 1 ≤ α1 < k and k + 1/2 < α2 < k + 1
such that α1 ≤ α ≤ α2. For any ε > 0, take

Bε(q) =
⋃
j∈N

q−r−1≤2−j≤q−1

B(qε, q, 2−j)

with B(qε, q, 2−j) the set that appears in the statement of Proposition 1.27.
We have

|Bε(q)| � q1−ε. (1.46)

On the other hand, define

Cε(q) = {a ∈ Z : 1 ≤ a ≤ q, (a, q) = 1, |τ(a/q)| ≥ q1/2+ε}.

By Lemmata 1.5, 1.6 and 1.7 we get

∑
q≤Q

q∑
a=1

(a,q)=1

|τ(a
q
)| � Q2+1/2+ε/2. (1.47)

If (an/qn)n∈N is the sequence of convergents of x, the we define

Mr,ε = {x ∈ Er : |{an/qn : an ∈ Bε(qn) ∪ Cε(qn)}| = ∞}.

For any Q0 ∈ N we have

Mr,ε ⊂
⋃

2j=Q≥Q0

⋃
Q≤q≤2Q

⋃
a∈Bε(q)∪Cε(q)

[
a

q
− 1

qr−ε/2
,
a

q
+

1

qr−ε/2
].

Since the H2/r−measure of each interval is smaller or equal than qε/2−2, by
(1.46) and (1.47) we get

H2/r(Mr,ε) � Q
−ε/2
0
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and thus H2/r(Mr,ε) = 0. Defining

Mr =
∞⋃
n=1

Mr,1/n

we also have H2/r(Mr) = 0. If x ∈ Er \Mr, for any sufficiently small h we
can find convergents an−1/qn−1, an/qn of x satisfying

2q−rnn < |h| ≤ 2q
−rn−1

n−1 ≤ q−1
n .

In this way, we write

Fα1,k(x+ h)− Fα1,k(x) = Fα1,k(x+ h)− Fα1,k(
an
qn

)− (Fα1,k(x)− Fα1,k(
an
qn

)).

By (1.25), for each ε > 0 we obtain

Fα1,k(x+h)−Fα1,k(x) �
|h|

α1−1
k

q
1
2
−ε

n

+qεn|h|
α1−1/2

k � |h|
α1−1

k
+ 1

2rn
− ε

rn + |h|
α1−1/2

k
−ε.

For h→ 0 we have

βFα1,k
(x) ≥ min

(α1 − 1

k
+

1

2r
,
α1 − 1/2

k

)
− ε.

But this holds for any ε > 0, hence also for ε = 0. By Corollary 1.33 we
deduce

βFα∗,k
(x) ≥ min

(α∗ − 1

k
+

1

2r
,
α∗ − 1/2

k

)
(1.48)

for any α∗ > α1, and in particular for α∗ = α. Moreover if α > k + 1/2 and
take α2 = α and by (1.26) we have for x ∈ Er \Mr, h = x − an/qn > 0 the
expression

F (x)− F (
an
qn

) = 2πiζan/qn(α− k)h+O(|h|
α−1

k
+ 1

2rn
− ε

rn + |h|
α−1/2

k
−ε)

but by (1.48) we know that whenever (α− 1)/k + 1/(2r) > 1

F (x)− F (
an
qn

) = F ′(x)h+O(|h|
α−1

k
+ 1

2r
−ε + |h|

α−1/2
k

−ε)

thus
(F ′(x)− 2πiζan/qn(α− k))h = o(|h|)

which proves (1.43).
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In order to prove ii), define

Er,0 = (Er \Mr) ∩ {x : (qn)n∈N ⊂ P0},

where P0 = {p ∈ N : p prime , (p, k− 1) = 1}. In the same way as in Lemma
1.45 can be proved H2/r(Er,0) > 0. Taking into account that τ(a/p) = 0 if
p ∈ P0, as before we have

βFα∗,k
(x) ≥ α∗ − 1/2

k

for any α∗ > α1.

For iii), define

Er,1 = (Er \Mr) ∩ {x : |(qn)n∈N ∩ P1| = ∞, |τ(an/qn)| ≥ q1/2
n /2}

with P1 = {p ∈ N : p prime , (p, k − 1) 6= 1}. By using Proposition 1.20 we
can prove H2/r(Er,1) > 0 following the proof of Lemma 1.45. If x ∈ Er,1 and
hn = x− an/qn > 0 we have

Fα2,k(x)− Fα2,k(
an
qn

) = Aτ(
an
qn

)h
α2−1

k
n + 2πiζan/qn(α2 − k)hn +O(|hn|

α2−1/2
k

−ε)

moreover for any h ∈ (hn/2, 2hn)

Fα2,k(
an
qn

+h)−Fα2,k(
an
qn

) = Aτ(
an
qn

)h
α2−1

k +2πiζan/qn(α2−k)h+O(|hn|
α2−1/2

k
−ε)

hence if r > k there exists h∗n ∈ (hn/2, 2hn) such that

|Fα2,k(x)− Fα2,k(
an
qn

+ h∗n)| � q
− 1

2
n h

α2−1
k

n � h
α2−1

k
+ 1

2rn
n ,

taking ε sufficiently small. By Corollary 1.33 we have

βFα∗,k
(x) =

α∗ − 1

k
+

1

2r

for every α∗ ∈ [α1, α2], and in particular for α∗ = α. 2

In Er there are points where F behaves much more irregularly than in
mean. To the end of studying the quantity of this exceptional points we need
this lemma.
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Lemma 1.47. Let I be an interval contained in [0, 1] and N ∈ N, with
|I| ≥ N−1. There exists an integer n with N ≤ n ≤ 2N , a constant c > 0
and a subset B = Bn of

{a/pk ∈ I : (a, p) = 1, 1 ≤ a ≤ pk, n ≤ p ≤ n+ n1/2}

with |B| ≥ cnk+1/2(log n)−1 such that any pair of elements in B are at dis-
tance at least n−k−1.

Proof: By Prime Number Theorem we can find an integer n satisfy-
ing N ≤ n ≤ 2N such that the interval [n, n + n1/2] contains more than
n1/2/(4 log n) primes. If p, p+ d are any pair of primes in [n, n+ n1/2] and

a

pk
− b

(p+ d)k
= θ |θ| ≤ n−k−1,

then
a+ j

pk
− b+ j

(p+ d)k
= θ +

kjd

p(p+ d)k
+O(jd2n−k−2),

hence

|a+ j

pk
− b+ j

(p+ d)k
| ≥ n−k−1

for 1 ≤ j ≤ c1n/d, c1 a certain constant. This implies

|{1 ≤ a ≤ pk : ∃ b ∈ N, | a
pk
− b

(p+ d)k
| < n−k−1}| � |I|dnk−1.

From this we infer the existence of a set B satisfying the conditions of the
statement of the lemma. 2

From this we obtain this result:

Theorem 1.48. For any r > 2 there exists Dr ⊂ Er such that

βF (x) =
α− 1

k
+

1

kr
(1.49)

and with

1 +
1

2k
≤ dimHDr ≤ 1 +

1

k
.

Proof: Let 1 ≤ α1 < k and k+1/2 < α2 < k+1 such that α1 ≤ α ≤ α2,
and let

B(q) =
⋃
j∈N

q−r−1≤2−j≤q−1

B((log q)4, q, 2−j)
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where B((log q)4, q, 2−j) is set in the statement of Proposition 1.27. As in
the proof of Theorem 1.46, taking into account that τ(a/pk) = pk−1 holds
for any p > k and that (α− 1)/k+ 1/(kr) < (α− 1/2)/k , we show that the
points in

Dr = {x ∈ Er : qn = pkn, pn prime , |{an/qn : an ∈ B(qn)}| <∞}

have the regularity given by (1.49). The upper bound for the dimension of
Dr can be proved as Lemma 1.45. For the lower we observe that

Dr ⊃
∞⋂
n=1

⋃
p≥n

⋃
1≤a≤pk

a 6∈B(pk)

Ir(a, p
k)

with Ir(a, p
k) defined as in (1.42). Therefor we get D∗

r ⊂ Dr with

D∗
r =

∞⋂
n=1

⋃
n≤p≤n+n1/2

⋃
1≤a≤pk

a 6∈B(pk)

Ir(a, p
k)

But D∗
r = Lr \∆ with

Lr =
∞⋂
n=1

⋃
n≤p≤n+n1/2

⋃
1≤a≤pk

Ir(a, p
k)

and

∆ =
∞⋂
n=1

⋃
n≤p≤n+n1/2

⋃
1≤a≤pk

a∈B(pk)

Ir(a, p
k)

In a simple way it can be showed that H(1+1/(2k))/r(∆) = 0. For the lower
dimension of Lr, by using Lemma 1.47 we consider the set Bn described in
its statement and build

Gj =
∞⋂
n=1

⋃
a/pk∈Bnj

Ir(a, p
k)

with nj = njj−1. By Lemma 1.44 we infer

sj ≥
1 + 1/2k

r

for j sufficiently large and thus H(1+1/2k)/r(Lr) > 0. 2
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Remark 1.49. In the same way as in the last two results we could show for
any 1/k < v < 1/2 and r > k that there exists a subset of Er of positive
Hausdorff dimension whose points have Hölder exponent (α− 1)/k + v/r.

We know that the subset of Er approximated by fractions of type a/pk

has Minkowski dimension equal to (1 + 1/k)/r. We think this also happens
for Hausdorff dimension, which could be proved obtaining the equivalent to
Lemma 1.47 with p between n and 2n. This result follows from the inequality

|{(a, b, p, q) ∈ Z4 : |apk−bqk| ≤ N ε, |a|+|b|+|p|+|q| ≤ N, (p, q) = 1}| � N2−ε

for some ε > 0; nevertheless we do not know to prove it. On the other hand,
is natural to suppose that for any continuous integrable function f we have∑

m6=0

τm(
a

q
)f(

m

Y
) � Y

1
2 q

1
2
+ε

for each rational a/q. From this would follow

dH(β) = (k + 1)(β − α− 1

k
) β ∈ [

α− 1

k
,
α− 1/2

k
).

Finally, if we think almost every point has Hölder exponent equal to (α −
1/2)/k, we can conjecture this shape for the spectrum of singularities of F :

dH(β) =


0 if β = (α− 1/2)/(k − 1)
1 if β = (α− 1/2)/k

(k + 1)(β − (α− 1)/k) if (α− 1)/k ≤ β < (α− 1/2)/k
−∞ otherwise.
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Chapter 2

Average measure of classes of
quadratic forms

2.1 Introduction

For any n ∈ Z we define

Pn = {ax2 + bxy+cy2 : a, b, c ∈ Z, (a, b, c) = 1, b2−4ac = n, n < 0 ⇒ a > 0},
(2.1)

the space of primitive binary quadratic forms of discriminant n. The group
SL(2,Z) acts on this space in a natural way (by linear change of variable)
and the set SL(2,Z)\Pn, that can be equipped (such as Gauss showed) with
a natural structure of abelian finite group, plays an important role in the
comprehension of the forms and in the representation of numbers by them.
In particular, a relevant quantity is its cardinal

h(n) = |SL(2,Z)\Pn|,

the class number of forms of discriminant n.
In Art. 302 and Art. 304 of Disquisitiones Arithmeticae [Gau], Gauss con-

sidered the average for the class number when the discriminant varies (with
the modern definition he restricted himself to the study of discriminants
multiples of 4). In the first of those articles he treated the case of negative
discriminants and saw that the class number grows in a regular way as the
square root of the absolute value of the discriminant. In a precise way, he
claimed to have obtained “through a theoretical investigation” an average
formula that can be written as∑
n≤N

h(−4n) =
4π

21ζ(3)
N3/2− 2

π2
N +E−2 (N), with E−2 (N) = o(N). (2.2)

53
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It is plausible that Gauss proved this statement by using the interpretation
of class number in terms of lattice points (Art. 172, Art. 174 [Gau]): h(−n)
equals the number of points in the set

{(a, b, c) ∈ Z3 : b2−4ac = −n, (a, b, c) = 1,−a < b ≤ a < c or 0 ≤ b ≤ a = c}
(2.3)

In Art. 304 he investigated the case of positive discriminants. Gauss saw that
class number behaves very irregularly, but he realized that by multiplying
it by the logarithm of the fundamental unit the regularity was recovered,
growing as the square root of the discriminant. Gauss wrote: “[. . . ] the
mean value of this product is approximately expressed by a formula of the
type m

√
D − n. However, we are not yet been capable of determining the

values of the constants m, n theoretically. If we are allowed to take some
conclusion from the comparison of some hundreds of determinants, m seems
to be very near 7/3”. The correct value of m was given by Gauss in one of its
handwritten notes (see [Gau] p. 462), where says that the proof “illustrates
brilliantly many parts of Higher Arithmetic and Analysis”. The value he
gives for m is 2π2/(7ζ(3)), which is very near to the previously conjectured
value (2π2/(7ζ(3)) − 7/3 ≈ 0.01). We can write this statement in modern
notation as ∑

n≤N

h(4n) log ε4n ∼
4π2

21ζ(3)
N3/2 (2.4)

where εn = (t + u
√
n)/2, with (t, u) the smallest positive solution of Pell’s

equation t2−nu2 = 4, whenever n is not a square. If it is a square, we define
εn = 1. Later this behaviour was understood through Dirichlet formula (see
[Lan]) for the class number:

h(d) log εd = d
1
2L(1, χd) if d > 0 (2.5)

and
h(d)w−1

d = (2π)−1|d|
1
2L(1, χd) if d < 0, (2.6)

with χd(n) = (d/n) the Kronecker-Jacobi-Legendre symbol, and

wd =


2 if d < −4
4 if d = −4
6 if d = −3

(2.7)

the number of elements of SL(2,Z) that fix a form of discriminant d < 0.
In 1863 Lipschitz [Lip] an later Mertens [Mer] obtained∑

n≤N

h(−4n) =
4π

21ζ(3)
N3/2 +O(N logN) (2.8)
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by using (2.3) and counting lattice points in a trivial way, which partially
proved Gauss statement. However Gauss conjecture for negative discrimi-
nants had to wait until 1917, when I. M. Vinogradov [Vin1] proved E−2 (N) �
N5/6(logN)2/3 through a more precise estimation of the number of lattice
points. A year later [Vin2] he improved that result to E−2 (N) � N3/4(logN)2

by introducing Fourier Analysis into the problem through the formula

{x} =
1

2
− 1

π

∞∑
n=1

sin(2πnx)

n
.

Gauss statement for positive discriminants (2.4) was also demonstrated by
Vinogradov [Vin3] in 1919. He used Dirichlet formula (2.5) and to bound
the error term he had to control incomplete sums of characters, proving for
that aim the important inequality∑

n≤x

χd(n) � d
1
2 log d, (2.9)

that was obtained at the same time and independently by G. Pólya [Pól].
With this, Vinogradov deduced∑

n≤N

h(4n) log ε4n =
4π2

21ζ(3)
N3/2 +O(N logN). (2.10)

He also checked that (2.6) can be used to obtain (2.8), what surpassed that
obtained by him before. Years later Vinogradov [Vin4, Vin5, Vin6] and J.-R.
Chen [Che1, Che2] proved, by bounding certain trigonometric sums through
van der Corput’s method, that the error term o(N) in formula (2.2) is actually
O(N2/3+ε).

In 1944 C. L. Siegel [Sie] rediscovered the use of characters for this pro-
blem, proving (2.8) and (2.10). It seems that he had no knowledge of Vino-
gradov’s papers, and in fact in his work he used Pólya’s paper in order to
bound short character sums. Anyway the important point for us is that Siegel
also proved (2.10) in another way. In the case of negative discriminant, any
form ax2 + bxy + cy2 can be identified with the unique point in the hyper-
bolic plane H solution of the equation az2 + bz + c = 0. Besides, the action
of SL(2,Z) on the space of forms translates into the usual SL(2,Z)-action
on H. In this way, the condition that the form (a, b, c) is in the set (2.3) is
equivalent to z being in the fundamental domain (or in the left part of its
boundary)

F = {x+ iy : x2 + y2 > 1, |x| < 1

2
}. (2.11)
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When the discriminant is positive, az2 + bz + c = 0 has two real roots
ρ− < ρ+ which made Siegel to consider H endowed with the hyperbolic
metric ds2 = y−2(dx2 + dy2), and to attach to ax2 + bxy + cy2 the geodesic
gabc containing the two points ρ− and ρ+ with an orientation given by the
inequality a(ρ− − ρ+) > 0. Besides he associated to that form the quantity

µ(a, b, c) = `(gabc ∩ F),

the hyperbolic length of the arc formed by the intersection of gabc with the
fundamental domain.

If A is an arc determined by the points z1 and z2 in the geodesic going
from ρ− to ρ+, then it is easy to calculate the expression

`(A) =
λ2∫
λ1

dλ

λ
= log

λ2

λ1

, (2.12)

where λj is the tangent of the argument of zj − ρ−.
In such a way, choosing a representant gabc of a class, we deduce that the

elements of SL(2,Z) fixing gabc act on the points of the geodesics. Since this
group is generated by the element(

(t− bu)/2 −cu
au (t+ bu)/2

)
with εn = (t+ u

√
n)/2

we can take as fundamental domain an arc J , which by (2.12) has hyperbolic
length log ε2n.

On one hand, for each point z0 ∈ J there exists a unique f ∈ PSL(2,Z)
such that f(z0) ∈ F , and thus Az0 = f(J) ∩ F is a non-empty arc. On the
other hand, for each geodesic intersecting F there exists a unique element
in PSL(2,Z) that sends it to an arc contained in J . In that way, there are
finitely many disjoint arcs whose union is J that are the only images by some
element of SL(2,Z) of geodesic arcs contained in F . Summing over every
class of discriminant n > 0 we have

h(n) log ε2n =
∑

(a,b,c)∈Z3

(a,b,c)=1
b2−4ac=n

µ(a, b, c). (2.13)

Taking into account that µ(λa, λb, λc) = µ(a, b, c) for every λ ∈ R×, this
formula allowed Siegel to control

∑
n≤x h(n) log εn through the integral∫

0<b2−4ac<1

µ(a, b, c) da db dc.
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The formula (2.13) is an equivalent of expression (2.3) for positive discrimi-
nants.

Siegel generalized this procedure to quadratic forms in more variables.
For n ∈ N with n ≥ 2 we consider the action of GL(n,R) on the set V (n)

of symmetric real n-dimensional matrices (namely, of quadratic forms with
n variables) given by (g, x) 7→ gxgt. Let GL(n,R)x the isotropy group of

x ∈ V (n)
Q = V (n)∩Mn(Q) with respect to this action. Then we can consider in

the subgroups Gx = GL(n,R)x∩SL(n,R) and Γx = Gx∩SL(n,Z) the usual
Haar measures (in the first group the one induced by the described action,
and in the second the counting measure) that induce in the homogeneous
space Hx = Gx/Γx an invariant measure (see [Wei]). Let mx such measure,
then define

ν(x) = mx(Hx)

whenever Hx is compact. Hx is always compact except when n = 2 and x is
a form that factors in product of two linear forms (that is to say when the
discriminant is a square). In this last case Γx is finite and m(Hx) = ∞; we
define ν(x) = 0.

It can be checked that ν(x) does not change whenever x moves inside a
class with respect to SL(n,Z). In the case n = 2 we have ν(x) = 2w−1

d if
the discriminant is negative and ν(x) = log ε2d if it is positive. For n > 2,
in general ν(x) changes for distinct classes but with the same discriminant,
however it can be obtained (as Siegel did) the average formula

∑
x∈SL(n,Z)\Li

| detx|<N

ν(x) =
1

n+ 1

( n∏
k=2

ζ(k)
)
N

n+1
2 +O(N

n
2 ), (2.14)

where Li is the lattice of forms with integer coefficients and of signature i,
0 ≤ i ≤ n. The way to proceed in order to prove it is the same used to
achieve (2.13), relating any form with positive-definite forms and choosing
the ones that intersect the Minkowski fundamental domain (see [Sie]).

This new interpretation of class number for positive discriminants opened
the door for the full use of Fourier Analysis. This was carried in a precise
way by T. Shintani [Shi]. M. Sato and T. Shintani [SS] developed in the
seventies the concept of prehomogeneous vector space, attaching to it zeta
functions satisfying a functional equation. In the particular case of quadratic
forms, for n ≥ 3 Shintani associated to any lattice L in V

(n)
Q invariant by the

group SL(n,Z) the zeta function

ξ
(n)
i (s, L) =

∑
x∈SL(n,Z)\Li

ν(x)| detx|−s, (2.15)
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where Li = L ∩ V (n)
i and V

(n)
i the set of symmetric matrices of dimension n

and signature i, that converges on <s > (n+1)/2 by (2.14). By using Fourier

Analysis in the homogeneous space V
(n)
i = GL(n,R)/GL(n,R)x he proved

that ξ
(n)
i is a meromorphic function with possible poles at s = (n+ 1− j)/2

(0 ≤ j ≤ n− 1), and satisfying the functional equation

ξ
(n)
i (

n+ 1

2
− s, L) = v(L)−1

n∑
j=0

uj,i(s)ξ
(n)
j (s, L∗) (2.16)

where uij(s) are products of Γ and exponential functions, v(L) is the volume
of the fundamental parallelogram of the lattice L, and L∗ is the dual lattice

L∗ = {x ∈ V (n) : tr(xy) ∈ Z∀y ∈ L}.

The case n = 2 is anomalous due to m(Hx) = ∞ for factorable forms. This

makes necessary a change of definition for the function ξ
(2)
1 . In the case that

L is the lattice

L = {
(

a b/2
b/2 c

)
: a, b, c ∈ Z},

L∗ is the set of symmetric matrices with coefficients in Z. In this case Shintani
defined

ξ
(2)
1 (s, L) =

∑
x∈SL(2,Z)\L1

ν(x)| detx|−s + 4s−1B(s) (2.17)

with B(s) = ζ(2s− 1)(ζ ′(2s)ζ(2s)−1 − ζ ′(2s− 1)ζ(2s− 1)−1) and

ξ
(2)
1 (s, L∗) =

∑
x∈SL(2,Z)\L∗1

ν(x)| detx|−s +
B(s)

2
+

log 2

4

ζ(2s− 1)

1− 2−2s
. (2.18)

He proved that it is a meromorphic function with poles at s = 1 and s = 3/2
and satisfies the following functional equation

ξ
(2)
i (s)(

3

2
− s) =

2∑
j=0

uj,i(s)ξ
(2)
j (s, L∗) + χi(s), (2.19)

for a certain simple function χi(s) that we shall specify later. By using a
modification of a lemma of Landau he obtained the main terms for the sum
of its coefficients from the poles of the function and in that way proved∑

n≤N

h(4n) log ε4n =
4π2

21ζ(3)
N

3
2 − 4

π2
N(logN + C ′) + E+

2 (N) (2.20)
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with C ′ = −1 + (8/3) log 2 + log(2π)− ζ ′(2)ζ(2)−1 and E+
2 (N) � N

3
4 , what

on one hand showed the failure of Gauss intuition for the second term, and
on the other hand that the bound for the error term obtained by Vinogradov
and Siegel was sharp. In the same way Shintani got a similar formula for the
average of h(n) log εn.

The bound given by Chen and Vinogradov for E−2 was not improved until
F. Chamizo and H. Iwaniec [CI1, CI2] had the great idea of combining the
two methods used before, Fourier Analysis and character sums. First they
expressed the sum in terms of sums∑

n≤M

N−(n) (2.21)

where
N−(n) = 2

∑
k2|n

h(−n/k2)w−1
−n/k2 , (2.22)

which are the coefficients of one of Shintani’s zeta functions. From this they
divided the sum (2.21) as∑

n≤M

N−(n) =
∑

n≤M+∆

N−(n)g(n)−
∑

M≤n≤M+∆

N−(n)g(n)

with ∆ � M1/2 and g ∈ C∞0 ((0,∞)) with g = 1 in [1,M ] an support con-
tained in (0,M +∆). Since Voronoi’s work it was known that from a certain
type of functional equations for zeta functions, summation formulas can be
obtained. Chamizo and Iwaniec found that this could be done in the case of
Shintani’s zeta functions (from (2.19)), and in that way they treated the first
sum. On the other hand, they transformed the second sum into a double
sum of characters via Dirichlet’s formula (2.6). The advantage is that for
very short sums characters adapt better than exponentials, because we can
enlarge the range of summation by using the multiplicativity of characters
and Cauchy’s inequality. To obtain the best result they used a precise esti-
mation for double sums of real characters [HB1, HB2] due to Heath-Brown
getting

|E−1 (N)|+ |E−2 (N)| � N
21
32

+ε for any ε > 0, (2.23)

where E−1 (N) is the error term that is the equivalent of E−2 (N) when aver-
aging over all discriminants.

In this chapter we shall study the case of positive discriminants, exposing
the results obtained in [CU1] and [Ubi]. In order to bound E+

1 and E+
2 we

shall follow Chamizo and Iwaniec by using Siegel’s interpretation (2.13) of
the class number. We shall also study the behaviour of the error terms in
quadratic average.
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In the first section we use Shintani’s functional equations in order to
obtain summation formulas for the coefficients, through the use of Mellin
transform.

In the second, we shall see how Siegel’s interpretation of class number
for positive discriminants in terms of lengths of geodesic arcs allows us to
control the exponential sums that appear in the summation formulas.

In the third, by using the previous sections and the result for character
sums in [HB2] we obtain:

Theorem 2.1. For any α > 21/32 we have E+
1 (N) � Nα, where∑

n≤N

h(n) log εn =
π2

18ζ(3)
N3/2 − 3

π2
(C + logN)N + E+

1 (N)

and C = log(2π)− ζ ′(2)/ζ(2)− 1.

In the same way we achieve this related result.

Theorem 2.2. For any α > 21/32 we have E+
2 (N) � Nα, where∑

n≤N

h(4n) log ε4n =
4π2

21ζ(3)
N3/2 − 4

π2
(C ′ + logN)N + E+

2 (N)

and C ′ = log(2π) + 8(log 2)/3− ζ ′(2)/ζ(2)− 1.

In general, this procedure could be applied to the study of the average
of h(n) log εn and h(−n) over any arithmetic progression. This could permit
to prove in another way the formula obtained in [GH] for the average over
fundamental discriminants, namely averaging over quadratic fields. This
could also be extended to improve the bound for the error term in (2.14),
namely in the case of general quadratic forms.

In the last section we shall study the behaviour of error terms. It is known
[Cho, GS] that

L(1, χd) ≥ eγ(log log |d| − 10) (2.24)

for infinitely many discriminants. By (2.5) and (2.6) we deduce that E+
1 (n) =

Ω(
√
d log log d) and the same for the rest of error terms. On the other hand,

from the summation formulas obtained in [CI2] (and the ones obtained in the
first section) we shall infer a representation for the error term in the average
of N−(n) (and of N+(n)) in terms of exponential sums. This has been used
[Küh] (cf. [Tsa]) to study the L2-norm of the error terms, deducing that they
are Ω±((n log n)1/2). In order to apply that method to the study of E+

j (N)
first Möbius inversion formula must be used to transform N+(n) into sums
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of h(n) log εn. But if now we want to find the L2-norm of this expression,
it seems difficult to control the non-diagonal terms. What can be done (see
[Pet]) is to introduce absolute values getting the bound

(
∑
N≤x

|E+
j (N)|2)

1
2 � x

1
2 (log x)

3
2 . (2.25)

Instead of following that path, we shall use Dirichlet’s formula (2.5) and work
with character sums in order to achieve this result.

Theorem 2.3. For any K � x
1
4
−ε we have∑

N≤x

|E+
2 (N +K)− E+

2 (N)|2 = (
3P

4π
)2x2 logK +O(x2(logK)

2
3 ),

with

P =
∏
p6=2

(1− 1

p2(p+ 1)
).

From this result we deduce that

E+
2 (N) = Ω((N logN)

1
2 ),

but moreover E+
2 is an oscillating function, because we know that the average∑

n<xE
+
2 (N) is small. We can prove the same things for E±j (N).

It is natural to ask if we have an asymptotic formula for the average of
class number in the case of positive discriminants. In this case the behaviour
is much more irregular (as Gauss noticed), mainly influenced through (2.5)
by the chaotic distribution of the fundamental solution of Pell’s equation. It
is not even known the existence of infinitely many quadratic fields with class
number one, that corresponds to unique factorization domains, the so called
Gauss-Hasse conjecture. In 1984 C. Hooley [Hoo] obtained

∑
n≤x

εn≤n1/2+α

1 ∼ 4α2

π2
x

1
2 (log x)2 (2.26)

in the range 0 ≤ α ≤ 1/2, whence we deduce∑
n≤x

εn≤n1/2+α

h(n) ∼ 4

π2
(2α− log(1 + 2α))x log x.
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Besides, by heuristical arguments regarding the distribution of εn he arrived
at the conjecture ∑

n≤x

h(n) ∼ 25

12π2
x(log x)2.

On the other hand, P. Sarnak [Sar] has obtained, as a consequence of Sel-
berg’s trace formula, a formula when averaging according to the size of the
discriminant ∑

εn≤x

h(n) = Li(x2) +O(x
3
2 (log x)2).

2.2 Summation formulas

Voronoi [Vor1, Vor2] used the functional equation of ζ(s)2 =
∑∞

n=1 d(n)n−s,
where ζ(s) is Riemann zeta function, in order to obtain a formula for the
average of the divisor function. From that moment, it has been understood
[CR] that in certain contexts a functional equation for a Dirichlet series
is equivalent to a summation formula for its coefficients. Shintani’s zeta
functions are going to have as coefficients the numbers N+(n) y N−(n), where
N−(n) is defined by (2.22) and

N+(n) =
∑
k2|n

h(n/k2) log εn/k2 .

In this way, from the functional equation we shall get summation formulas
for this quantities. With those formulas we can recover the average for h(−n)
and h(n) log εn from the following Möbius inversion formula:

Lemma 2.4. If n ≥ 1 then

h(n) log εn =
∑
k2|n

µ(k)N+(n/k2)

and
h(4n) log ε4n =

∑
k2|n
2-k

µ(k)
(
N+(4n/k2)−N+(n/k2)

)
.

Proof: The first formula is obvious. For the second we notice that

h(4n) log ε4n =
∑
k2|4n

µ(k)N+(4n/k2) =
∑
2-k

+
∑
2|k

=
∑
k2|n
2-k

µ(k)N+(4n/k2) +
∑
k2|n

µ(2k)N+(n/k2)
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and the result follows since µ(2k) = −µ(k) for k odd and µ(2k) = 0 for k
even. 2

In order to make the exposition easier we are going to change notation
with respect to Shintani. In the half-plane <s > 2 define

ξ−2 (s) =
∞∑
n=1

N−(4n)√
4n

(
√

4n)−s ξ−1 (s) =
∞∑
n=1

N−(n)√
n

(
√
n)−s

ξ+
1 (s) =

∞∑
n=1

N+(n)√
n

(
√
n)−s + ζ(s)

(
ζ ′(s+ 1)

ζ(s+ 1)
− ζ ′(s)

ζ(s)

)

ξ+
2 (s) =

∞∑
n=1

N+(4n)√
4n

(
√

4n)−s + 2−sζ(s)

(
ζ ′(s+ 1)

ζ(s+ 1)
− ζ ′(s)

ζ(s)

)
+
ζ(s) log 2

2s+1 − 1
.

The relation with Shintani’s zeta functions is

ξ
(2)
1 (s, L∗) = ζ(2)−1ξ+

2 (2s− 1) + c12
1−2sζ(2s− 1)

ξ
(2)
1 (s, L) = ζ(2)−1ξ+

1 (2s− 1) + c1ζ(2s− 1)

ξ
(2)
2 (s, L∗) = ζ(2)−1πξ−2 (2s− 1)

ξ
(2)
2 (s, L) = ζ(2)−1πξ−1 (2s− 1),

where c1 is the residue of ζ(s)2/ζ(2s) at s = 1. Then, writing

~z2(s) =

(
ξ+
2 (s)
ξ−2 (s)

)
y ~z1(s) =

(
ξ+
1 (s)
ξ−1 (s)

)
we can set Shintani’s functional equations (Theorem 2 in [Shi]) in the shape

Theorem 2.5. Each component in the vectors

~z2(s)−
1

s− 2

(
π2/12
π/12

)
+

1

(s− 1)2

(
1/2
0

)
+

1

s− 1

(
log(2π)/2

1/4

)
and

~z1(s)−
1

s− 2

(
π2/6
π/6

)
+

1

(s− 1)2

(
1
0

)
+

1

s− 1

(
log(2π)

1/2

)
has an order 1 entire continuation to the complex plane. Moreover we have

~z1(1− s) = (2π)−sΓ(s)(A(s)~z2(s)− cos(πs/2)ζ(s) ~B(s)).

where

A(s) = 2s+1

(
cos(πs/2) π

0 − sin(πs/2)

)
, ~B(s) =

(
ψ(s/2)− ψ((s+ 1)/2)

sec(πs/2)

)
with ψ(s) = Γ′(s)/Γ(s).
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Let us see in which summation formulas these functional equations can
be transformed. Defining αn and βn as the coefficients of Dirichlet series

ζ(s)

(
ζ ′(s+ 1)

ζ(s+ 1)
− ζ ′(s)

ζ(s)

)
and

2−sζ(s)

(
ζ ′(s+ 1)

ζ(s+ 1)
− ζ ′(s)

ζ(s)

)
+
ζ(s) log 2

2s+1 − 1

respectively, we can express our main result as

Proposition 2.6. Let g ∈ C∞0
(
(0,∞)

)
. Then

∞∑
n=1

N+(n)√
n

g(
√
n) =

π2

6

∞∫
0

tg(t) dt−
∞∫
0

g(t) log(2πt) dt−
∞∑
n=1

g(n) log n

+
∞∑
d=1

Λ(d)

d

∞∑
n=1

g(dn) + 2
∞∑
n=1

N+(4n)√
4n

g̃(
√

4n) + 2
∞∑
n=1

βng̃(n)

+2π
∞∑
n=1

N−(4n)√
4n

∞∫
0

g(t)e−π
√

4nt dt+ 2
1∫
0

1

t(1 + t)

∞∑
n=1

g̃(2n/t) dt

where g̃ is the Cosine Fourier transform
∫
g(t) cos(πxt) dt.

Proof: The summation formula of the statement is equivalent to

∞∑
n=1

b+1ng(
√
n) =

π2

6

∞∫
0

tg(t) dt−
∞∫
0

g(t) log(2πt) dt+ 2
∞∑
n=1

b+2ng̃(
√
n)

+ 2π
∞∑
n=1

b−2n

∞∫
0

g(t)e−π
√
nt dt+ 2

1∫
0

1

t(1 + t)

∞∑
n=1

g̃(2n/t) dt

where b+in and b−in are defined by setting ξ+
i (s) =

∑
b+in(

√
n)−s y ξ−i (s) =∑

b−in(
√
n)−s. By Mellin inversion formula we have

∞∑
n=1

b+1ng(
√
n) =

1

2πi

σ+i∞∫
σ−i∞

Mg(s)ξ
+
1 (s)ds

with 2 < σ < 3 and Mg(s) the Mellin transform of g. By Theorem 2.5 we
have

ξ+
1 (1− s) = π−sΓ(s)

(
2πξ−2 (s) + 2 cos(

π

2
s)ξ+

2 (s)− 2−s cos(
π

2
s)B1(s)ζ(s)

)
(2.27)
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where B1 is the first component of ~B. This equation assures (by convexity)
that ξ+

1 (s) grows as a polynomial on vertical lines, hence by the decay of
Mg(s) we can move integration line to −2 < σ′ < −1. In this way, by
Residue Theorem and taking into account the poles of the functions involved
(see Theorem 2.5) we deduce that

∞∑
n=1

b+1ng(
√
n) =

1

2πi

σ′+i∞∫
σ′−i∞

Mg(s)ξ
+
1 (s) ds+

π2

6
Mg(2)

−M′
g(1)− log(2π)Mg(1).

Besides, by (2.27)

1

2πi

σ′+i∞∫
σ′−i∞

Mg(s)ξ
+
1 (s)ds = I1 + I2 + I3

where

I1 = 2π
1

2πi

σ+i∞∫
σ−i∞

Mg(1− s)π−sΓ(s)ξ−2 (s) ds

I2 = 2
1

2πi

σ+i∞∫
σ−i∞

Mg(1− s)π−sΓ(s) cos(
π

2
s)ξ+

2 (s) ds

I3 = − 1

2πi

σ+i∞∫
σ−i∞

Mg(1− s)(2π)−sΓ(s) cos(
π

2
s)B1(s)ζ(s)ds

By using the expansion as Dirichlet series of ξ+
2 (s) and moving the integration

line to 0 < σ′′ < 1 we obtain

I2 = 2
∞∑
n=1

b+2n
1

2πi

σ′′+i∞∫
σ′′−i∞

Mg(1− s)(π
√
n)−sΓ(s) cos(

π

2
s) ds.

In this area we have the representation Γ(s) cos(πs/2) =
∞∫
0

ts−1 cos t dt,

[GR] 17.43.3, hence

I2 = 2
∞∑
n=1

b+2n

∞∫
0

1

2πi

σ′′+i∞∫
σ′′−i∞

Mg(1− s)ts−1 ds cos(π
√
nt) dt

and by Mellin inversion formula follows

I2 = 2
∞∑
n=1

b+2ng̃(
√
n).



66 CHAPTER 2. CLASSES OF QUADRATIC FORMS

In the same way we obtain

I1 = 2π
∞∑
n=1

b−2n

∞∫
0

g(t)e−πt
√
n dt.

On the other hand, by the formula

B1(s) = −2
1∫
0

xs

1 + x

dx

x

in <s > 0 (see [GR] 8.371.1), we can write

I3 = 2
1∫
0

1

2πi

σ+i∞∫
σ−i∞

Mg(1− s)(2πx−1)−sΓ(s) cos(
π

2
s)ζ(s) ds

1

1 + x

dx

x
,

and expanding ζ as Dirichlet series we arrive at

I3 = 2
1∫
0

∞∑
n=1

g̃(2nx−1)
1

1 + x

dx

x
,

proceeding as in the case of I2. 2

The dual summation formula is the following:

Proposition 2.7. Let g ∈ C∞0
(
(0,∞)

)
. Then

∞∑
n=1

N+(4n)√
4n

g(
√

4n) =
π2

12

∞∫
0

tg(t) dt− 1

2

∞∫
0

g(t) log(2πt) dt−
∞∑
n=1

g(2n) log n

+
∞∑
d=1

Λ(d)

d

∞∑
n=1

g(2dn)− log 2
∞∑
k=1

2−k
∞∑
n=1

g(2kn) +
∞∑
n=1

N+(n)√
n

g̃(
√
n)

+
∞∑
n=1

αng̃(n) + π

∞∑
n=1

N−(n)√
n

∞∫
0

g(t)e−π
√
nt dt−

1∫
0

1

t(1 + t)

∞∑
n=1

g̃(n/t) dt

Proof: We proceed as in the proof of the previous proposition, but start-
ing from the functional equation

ξ+
2 (1− s) = π−sΓ(s)

(
πξ−1 (s) + cos(

π

2
s)ξ+

1 (s)− 1

2
cos(

π

2
s)B1(s)ζ(s)

)
,

which can be deduced from Theorem 2.5 by equation

B1(1− s) +B1(s) = −2π csc(πs).

2
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2.3 Exponential sums

We have just seen that in summation formulas of Propositions 2.6 and 2.7
appear certain main terms and some oscillatory ones which depend on sums
of the kind ∑

N+(n)e(R
√
n) y

∑
N+(4n)e(R

√
n)

with R a certain parameter. In order to treat this formula we shall write
N+(n) as a sum over lattice points. To this end we use the quantity defined
in the introduction

µ(a, b, c) = `(gabc ∩ F)

where gabc is the geodesic defined by equation a(x2 + y2) + bx+ c = 0, y > 0.
Adding (2.13) for every k2 | n and taking into account that µ(λa, λb, λc) =
µ(a, b, c) we obtain this basic lemma.

Lemma 2.8. Let n ∈ Z+ not a square. Then

N+(n) =
∑

b2−4ac=n
a>0

µ(a, b, c).

It is easy to check in this sum there are only a finite number of non-
vanishing terms. These can be described into a explicit way.

Lemma 2.9. Let ax2 + bxy + cy2, a > 0, with discriminant n not a square.
Then µ(a, b, c) 6= 0 if and only if a+ c < |b|/2. Besides, if µ(a, b, c) 6= 0 then
a ≤

√
n/3, |b| ≤ 2

√
n/3 and a|c| ≤ n/4.

Proof: The first part of the lemma follows noticing that the geodesic gabc
has non-empty intersection with the fundamental domain F if and only if
some of the points (±1 + i

√
3)/2 is below gabc. The inequalities are obtained

from the identity

1

4
(4a− |b|)2 +

3

4
b2 = n+ 4a(a+ c− 1

2
|b|).

2

Our aim is to bound
∑
N+(n)e(R

√
n) as in [CI1]. It will be possible

because, although in some ranges the derivative of µ(a, b, c) is going to be
large, by splitting the domain of values (a, b, c) into three parts, according
to the geometrical situation of the geodesic gabc, the function µ(a, b, c) is the
logarithm of an algebraic function in each part.



68 CHAPTER 2. CLASSES OF QUADRATIC FORMS

Proposition 2.10. For R > 1/2 and 1 ≤M < M ′ ≤ 2M we have∑
M≤n<M ′

N+(n)e(R
√
n) �M5/4+ε + (RM)εL

with

L = min
(
R3/8M15/16 +R1/8M17/16, R7/24M49/48 +R5/24M53/48

)
,

and a similar result holds if N+(n) is substituted by N+(4n).

Proof: By Lemmas 2.8 and 2.9 we can write∑
M≤n<M ′

N+(n)e(R
√
n) =

∑
a+c<|b|/2
b2−4ac 6=�

µ(a, b, c)E(b2 − 4ac) (2.28)

where

E(n) =

{
e(R

√
n) if M ≤ n < M ′

0 otherwise

We consider the set
M = M1 ∪M2 ∪M3

where the disjoint sets Mj are defined by

M1 = {(a, b, c) ∈ Z3 : |a+ c| < −b/2, a > 0, c 6= 0}
M2 = {(a, b, c) ∈ Z3 : a+ c ≤ b/2 ≤ −a− c, a > 0, c 6= 0}
M3 = {(a, b, c) ∈ Z3 : |a+ c| < b/2, a > 0, c 6= 0}.

Vertices 1/2 + i
√

3/2 and −1/2 + i
√

3/2 of F are in the circle determined
by gabc if and only if (a, b, c) ∈ M2; in the same way, only the first vertex
or the second are in the circle are in the circle if and only if (a, b, c) ∈ M1

or (a, b, c) ∈ M3, respectively. Thus in M are covered each geometrical
possibility such that µ(a, b, c) 6= 0.

By (2.12), in each Mi the function µ = µ(a, b, c) is the logarithm of an
algebraic function, and besides µ(a, b, c) = O(logM) for M ≤ b2−4ac < 2M .

Note that µ(a, b, c) is well defined as `(gabc ∩ F) also when b2 − 4ac is a
square. On the other hand the number of elements in the set

{(a, b, c) : b2 − 4ac = h2, M ≤ h2 < 2M, a+ c < |b|/2, a > 0, c 6= 0}

is O(M1+ε). Hence by (2.28) we infer∑
M≤n<M ′

N+(n)e(R
√
n) � M1+ε +

∑
(a,b,c)∈M

µ(a, b, c)E(b2 − 4ac)

� M1+ε +
∑

(a,b,c)∈Mi

µ(a, b, c)E(b2 − 4ac)
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for some i ∈ {1, 2, 3}.
Let us fix a, c and consider µ(a, b, c) as a function on b. Since eµ is an

algebraic function in Mi has an uniformly bounded number of maximums
and minimums. So given a, c we can write {b : (a, b, c) ∈ Mi} as a finite
union of intervals Ij in which µ(a, ·, c) is monotone. The bound µ(a, b, c) �
logM and summation by parts give∑

(a,b,c)∈Mi

µ(a, b, c)E(b2 − 4ac) �M ε
∑
a,c

∣∣∣∣∑
b∈I′j

E(b2 − 4ac)

∣∣∣∣,
where the interval I ′j ⊂ Ij depends on a, c and will be void if (a, b, c) 6∈ Mi

for every b. Lemma 2.9 assures that a|c| ≤ M/2 and |b| ≤ 2
√
M , hence

by Lemma 7.3 in [GK] applied to [−2
√
M, 2

√
M ] and making the change

n = 4a|c| we deduce that∑
a,c

∣∣∣∣∑
b∈I′j

E(b2 − 4ac)

∣∣∣∣�M ε
∑
n≤2M

∣∣∣∣ ∑
|b|≤2

√
M

e(θb)E(b2 − n)

∣∣∣∣ (2.29)

for some θ ∈ R.
Now we follow the arguments exposed in Lemma 4.1 in [CI2]. We divide

the range of b in M ε intervals of length O(M1/2−ε). If J is one of those
intervals, by Cauchy’s inequality we obtain( ∑
n≤2M

∣∣∣∣∑
b∈J

e(θb)E(b2−n)

∣∣∣∣)2

�M

(
M3/2+

∑
|b1|<|b2|

∣∣∑
n

E(b21−n)E(b22 − n)
∣∣).

Writing u = b21 − n, the last double sum is∑
|b1|<|b2|

∣∣ ∑
M≤u≤M ′+b21−b22

e
(
R(
√
u−

√
u+ b22 − b21)

)∣∣�
�M ε

∑
v�D

∣∣ ∑
u�M

e(R(
√
u−

√
u+ v))

∣∣
for some D = o(M), where we have employed that the number of represen-
tations of v as b22 − b21 is O(M ε) and b22 − b21 = o(M) because |J | = o(M1/2).

From all of this we finally obtain∑
M≤n<M ′

N+(n)e(R
√
n) �M5/4+ε+M1/2+ε

(∑
v�D

∣∣ ∑
u�M

e(R(
√
u−
√
u+ v))

∣∣) 1
2

This sum was bounded in Lemma 3.1 of [CI1], giving the expected result.
The proof in the case of N+(4n) is similar, taking into account that 4|b2−

4ac is equivalent to 2|b and 2
∑

2|b f(b) =
∑

b f(b)+
∑

b e(b/2)f(b), hence the

phase b/2 can be accumulated to θb in (2.29). 2
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2.4 Bound for the error term

Now we shall proceed as in [CI2] and [CI1]. We write the sum as∑
n≤N

N+(n) =
∑

√
n≤N1/2+∆

N+(n)√
n

g(
√
n)−

∑
N1/2≤

√
n≤N1/2+∆

N+(n)√
n

g(
√
n),

(2.30)
with ∆ > 0, and g : [0,∞] −→ R the function defined by

g(x) =



x∫
0

η(u) du if x ≤ 1

x if 1 ≤ x ≤ N1/2

N1/2∆−1(N1/2 + ∆− x) if N1/2 ≤ x ≤ N1/2 + ∆

0 if x ≥ N1/2 + ∆,

η ∈ C∞0
(
(1/2, 1)

)
with

1∫
0

η = 1. Note that g ∈ C0

(
(0,∞)) and is differentiable

except at finitely many points.

Proposition 2.11. If N−1/2 < ∆ ≤ N−1/4 < 1 then

∞∑
n=1

N+(n)√
n

g(
√
n) =

π2

18
N

3
2 +

π2N∆

12
− N

2
logN +

(
1− ζ ′(2)

ζ(2)
− log(2π)

)N
2

+ O(N
21
32

+ε +N
1
2
+ε∆− 1

2 +N
11
16

+ε∆
1
8 )

and

∞∑
n=1

N+(4n)√
4n

g(
√

4n) =
π2

36
N

3
2 +

π2N∆

24
+
(
1− ζ ′(2)

ζ(2)
+

log 2

3
− log(2π)

)N
4

− N

4
logN +O(N

21
32

+ε +N
1
2
+ε∆− 1

2 +N
11
16

+ε∆
1
8 )

Remark 2.12. With the only use of this proposition we can improve Shintani’s
result: choosing ∆ = N−1/3 we realize that error term in the smoothed sum
is O(N2/3+ε), and subtracting the same result changing N1/2 by N1/2−∆ we
see that the contribution of the terms with N1/2 ≤

√
n ≤ N1/2 +∆ is absorb

by this bound.

Proof: We shall restrict firs to the proof of the first formula and after
we shall point out the necessary change for the second.
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For any x > 0 we have

g̃(x) =
cos(πN

1
2x)− cos(πx)− φ(x)

π2x2
+

2N
1
2

π2x2∆
sin(

π

2
∆x) sin

(π
2
(2N

1
2 + ∆)x

)
(2.31)

where φ(x) = πx
∫
η(t) sin(πxt) dt. We have φ(x) = O(x−α) for any α > 0.

Let τ ∈ C∞0 ((−1/2, 1/2)) even, with
∫
τ = 1, and τm(x) = mτ(mx) for

every m ∈ N. Defining gm = g ∗ τm we have gm ∈ C∞0 ((0,∞)) and g̃m(x) =
g̃(x)τ̂(x/2m) converge uniformly to g and g̃. Moreover by Proposition 2.10
we find that the sum

∑
N+(n)g̃(

√
n)/

√
n converges, and by Abel’s Lemma∑

nN+(n)g̃m(
√
n)/

√
n converges uniformly in m. All of this justifies the

application of Proposition 2.6 to the function g.

In the considered range for ∆ we have

π2

6

∞∫
0

tg(t) dt =
π2

18
N3/2 +

π2N∆

12
+O(1).

On the other hand

∞∫
0

g(t) log(2πt) dt =
N

4
logN +

(
2 log(2π)− 1)

N

4
+O(N1/2+ε)

and by partial summation

∞∑
n=1

g(n) log n−
∞∑
d=1

Λ(d)

d

∞∑
n=1

g(dn) =
N

4
logN − N

4
+
ζ ′(2)

2ζ(2)
N +O(N1/2+ε).

Sums with terms βn, N−(4n) y g̃(2n/t) are negligible. Their contributions are
O(N1/2+ε) which is proved by noticing g̃(x) � x−2 +N1/2 min(x−1,∆−1x−2),
βn � log n and N−(4n) = O(n1/2+ε).

By (2.31), the sum
∑
N+(4n)g̃(

√
4n)/

√
n can be written up to a constant

as

∞∑
n=1

N+(4n)

n3/2

(
cos(2π

√
Nn)− cos(2π

√
n)− φ(

√
4n)
)

+

2
N

1
2

∆

 ∑
n<N1/2

+
∑

N
1
2≤n<∆−2

+
∑

n≥∆−2

 N+(4n)

n3/2
sin(π∆

√
n) sin

(
π(2N

1
2 + ∆)

√
n
)

= S0 + S1 + S2 + S3.
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The decay of φ and Proposition 2.10 prove S0 � logN . For S1 note that√
n∆ � 1 and that we can extract the factor n−3/2 sin(π

√
n∆) summing by

parts. By Proposition 2.10 taking the second value of the minimum gives

S1 � (N5/8 +N7/48N49/96 +N5/48N53/96)N ε � N21/32+ε.

In order to bound S2 we do the same but using the first value of the minimum,
concluding

S2 � N21/32+ε +N1/2+ε∆2
(
∆−5/2 +N3/16∆−15/8 +N1/16∆−17/8

)
� N21/32+ε +N1/2+ε∆−1/2 +N11/16+ε∆1/8.

Finally, for S3 we shall directly use Proposition 2.10 as in S2 getting the same
bound.

From all these bounds we obtain

∞∑
n=1

N+(4n)

n3/2
g̃(
√

4n) � N21/32+ε +N1/2+ε∆−1/2 +N11/16+ε∆1/8

which proves the first formula.
For the second we take into account that

∞∑
n=1

g(2n) log n =
N

8
logN − N

8
− N

4
log 2 +O(N1/2+ε)

and that the next two terms in Proposition 2.7 contribute

N

4

∞∑
d=1

Λ(d)

d2
− log 2

∞∑
k=1

2−2k−1N +O(N1/2+ε).

By introducing these calculations, the proof is the same. 2

Now we shall estimate the short sum through character sums.

Proposition 2.13. Let g, N and ∆ as in the previous proposition. Then∑
N1/2<

√
n<N1/2+∆

N+(n)√
n

g(
√
n) =

π2N∆

12
+O(E)

and ∑
N1/2<

√
4n<N1/2+∆

N+(4n)√
4n

g(
√

4n) =
π2N∆

24
+O(E)

where E = N11/12+ε∆5/6 +N7/12+ε∆−1/6 +N19/30+ε.
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Proof: We have that h(n) log εn 6= 0 if and only if n ∈ R, where R =
{n ∈ Z+ : n ≡ 0, 1 (mod 4), n 6= �}. Moreover in this case holds Dirichlet
formula (2.5), hence we can write the left hand side of the first identity in
the statement as∑
√
N<d

√
a<
√
N+∆

h(a) log εa
g(d
√
a)

d
√
a

=
∑

d<
√
N+∆

∑
N<ad2<(

√
N+∆)2

a∈R

g(d
√
a)

d
L(1, χa)

and by Abel’s summation formula

N1/2

2∆

∑
d<N1/2+∆

1

d

2∆N1/2+∆2∫
0

C(Nd−2, xd−2)

(N + x)1/2
dx, (2.32)

where
C(x,K) =

∑
x<n<x+K

n∈R

L(1, χn).

But in [HB2] we have the estimate

C(x,K) =
ζ(2)

ζ(3)

K

2
+ xεO(K5/6 + x2/15 + x1/6 min(1, K−1/4))

for every 0 < K � x1/2. Substituting this into (2.32) the first identity
follows. For the second we proceed in a similar way 2

Choosing ∆ = N−5/16, as a consequence of the two previous propositions
and of decomposition (2.30) we obtain:

Corollary 2.14. For any N > 1 we have∑
n≤N

N+(n) =
π2

18
N

3
2 − N

2
logN + (1− ζ ′(2)

ζ(2)
− log(2π))

N

2
+O(N

21
32

+ε)

and∑
n≤N

N+(4n) =
2π2

9
N

3
2−N logN+

(
1−ζ

′(2)

ζ(2)
−5 log 2

3
−log(2π)

)
N+O(N

21
32

+ε).

Now, by Möbius inversion formula we conclude the proofs of the average
results for class number.

Proof of Theorem 2.1: By Lemma 2.4 we obtain the expression∑
n≤N

h(n) log εn =
∑
k≤
√
N

µ(k)
∑

n≤N/k2

N+(n),
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and therefore the result follows from Corollary 2.14. Note that
∑
k−2 log k =

−ζ ′(2). 2

Proof of Theorem 2.2: In the same way, by the second part of Lemma 2.4,∑
n≤N

h(4n) log ε4n =
∑
k≤
√
N

2-k

µ(k)

( ∑
n≤N/k2

N+(4n)−
∑

n≤N/k2

N+(n)

)
,

and as before the result is an outcome of Corollary 2.14, noticing in this case
that∑
2-k

µ(k)

k3
=

8

7ζ(3)
,
∑
2-k

µ(k)

k2
=

8

π2
y

∑
2-k

µ(k)
log k

k2
=
( log 2

3
+
ζ ′(2)

ζ(2)

) 8

π2
,

(for the last identity, calculate the derivative of
(
(2−s − 1)ζ(s)

)−1
at s = 2).

2

2.5 Study of the oscillatory term

In the previous section we have demonstrated that

E+
2 (x) � x

21
32 .

but it is believed that actually E+
2 (x) � x1/2+ε for any ε > 0. In this section

we are going to study the term E+
2 on average.

We shall calculate the L2-norm of the function E+
2 (N +K)− E+

2 (N) in
the interval R ≤ N ≤ 2R. To this end we are going to take advantage of
the fact that this function can be written by means of short character sums,
which will be suitable in order to control the norm, but besides these sums
can be expressed in terms of exponentials what in turn is going to permit to
carry the integration. In this process will be relevant the Gauss sums

τb(m) =
∑

a(mod m)

( a
m

)
e
(ba
m

)
.

The influence of K will be codified into the function

f(y) =
e(−Ky)− 1

e(−y)− 1
.

In the following lemma we are going to show how that expression can be
created.
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Lemma 2.15. Let R > 1, R < N < 2R and K < R1/2(logR)−1. For every
K < M < R holds the expression

E+
2 (N +K)− E+

2 (N)

(4N)
1
2

= BM(N) +
∑

N≤n≤N+K
M≤m≤R

χ4n(m)

m
− C(N) logR +O(1),

with

BM(N) =
∑

m<M,m 6=�

∗ 1

m2

∑
b(mod m)

τb(m)f
( b
m

)
e
(−b
m
N
)

(where the asterisk restricts the summation to odd numbers) and C(N) the
function taking the value 1 whenever there is some integer inside the interval
[N1/2, (N +K)1/2] and zero otherwise.

Proof: We begin by using Theorem 2.2 in order to infer the formula

E+
2 (N +K)− E+

2 (N)

(4N)
1
2

=
∑

N<n≤N+K
4n6=�

L(1, χ4n)−
π2

7ζ(3)
K +O(1) (2.33)

for any 1 < K < N1/2(logN)−1. By Pólya-Vinogradov inequality, for 4n 6= �
we can write

L(1, χ4n) =
∑
m<R

χ4n(m)

m
+O(R−

1
2 logR). (2.34)

By a calculation we can see that∑
N<n≤N+K

∑
m<R,m=�

χ4n(m)m−1 =
π2

7ζ(3)
K +O(1)

hence

(4N)−
1
2 (E+

2 (N +K)− E+
2 (N)) =

∑
N<n≤N+K

4n6=�

∑
m<R
m6=�

χ4n(m)

m
+O(1).

We can write∑
N<n≤N+K

4n6=�

∑
m<R
m6=�

χ4n(m)

m
=
∑
m<R
m6=�

1

m

∑
N<n≤N+K

χ4n(m)− C(N) logR +O(1).

For m even we have (4n/m) = 0, and for m 6= � odd (4 · /m) = (·/m) is a
non-principal character with modulus m. In this last case we have∑

x<n≤x+K

(4n
m

)
=

1

m

∑
a(mod m)

( a
m

) ∑
x<n≤x+K

∑
b(mod m)

e
(b(a− n)

m

)
=
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1

m

∑
b(mod m)

τb(m)
∑

x<n≤x+K

e
(−bn
m

)
=

1

m

∑
b(mod m)

τb(m)f
( b
m

)
e
(−b
m
x
)

that proves the lemma. 2

When doing the average mean of E+
2 (N+K)−E+

2 (N), the main term will
come from the diagonal terms that appear when expanding BM(N), namely
from the sum

S =
∑

m1,m2<M
m1,m2 6=�

∗ 1

m2
1m

2
2

∑
b1m2=b2m1

τb1(m1)τb2(m2)f(
b1
m1

)f(
b2
m2

). (2.35)

Let us see it is possible to control the behaviour of S with precision.

Proposition 2.16. Let 2 ≤ K ≤M ≤ R. Then

S = 3(P/4π)2 logK +O((logK)2/3)

with P =
∏

p6=2(1− 1/(p3 + p2)).

Proof: The start point is the formula for Gauss sums

τλs(cs
2) = εcc

1/2s
∑
d|(λ,s)

d
(λsd−2

c

)
µ
(s
d

)
(2.36)

for any c odd square-free number [IK], with εc = 1 if c ≡ 1 (mod 4) and
εc = i if c ≡ −1 (mod 4). We notice that τb(cs

2) = 0 if s - b and we can
rewrite S as∑
c1s21d

2
1<M

c2s22d
2
2<M

c1 6=1,c2 6=1

∗ µ2(c1)εc1µ
2(c2)εc2

(d1d2)2(c1s2
1c2s

2
2)

3
2

∑
λ1<c1s1
λ2<c2s2

λ1c2s2=λ2c1s1

∣∣f( λ1

c1s1

)∣∣2(λ1s1

c1

)(λ2s2

c2

)
µ(s1)µ(s2).

With these restrictions we can consider the sum only over the terms satisfying

c1(c2, s1) = c2(c1, s2), s1/(s1, c2) | λ1, s2/(s2, c1) | λ2.

Thus writing

c1 = cj1, s2 = q2j1, c2 = cj2, s1 = q1j2, (c, q1q2) = 1,

λ1 = λq1, λ2 = λq2,
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follows that S equals∑
cj1q21j

2
2d

2
1<M

cj2q22j
2
1d

2
2<M

(q1q2,j1j2)=1
(c,q1q2)=1

∗ µ(q1)µ(q2)µ(j1j2)µ
2(c)

(d1d2)2(j1j2)
9
2 (q1q2)3

(j1j2
c

)εcj1εcj2
c3

∑
λ<cj1j2
c 6=1

∣∣f( λ

cj1j2

)∣∣2(λj1
j2

)(λj2
j1

)
.

Bounding trivially, we have that the quantity given by the terms holding
λ(cj1j2)

−1 < 1/K is O(1), noting that

|f(u)|2 =
1− cos(2πKu)

2π2u2
+O(1).

Moreover the sums can be completed obtaining

S =
1

2π2

∑
(q1q2,j1j2)=1
j1j2≡1(4)

∗ µ(q1)µ(q2)µ(j1j2)

(d1d2)2(j1j2)
5
2 (q1q2)3

∞∑
λ=1

(λj1
j2

)(λj2
j1

)∆(λ, j1j2, q1q2)

λ2
+O(1)

(2.37)
with

∆(λ, j, q) =
∑
c<K/j
(c,q)=1

∗ 1− cos(2πKλ/(cj))

c

(j
c

)
µ2(c).

For j > 1, we have (applying µ2(c) =
∑

d2|c µ(d) and Pólya-Vinogradov)∑
c<K/j
(c,q)=1

∗ 1

c

(j
c

)
µ2(c) � (qj)1/2 log(qj).

On the other hand, for any j one can write∑
c<K/j
(c,q)=1

∗ e(
Kλj−1

c
)
(j
c

)µ2(c)

c
=

∑
d2<K/j
(d,2q)=1

µ(d)

d2

( j
d2

) ∑
c<Kj−1d−2

(c,2q)=1

(j
c

)
e(
Kλj−1d−2

c
)
1

c

which is smaller than

2jq
∞∑
d=1

1

d2
max

1≤a≤2jq
|

∑
0≤n<(Kj−1d−2−a)/(2jq)

e(
Kλj−2q−1d−2

n+ a/(2jq)
)

1

2jqn+ a
|.

Hence we see that it is necessary to bound exponential sums with the shape

S(N,N1) =
∑

N<n<N1

e(g(n))



78 CHAPTER 2. CLASSES OF QUADRATIC FORMS

for N1 < 2N < 2K̃ and g(n) = K̃/(n + α), 0 < α ≤ 1. In the range
K̃/N ≥ N4 we can apply Vinogradov’s method [IK] obtaining

S(N,N1) � N exp(−2−18(logN)3(log(K̃/N))−2).

Moreover in the range K̃1/5 ≤ N ≤ K̃1/2 we use van der Corput method (see
[IK]) in order to get

S(N,N1) � (K̃N−6)1/62N,

y en K̃1/2 ≤ N ≤ K̃
S(N,N1) � (NK̃−1)1/2N.

Hence ∑
c<Kj−1

(c,q)=1

∗ e(
Kλj−1

c
)
(j
c

)µ2(c)

c
� jq + (log λK)2/3,

and thus for j 6= 1 we have

∆(λ, j, q) � jq + (log λK)2/3 (2.38)

and
∆(λ, 1, q) =

∑
c<K

(c,2q)=1

µ2(c)c−1 +O(q + (log λK)2/3). (2.39)

It is possible to estimate the sum∑
c<K

(c,2q)=1

µ2(c)c−1 =
∑
d2<K

(d,2q)=1

µ(d)

d2

∑
c<Kd−2

(c,2q)=1

1

c

=
∑
d2<K

(d,2q)=1

µ(d)

d2
(
ϕ(2q)

2q
log

K

d2
+O((log q)2))

=
ϕ(2q)

2q
logK

∞∑
d=1

(d,2q)=1

µ(d)d−2 +O((log q)2)

=
1

ζ(2)

ϕ(2q)

2q
∏

p|2q(1− p−2)
logK +O((log q)2)

=
1

ζ(2)

2

3
η(q) logK +O((log q)2) (2.40)

with η(q) =
∏

p|q(1 + p−1)−1. By (2.37), (2.38), (2.39) and (2.40) we have

S =
1

18ζ(2)2
T logK +O((logK)2/3), (2.41)
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with

T =
∑

∗ µ(q1)µ(q2)

(d1d2)2(q1q2)3
η(q1q2)

∞∑
λ=1

1

λ2
= (1− 2−2)2ζ(2)2(

∑
q

∗ µ(q)η(q)

q3
)2ζ(2)

By using Euler’s product for this sum the result is proved. 2

We are going to use the previous proposition to get:

Proposition 2.17. Let R > 1. Uniformly in 1 < L < R and K < R
1
4
−ε we

have∑
R≤N≤R+L

(E+
2 (N +K)− E+

2 (N))2

4N
= 3(P/4π)2L logK +O(R(logK)2/3)

with

P =
∏
p6=2

(
1− 1

p3 + p2

)
.

Proof: We have ∑
R≤N≤2R

C(N)2 � KR1/2 � R. (2.42)

Also, by Cauchy’s inequality we have∑
R≤N≤2R

|
∑

N≤n≤N+K
M≤m≤R

χ4n(m)

m
|2 � K2

∑
n≤3R

|
∑

M≤m≤R

χ4n(m)

m
|2.

Writing n = cs2 with µ(c) 6= 0 we have∑
n≤3R

|
∑

M≤m≤R

χ4n(m)

m
|2 =

∑
s2≤3R

∑
c<3Rs−2

µ(c) 6=0

|
∑

M<m<R
(m,2s)=1

χc(m)

m
|2.

Appealing to Corollary 3 in [HB1] in dyadic intervals we can see that this
sum is

� Rε
∑
s2≤3R

(RM−1s−2 + 1) � R
1
2
+ε(1 +R

1
2M−1).

Thus, taking M = R
1
2
−ε we deduce that∑

R≤N≤2R

|
∑

N≤n≤N+K
M≤m≤R

χ4n(m)

m
|2 � K2R

1
2
+2ε � R. (2.43)
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Hence by (2.42), (2.43), Lemma 2.15 and Cauchy’s inequality we see that to
prove the proposition is equivalent to obtain∑

R<N<R+L

|BM(N)|2 = 3(P/4π)2L logK +O(R(logK)2/3). (2.44)

Expanding the square we see that

BM(N)2 =
∑

m1,m2<M
m1,m2 6=�

∗
∑

b1(mod m1)
b2(mod m2)

τb1(m1)

m2
1

τb2(m2)

m2
2

f(
b1
m1

)f(
b2
m2

)e
(
(
b2
m2

− b1
m1

)N
)
.

By the formula

∑
R<N≤R+L

e(Nθ) =
e((R + L)θ)

2πθ
− e(Rθ)

2πθ
+O(1) |θ| < 1/2

we obtain ∑
R<N<R+L

|BM(N)|2 = LS +O(D(logR)2) +O(M2)

where

D = max
M1,M2≤M

|
∑

M1<m1<2M1
M2<m2<2M2

∗
∑

b1 (modm1)
b2 (modm2)
b1m2 6=b2m1

ab2,m2ab1,m1

b2/m2 − b1/m1

|,

with ab,m = m−2f(b/m)τb(m)e(Zb/m) for some Z ∈ R. For Mj ≤ mj ≤ 2Mj

we have

| b2
m2

− b1
m1

| ≥ 1

M1M2

,

hence by generalized Hilbert inequality (see [IK]) we get

D � max
M1≤M

M2
1

∑
M1<m<2M1
b (modm)

∗|ab,m|2 � max
M1≤M

M−2
1

∑
M1<m<2M1
1≤|b|≤m/2

|τb(m)|2|f(
b

m
)|2.

From (2.36) we deduce that |τλs(cs2)| � c
1
2 s(λ, s) log log(s), hence for any

U ≤M1 holds∑
M1<m<2M1

∗
∑

U<b<2U

|τm(b)|2 � (UM2
1 +M2

1 logM1) log logM1,
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and since |f(t)| � min(K, |t|−1) for any |t| ≤ 1/2 we have∑
M1<m<2M1
1≤|b|≤m/2

∗|τb(m)|2|f(
b

m
)|2 � (KM3

1 +K2M2
1 logM1) log logM1

hence D � KM log logM � R and therefore∑
R<N<R+L

|BM(N)|2 = LS +O(R), (2.45)

and an appeal to Proposition 2.16 proves (2.44). 2

Finally we arrived at the searched result.

Theorem 2.18. Let x > 1, K ≤ x1/4−ε. Then∑
N≤x

(E+
2 (N +K)− E+

2 (N))2 = (
3Px

4π
)2 logK +O(x2(logK)

2
3 ).

Proof: By Abel’s Lemma

∑
R≤N≤2R

(E+
2 (N +K)− E+

2 (N))2 = 8RT (R)− 4
2R∫
R

T (u)du

with T (u) =
∑

R≤N≤u(4N)−1(E+
2 (N + K) − E+

2 (N))2. For R > x(log x)−3,
by Proposition 2.17 we have∑

R≤N≤2R

(E+
2 (N +K)− E+

2 (N))2 = 2(
3P

4π
)2R2 +O(R2(logK)3/2).

Adding the results for R = x/2j, j ∈ N, with R > x(log x)−3 and using (2.25)
for R < x(log x)−3 we deduce the theorem. 2
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Chapter 3

The number of sumsets

3.1 Introduction.

For any A,B subsets of a group G we define its sumset as the set of all
possible sums of elements of A and B

A+B = {a+ b ∈ G : a ∈ A, b ∈ B}.

Several properties of these sets has been studied, beginning with Cauchy’s
work [Cau], that proved the inequality

|A+B| ≥ min(|A|+ |B| − 1, |G|), (3.1)

when G = Z/pZ, p prime integer. This result was rediscovered a century
after by H. Davenport [Dav1]. Later Vosper [Vos] proved that the cases
for which equality happens are very special: if |A|, |B| ≥ 2, then A and B
are arithmetic progressions with the same difference or alternatively B is a
translation of the complementary of A in Z/pZ.

In the case G = Z happens something similar. We have |A + B| ≥
|A| + |B| − 1 and, if A and B are sets of more than one element equality
holds only in the case A and B are arithmetic progressions with the same
difference. Finally Kemperman [Kem], using methods developed by Kneser
and van der Corput, generalized this kind of result to any abelian group.

Instead of being so restrictive we can ask what happens if we require only
that

|A+ A| ≤ C|A| (3.2)

with C a positive constant. If |A + A| ≤ 3|A| − 4 in the case G = Z and
|A+A| ≤ (12/5)|A|−3 with |A| ≤ p/35 in the case G = Z/pZ, Freiman (see
[Nat]) had proved that A is contained in an arithmetic progression of length

83
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smaller than 2|A| − 2 and (7/5)|A| − 1 respectively. Nevertheless, when the
constant C is bigger we can easily construct sets A not well covered by any
arithmetic progression. Freiman understood the situation and in order to
solve the problems considered the sets

P = {y0 +
d∑
j=1

yjaj : 0 ≤ aj ≤ mj − 1}

that we shall call arithmetic progressions of dimension d. If the sums defining
the set are all distinct we say P is proper, and in this case we have |P +P | ≤
2d|P |. In this way he proved [Fre] that basically these are the unique subsets
of Z with small sumset, that is to say if A ⊂ Z satisfies (3.2) then A is
contained in an arithmetic progression of dimension d and size K|A|, where
d and K are constants only depending on C. This result has been used by T.
Gowers [Gow1, Gow2] to prove that for any k ≥ 3, any subset of {1, 2, . . . , N}
of size larger than N(log logN)−2−2k+9

contains some non-trivial arithmetic
progression of length k, improving substantially Szemerédi’s result [Sze].

I. Ruzsa [Ruz1] generalized Freiman’s theorem to the case |A+B| < C|A|
with |A| = |B| for abelian torsion-free groups, and later [Ruz2] he has proved
a result of the same kind for G abelian group of finite bounded torsion: let
A ⊂ G, such that there exist B ⊂ G of the same size that A with

|A+B| ≤ C|A|,

then A is contained in a subgroupH with |H| ≤ K|A|, whereK only depends
on C and on the maximum order of the elements of G.

It is also known that if A and B are large sets of Z/pZ, their sumset has a
lot of structure. In particular it has been proven that contains long arithmetic
progressions. The best result is that of B. Green [Gre1]: if |A| = αp and
|B| = βp with α, β > 0, then A + B contains an arithmetic progression of
size larger than

eK
√

log p,

where K > 0 only depends on α and β.
In another direction, recently Green and Ruzsa [GrRu] have studied the

cardinal of SS(G), the set of sumsets of the form A + A in an abelian finite
group G. They have obtained

|SS(Z/pZ)| = (2
1
3 )p+o(p),

extending later this result to another groups.
In this chapter we are going to treat a related problem, exposing the

results obtained in [GU]. We shall be interested in controlling the number of
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sets that are sum of big sets, namely we would like to know the size of the
set

T (k,G) = {A+B : |A|, |B| ≥ k}.

In the first section we shall show that in the case G = Z/pZ with p a prime
integer we have

Theorem 3.1. Let p(log p)−1/10 < k < p/8. Then

|T (k,Z/pZ)| = (
√

2)p+o(p).

In order to prove it we shall use Green-Ruzsa method of granular sets. Ba-
sically, what happens is that as A and B are large the characteristic function
of A + B can be well approximated by the convolution of the characteristic
functions of A and B in most cases. In another words, the set A+B is going
to be “smooth”. This allows to treat the problem through harmonic analysis
in Z/pZ.

When A is small, the structure of the sets B+A changes strongly by any
small variation of the set A. This motivates the following definition: let G
be a group and A a subset of G. We call A-set to any subset of G that can
be represented as

B + A

for some B ⊂ G. If G is finite, we are interested in controlling the size of the
set

S(A,G) = {B + A : B ⊂ G}.

In the case that G is abelian and finitely generated, G = H × Zd with H
finite, we shall want to know the size of

SN(A,G) = {B + A : B ⊂ H × IdN}

for N growing to infinity, with

IN = {n ∈ Z : 1 ≤ n ≤ N}.

This size is controlled by the constant (see Lemma 3.12)

c(A,G) = lim
N→∞

|SN(A,G)|
1

Nd|H| .

In the second section we shall see that in the case G = Z, if A is finite an
`(A) = maxa,a′∈A |a− a′|, we have

c(A,Z) = ρA, (3.3)
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where ρA is the spectral radius of an square matrix MA of dimension 22`(A)+1

that can be expressed in explicit form in terms of A. This characterization,
together with the property

c(λA,Z) = c(A,Z) for any λ ∈ Z×,

where λA = {λa : a ∈ A}, is going to allow us to demonstrate that

Theorem 3.2. For any a, b ∈ Z distinct we have

c({a, b},Z) = ρ

where ρ = 1.75488 . . . is the positive root of equation

x3 − 2x2 + x− 1 = 0.

We shall be able also to calculate the constant c(A,Z) for sets A with
`(A) small and for special sets as Ak = {0, 1 . . . , k − 1}.

The case |A| = 3 can be treated geometrically, establishing the following
relation with the two-dimensional case.

Theorem 3.3. Let a, b ∈ Z with |a| < |b| and (a, b) = 1. Then

c(U2,Z2)1−1/b ≤ c({0, a, b},Z) ≤ c(U2,Z2)1+1/b.

with U2 = {(0, 0), (1, 0), (0, 1)}. In particular for any a ∈ Z we have

lim
n→∞

c({0, a, n},Z) = c(U2,Z2).

We shall also show that

c(U2,Z2) < c(U1,Z)

where U1 = {0, 1}. By Theorem 3.3 we immediately deduce:

Theorem 3.4. There exists b∗ ∈ N such that for any b > b∗ and a ∈ N,
(a, b) = 1 we have

c({0, a, b},Z) < c({0, 1},Z).

Defining
c(k,G) = sup{c(A,G) : A ∈ G, |A| = k},

by Theorem 3.4 we see that in order to prove c(3,Z) < c(2,Z) = c({0, 1},Z)
only remains to control c({0, a, b},Z) for finitely many sets {0, a, b}. But it
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seems that the remaining cases are to large to be treated computationally
through (3.3). A new idea is needed.

It seems reasonable to think that the sequence (c(k,Z))k∈N is always de-
creasing, but we do not know how to prove it for any value k larger than one.
Considering the set A = {1, 2, 4, 6, . . . , 2k}, we can see that

c(k,Z) ≥
√

2 for any k ∈ N.

We shall prove that this inequality is actually strict. The natural question,
in part motivated by Theorem 3.1, is that if this sequence decreases to

√
2.

Theorem 3.1 permits to demonstrate the following partial result.

Theorem 3.5. Let λ > 0 and

cλ(k,Z) = sup{c(A,Z) : |A| = k, `(A) ≤ λ|A|}.

Then
lim
k→∞

cλ(k)(k,Z) =
√

2.

for any sequence (λ(k))k∈N, with 2 ≤ λ(k) ≤ (log k)
1
10 .

In the third chapter we shall study |S(A,Z/pZ)|. For each A ∈ Z/pZ,
with |A| ≥ 2, we have

B + x ⊂ B + {x, y} ⊂ B + A,

(where B+x denotes B+{x}) for any x, y ∈ A. From them, by combinatorial
arguments we shall prove:

Theorem 3.6. For any A ⊂ Z/pZ of cardinal larger or equal than two we
have

|S(A,Z/pZ)| � 1.9814p.

Of course we think that this bound is not a accurate one; we should have

|S(A,Z/pZ)| � ηp with η < c({0, 1},Z)

for any A with |A| ≥ 3. In any case, this allows us to prove that

c(k,Z) ≤ 1.9814 for any k ≥ 3,

and by Theorem 3.1 it can be demonstrated that

c(2,Z)p+o(p) � |T (2,Z/pZ)| � 1.9814p+o(p),

where c(2,Z) = ρ with ρ = 1.7548 . . . defined in Theorem 3.2.
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3.2 Sums of large sets

In this section we want to count the number of sets of the for A+B, A and B
being subsets of Z/pZ of size almost comparable to p. This question is related
to count the number of sets of the shape A + A with A ⊂ Z/pZ, problem
successfully solved by Green and Ruzsa in [GrRu]. After that B. Green used
the same method and another tools in order to prove [Gre2] Cameron-Erdős
conjecture on the number of sum-free sets in {1, 2, . . . , N}. We shall use their
method to prove Theorem 3.1.

We begin giving some notation. Let f, g : Z/pZ → C y n ∈ Z/pZ, we
define convolution in Z/pZ as

f ∗ g(n) =
∑

m∈Z/pZ

f(m)g(n−m).

We also define Fourier coefficients

f̂(n) =
∑

m∈Z/pZ

f(m)e(−nm/p).

Let C ⊂ Z/pZ, we write C(n) for the characteristic function of the set C.
With these definitions, and being D ⊂ Z/pZ, we have

C ∗D(n) = |{(x, y) ∈ C ×D : x+ y = n}|.

In the proof we shall use basically Plancherel identity∑
n

|f(n)|2 = p−1
∑
x

|f̂(x)|2 (3.4)

as well as the relation between convolution and Fourier transform

f̂ ∗ g(x) = f̂(x)ĝ(x). (3.5)

Now, let m a fixed natural number. For each d ∈ (Z/pZ)× we are going
to divide Z/pZ into m arithmetic progressions with common difference d
defined as

Ji(d) = {λd :
ip

m
≤ λ <

(i+ 1)p

m
},

with 0 ≤ i ≤ m − 1. The length of Ji(d) is L or L − 1, where L = dp/me.
We say that B ⊂ Z/pZ is an m-granular set if there exist d ∈ (Z/pZ)× and
I ⊂ {0, 1, . . . ,m− 1} such that

B =
⋃
i∈I

Ji(d).
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Finally, let C a subset of Z/pZ and ε1 > 0, and let

T (d) = {i ∈ {0, 1, . . . ,m− 1} : |C ∩ Ji(d)| ≥ ε1|Ji(d)|} .

Then, define the (m, d)−granularization C ′ of C (with respect to the param-
eter ε1) as

C ′ = C ′(d) =
⋃

i∈T (d)

Ji(d).

We have

|C \ C ′| =
∑
i/∈T (d)

|C ∩ Ji(d)| < ε1
∑
i/∈T (d)

|Ji(d)| ≤ ε1p, (3.6)

taking into account that the sets Ji(d) are disjoint.
The fundamental result that can be obtained by using Green-Ruzsa method

is the following:

Lemma 3.7. Let C any subset of Z/pZ. Then there exists d ∈ (Z/pZ)×

such that

max
x∈Z/pZ

hd(x)|Ĉ(x)| ≤ (log((2/3)1/2πL))1/2

(log p)1/2
|C|1/2p1/2

where

hd(x) =
2

2L− 1

L−1∑
j=1

(
1− cos

(2πjdx
p

))
.

We shall call “good length for C” to any d satisfying this conditions.

Proof: Let ε > 0. Suppose we want to prove that

hd(x)|Ĉ(x)| ≤ ε|C| (3.7)

holds for every x ∈ Z/pZ. Of course it does for x = 0 or |Ĉ(x)| ≤ ε|C|
(because 0 ≤ hd(x) ≤ 1). Let R the set of remaining x, namely

R = {x ∈ Z/pZ : x 6= 0, |Ĉ(x)| > ε|C|}.

It remains to demonstrate that (3.7) holds for each x ∈ R. Writing ‖t‖ for the
distance from t to the nearest integer, we have the inequality 1 − cos 2πt ≤
2π2‖t‖2. Therefore

hd(x) ≤
4π2

2L− 1

L−1∑
j=1

‖jdx
p
‖2 ≤ 4π2

2L− 1
‖dx
p
‖2

L−1∑
j=1

j2 ≤ 2π2L2

3
‖dx
p
‖2.
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Hence, for (3.7) to hold is enough that

‖dxi
p
‖ ≤ bi (3.8)

for any 1 ≤ i ≤ k, where R = {x1, x2, . . . , xk} and

bi =

√
3√

2πL
(
ε|C|
|Ĉ(xi)|

)1/2.

But this is equivalent to the following condition: let M =
∏k

i=1[−bip, bip] ⊂
Rk and Λ ⊂ Rk the lattice generated by the vectors ~x, p~e1, p~e2, . . . , p~ek, with
~ei the vectors of the usual basis for Rk and ~x = (x1, x2, . . . , xk). There exists
an element y ∈ Λ, y 6= ~0 such that y is also in M .

By Minkowski’s First Theorem this last condition follows from the in-
equality |M | ≥ 2k|Λ|. Since |M | = 2kpk

∏
bi and as we can check that

|Λ| ≤ pk−1, we get (3.8) follows from

k∏
i=1

bi ≥
1

p
,

or written into another way
w(k) ≤ p (3.9)

with

w(k) = (
21/2πL

31/2ε1/2|C|1/2
)k(
∏
x∈R

|Ĉ(x)|)1/2.

Now we can use the arithmetic-geometric inequality to say that we have

(
∏
x∈R

|Ĉ(x)|)1/k ≤ (
1

k

∑
x∈R

|Ĉ(x)|2)1/2.

Besides, by (3.4) ∑
x∈R

|Ĉ(x)|2 ≤ p|C|, (3.10)

and thus w(k) ≤ w1(k), with

w1(k) = ((2/3)2π4L4 p

kε2|C|
)k/4.

From (3.10) we also obtain k < pε−2|C|−1 and since w1(k) is an increasing
function in this range, we have

w1(pε
−2|C|−1) ≤ p (3.11)
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implies (3.7). But (3.11) holds with

ε ≥ (
log((2/3)1/2πL)p

log p|C|
)1/2,

hence we deduce the statement of the lemma. 2

The following result is equivalent to Proposition 3 in [GrRu], and will be
fundamental in the proof of the theorem.

Proposition 3.8. Let A,B two subset of Z/pZ, and let ε1, ε2 > 0, m ∈ N.
If d is good length for A then the (m, d)-granularizations A′ and B′ (with
respect to ε1) holds that A + B contains every x for which A′ ∗ B′(x) ≥ ε2p,
with at most

324 log((2/3)1/2πL)

ε41ε
2
2 log p

|A||B|
p

exceptions.

Proof: Let C a subset of Z/pZ. We define the function fC,d : Z/pZ → R
as

fC,d(n) =
1

|dP |
(C ∗ dP )(n) =

1

|dP |
|C ∩ (dP + n)|,

where P = {−(L − 1), . . . ,−2,−1, 0, 1, 2, . . . , (L − 1)}. Note that f̂C,d(x) =

Ĉ(x)gd(x), with gd(x) = (|dP |)−1d̂P (x). Applying Plancherel identity (3.4)
twice we have∑
n

|(A ∗B)(n)− (fA,d ∗ fB,d)(n)|2 = p−1
∑
x

|Â(x)B̂(x)− f̂A,d(x)f̂B,d(x)|2

= p−1
∑
x

|B̂(x)|2|Â(x)|2(1− gd(x)
2)2

≤ (max
x
|Â(x)||1− gd(x)

2|)2
∑
x

|B̂(x)|2

p

≤ |B|(max
x
|Â(x)||1− g(x)2|)2.

Since |1−gd(x)2| = |(1+gd(x))(1−gd(x))| ≤ 2|1−gd(x)|, by applying Lemma
3.7 to the set A (because 1− gd(x) = hd(x)) we get∑

n

|(A ∗B)(n)− (fA ∗ fB)(n)|2 ≤ 4
log((2/3)1/2πL)

log p
|A||B|p. (3.12)

Moreover if n ∈ A′ there exists an arithmetic progression of difference d
and length L containing to n and at least ε1(L − 1) point of A. On the
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other hand, this progression is contained in dP +n. Hence fA,d(n) is at least
ε1(L− 1)/(2L− 1) ≥ ε1/3, and then fA,d(n) ≥ ε1A

′(n)/3 for any n ∈ Z/pZ.
For similar reasons follows that fB,d(n) ≥ ε1B

′(n)/3. So we obtain for every
n the inequality (fA,d ∗ fB,d)(n) ≥ ε21(A

′ ∗B′)(n)/9.
Now let us consider the set M = {x ∈ Z/pZ; (A′ ∗ B′)(x) ≥ ε2p, x /∈

A+B}. We have

|(A ∗B)(n)− (fA,d ∗ fB,d)(n)|2 ≥ ε41ε
2
2p

2

34
for any n ∈M.

Substituting in (3.12) we get

|M | ≤ 4 log((2/3)1/2πL)(log p)−1|A||B|p
ε41ε

2
2p

2/34
=

324 log((2/3)1/2πL)

ε41ε
2
2 log p

|A||B|
p

.

2

Roughly speaking this proposition says that, under certain conditions, we
can split the set of pairs (A,B) into some few parts in such a way that in
each of them the sumsets A + B are very similar. This is the way in which
we can see the overlapping that happens when adding sets.

Now we need a generalization of Cauchy-Davenport Theorem (inequality
(3.1) due to Pollard [Pol].

Proposition 3.9. Let C,D ⊂ Z/pZ, and for each i ∈ Z let Ri = Ri(C,D) =
{n ∈ Z/pZ : (C ∗D)(n) ≥ i}. Then for any r ≤ min(|C|, |D|) we have

|R1|+ |R2|+ . . .+ |Rr| ≥ r(min(p, |C|+ |D|)− r).

We are going to use this result in order to handle the size of the set of
elements that are representable in at least k distinct ways as sum of elements
of C and D:

Proposition 3.10. Let C,D subsets of Z/pZ. Let k a positive integer. Then,
whenever the sizes of C and D are larger than

√
kp we have

|Rk| ≥ min(|C|+ |D|, p)− 2
√
kp.

Proof: We have |Rj| ≤ |Rk| for any j ≥ k. Thus, if r ≥ k then

r(min(|C|+ |D|, p)− r) ≤ |R1|+ . . .+ |Rr| ≤ (k − 1)p+ |Rk|r.

whence
|Rk| ≥ min(|C|+ |D|, p)− r − (k − 1)p/r.

Now, taking r = [
√
kp ] in Proposition 3.9 (which is possible because [

√
kp ] ≤

min(|C|, |D|)) we obtain the result. 2

We are already prepared to prove our main result.
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Theorem 3.11. Let p a prime integer. For every γ(p) < k < p/8 we have

|T (k,Z/pZ)| = 2
p
2
+O(γ(p))

where p(log log p)2/3(log p)−1/9 � γ(p) � p(log log p)2/3(log p)−1/9.

Proof: Let N,M be two m-granular sets. We define

F(N,M) = {A+B : A,B ⊂ Z/pZ, |A|, |B| ≥ γ(p) and there exists

d good length for A such that N = A′(d),M = B′(d)(with respect to ε1)}.

Then

|{B + A;B,A ⊂ Z/pZ, |A|, |B| > γ(p)}| ≤
∑
N,M

m−granular

|F(N,M)|.

But

|{(N,M) : N,M m-granular subsets of Z/pZ}| ≤ (p2m)2. (3.13)

Now we shall bound |F(N,M)| for any pair of m-granular sets N,M . By
(3.6) we deduce that if A + B is in F(N,M) then A is a subset of N union
with a set of at most ε1p points, and B is a subset of M union a set of at
most ε1p points. Thus

|F(N,M)| ≤ number of choices for (A,B) ≤ 2|M |+|N | exp(C1 log(1/ε1)ε1p)
(3.14)

for some constant C1 > 0. Moreover Proposition 3.8 says that if A+B is in
F(N,M) then A+B contains to the set Rε2p(N,M) menus a set of at most
ε3p points (with ε3 = 324 log((2/3)1/2πL) (log p)−1ε−4

1 ε−2
2 ), or equivalently

that A+B is contained into the union of the complementary of Rε2p(N,M)
with a set of less than ε3p points.

Let ε1, ε2 with ε1 + ε
1/2
2 ≤ γ(p). As the sizes of A and B are larger

than γ(p) and |N | ≥ |A| − ε1p, |M | ≥ |B| − ε1p, we have min(|N |, |M |) ≥
γ(p)− ε1p ≥ ε

1/2
2 p. Hence we can apply Proposition 3.10 to the sets N y M ,

obtaining
|Rε2p(N,M)| ≥ min(|N |+ |M |, p)− 2ε

1/2
2 p.

Therefore

|F(N,M)| = |{(A+B)c;A+B ∈ F(N,M)}| ≤ 2p−(|N |+|M |−2ε
1
2
2 p)e

C2 log( 1
ε3

)ε3p

(3.15)
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From the bounds (3.14) y (3.15) we get

|F(N,M)| ≤ 2p/2 exp(C3p(ε
1
2
2 + log(1/ε1)ε1 + log(1/ε3)ε3)),

hence by (3.13) taking 1/L = ε
1/2
2 = ε1 log(1/ε1), ε1 = (log p)−

1
9 (log log p)−

1
3

we deduce the upper bound of the theorem.
The lower bound is trivial. Let A,B be any pair of subset of Z/pZ,

with |A|, |B| > p/8, and let y = 0, x = p−1
2

. If A ⊂ [1, [p−1
4

]] and B ⊂
[[p−1

4
] + 1, p−1

2
], then

(A ∪ x) + (B ∪ y) = ((A+B) ∪ {x+ y}) ∪ (A+ y) ∪ (B + x),

where unions are disjoint, and thus

|{B + A;B,A ⊂ Z/pZ, |A| , |B| > p/8}| �
(

[p/4]

[p/8]

)2

= 2
p
2
+O(γ(p)).

2

3.3 A-sets

In this section we are going to study the A-sets of G a finitely generated
abelian group, focusing on the case G = Z and in particular in |A| ≤ 3. First
we are going to prove the existence of the constant c(A,G) associated to the
A-sets.

Lemma 3.12. Let G = H × Zd, H finite and A subset of G. There exists
the limit

c(A,G) = lim
N→∞

|SN(A,G)|
1

Nd|H| ,

and we have 1 ≤ c(A,G) ≤ 2.

Proof: For any j,N ∈ N we can write

SjN(A,G) = {
⋃
h∈H

(Bh × {h}) + A : Bh ⊂ IdjN ∀h ∈ H}

= {
⋃
u∈Id

j

(
⋃
h∈H

(Bh,u × {h}) + A) : Bh,u ⊂ IdN + (u− w)N}

with w = (1, 1, . . . , 1) ∈ Zd, whence we deduce that

|SjN(A,G)| ≤ |SN(A,G)|jd

. (3.16)
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Let M ≥ N , with M = aN + b and 0 ≤ b ≤ N − 1. By (3.16) we have

|SM(A,G)|M−d ≤ |S(a+1)N(A,G)|M−d ≤ |SN(A,G)|N−d(1+N/M)d

and thus for any N ∈ N we have

lim sup
M→∞

SM(A,G)M
−d ≤ SN(A,G)N

−d

.

Finally we arrive at the inequality

lim sup
M→∞

SM(A,G)M
−d ≤ lim inf

M→∞
SM(A,G)M

−d

,

which implies the existence of the limit defining c(A,G). Bound c(A,G) ≤ 2
is trivial taking into account that |SN(A,G)| ≤ |P(H × IdN)|. 2

The constant c(A,G) has several properties:

Lemma 3.13. For any A′ ⊂ G finite we have

c(A+ A′, G) ≤ c(A,G)

and for any x ∈ G, we have

c(A+ x,G) = c(A,G).

Proof: Let G = Zd × H, with H finite. There exists r ∈ N such that
A′ ⊂ Idr . In this way, we have SN(A + A′, G) ⊂ SN+r(A,G) for any N ∈ N,
which proves c(A + A′, G) = c(A,G). To prove c(A + x,G) = c(A,G) we
notice that the application C 7→ C+x defines a bijection from SN(A,G) into
SN(A+ x,G). 2

Besides, we have the following fundamental result.

Lemma 3.14. Let λ and automorphism of G = Zd ×H. We have

c(λA,G) = c(A,G).

Proof:
SN(A,G) = {B + λA : B ⊂ IdN ×H},

hence
|SN(A,G)| = |{B + A : B ⊂ λ−1IdN ×H}|.

For any N ∈ N, there exist RN ∈ N and (vk)1≤k≤RN
, vk ∈ Zd such that

λ−1IdN2 ⊂
RN⋃
k=1

(IdN +Nvk),
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and with RN |IdN | ∼ |λ−1IdN2| = |IdN2|. Thus

|SN2(λA,G)| ≤ |SN(A,G)|RN

and for N →∞ we have

c(λA,G) ≤ c(A,G).

Considering this inequality for the automorphism λ−1 we obtain the identity
of the statement. 2

Remark 3.15. This result allows to extend the definition of the constant
associated to the A-sets to any finitely generated abelian group: if λ is an
isomorphism from G to Zd ×H and A ⊂ G we define c(A,G) = c(λA,Zd ×
H) (the previous lemma assures that the definition does not depend on λ).
Moreover the constant does not change under group isomorphisms.

Lemma 3.16. Let λ a injective endomorphism of G. We have

c(λA,G) = c(A,G).

Proof: Let G = Zd × H, H finite group. By the previous lemma, is
enough to demonstrate c(fA,G) = c(A,G) where

f((a1, . . . , ad, h)) = (λa1, . . . , ad, h), λ ∈ N.

The image f(G) equals (λZ) × Zd−1 × H, which permits to write G as the
disjoint union

G =
λ⋃
j=1

gj + λZ× Zd−1 ×H.

where gj are representatives of the classes of the group G/fG. Therefore

SλN(fA,G) = {
λ⋃
j=1

(gj + f(Bj + A)) : Bj ⊂ IN × Id−1
λN ×H ∀j ∈ Iλ}

and
|SλN(fA,G)| = |{B + A : B ⊂ IN × Id−1

λN ×H}|λ. (3.17)

Hence |SλN(fA,G)| ≤ |SN(A,G)|λd
which proves c(fA,G) ≤ c(A,G). On

the other hand, writing w = (1, 0, . . . , 0) ∈ G, we have

SλN(A,G) = {
λ⋃
j=1

Bj + A+ jNw : Bj ⊂ IN × Id−1
λN ×H}
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and using (3.17) we see that |SλN(A,G)| ≤ |SλN(fA,G)|, which proves the
lemma. 2

Let C an A-set of a group G. We can always construct the set

B0 =
⋃

B⊂G,B+A=C

B.

Moreover we have C = B0 +A, and B0 can be explicitly expressed as the set
iA(C) = ∩a∈A(C − a). Thus, we see that to be A-set amounts to satisfy the
condition

C = iA(C) + A.

In this way, for an abelian group G = Zd × H, H finite, and for any finite
subset A we define

UA(N,G) = {C ⊂ IdN ×H : C = iA(C) + A}.

If 0 ∈ A, then there exists r ∈ N such that for any N > r we have that if
B ⊂ IdN ×H then B + A ⊂ IdN+r ×H, and besides iA(C) ⊂ C for every C.
Therefore we have

SN−r(A,G) ⊂ UA(N,G) ⊂ SN(A,G).

From these reasonings we deduce:

Lemma 3.17. Let A ⊂ G be a finite set. Then

c(A,G) = lim
N→∞

|UA(N,G)|1/Nd|H|.

Remark 3.18. Identity C = iA(C) + A is equivalent to satisfy

C ⊂
⋃
x∈A

⋂
y∈A,y 6=x

C + x− y,

or also
c ∈ C ⇒ ∃xc ∈ A such that c+ A ⊂ xc + C.

In the case G = Z this reformulation will permit to calculate c(A,Z)
through a recurrence. Let d the smallest natural number such that A ⊂
{0, 1, . . . , d} (by a translation we can suppose that 0 is the smallest element
of A). We define Γd = {−d, . . . , d} and

EA = {D ⊂ Γd : 0 ∈ D ⇒ ∃x ∈ A such that A ⊂ D + x}.
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For any D ⊂ Γd we define

v(D) = (D − 1) ∩ Γd

and
u(D) = v(D) ∪ {d}.

We consider the bijection between the sets Γd and I22d+1 − 1 defined by
C 7→

∑
j∈Γd

2j+duj where uj = 1 if j ∈ C and uj = 0 if j 6∈ C. This bijection
induces a order in the set Γd.

In this way we define MA = (mD,C) as the square matrix indexed in
P(Γd)× P(Γd), with the order we have just described, and

mD,u(D) = mD,v(D) = 1 if D ∈ EA

and mD,C = 0 otherwise. Since the matrix is non-negative, by the theory of
Perron-Frobenius (see [MeyC]) we can say that the spectral radius ρA is a
real eigenvalue of MA and we have

lim
N∈N

(
∥∥MN

A

∥∥
1
)1/N = ρA.

But we have the following result.

Lemma 3.19. Let UA(N) = UA(N,Z). For every N ∈ N, N > 4d we have

2−8d
∥∥MN

A

∥∥
1
≤ |UA(N)| ≤

∥∥MN
A

∥∥
1
.

Proof: We can write

UA(N) = {C ⊂ IN : j ∈ C ⇒ ∃xj ∈ A such that j + A ⊂ xj + C}
= {C ⊂ IN : (C − j) ∩ Γd ∈ EA ∀j ∈ IN }.

In this way, we consider the set

∆N = {(Dj)j∈IN ∈ P(Γd)
N : mDj ,Dj+1

= 1∀j ∈ IN−1}.

On the one hand, the application

f : UA(N) −→ ∆N

defined by C 7→ ((C − j) ∩ Γd)j∈IN is an injection, hence |UA(N)| ≤ |∆N |.
On the other hand, the application

g : ∆N −→ UA(N)
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defined by

(Dj)j∈IN 7→ Id ∪ (Id +N − d)
N−2d⋃
j=2d+1

(Dj + j)

satisfies |g−1(C)| ≤ 28d for any C ∈ UA(N) (because g((Dj)j) = g((D′
j)j)

implies that Dj = D′
j for every 2d + 1 ≤ j ≤ N − 2d). Thus 28d|UA(N)| ≥

|∆N |.
We conclude the proof noting that

|∆N | =
∑

(D1,...,DN )
Dj∈P(Γd)

mD1,D2 . . .mDN−1,DN
=
∥∥MN

A

∥∥
1
.

2

As an outcome of this lemma we deduce that for any A ⊂ Z finite

c(A,Z) = ρA.

When A = {0, 1}, we have

EA = {D ⊂ {−1, 0, 1} : 0 ∈ D ⇒ 0 ∈ (D − 1) ∪ (D + 1)} = P(Γ1) \ {{0}}

and

MA =



1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1


.

Calculating the characteristic polynomial of this matrix we can see that ρA
is the positive root of the equation

x3 − 2x2 + x− 1 = 0.

Therefore

Proposition 3.20. We have

c(2,Z) = c({0, 1},Z) = ρ

with ρ = 1.75488 . . . the positive root of the equation

x3 − 2x2 + x− 1 = 0.
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In the same way we can calculate (by using the computer when the matrix
is too large) the minimal polynomial pA(t) of ρA over Z for different sets A
of small length:

A = {0, 1, 2} ρA = 1.6180 . . . pA(t) = −1− t+ t2

A = {0, 1, 2, 3} ρA = 1.5000 . . . pA(t) = −1 + t3 − 2t4 + t5

A = {0, 1, 3} ρA = 1.6822 . . . pA(t) = 1−2t4+t5−t6+t7−t8+t9−2t10+t11

A = {0, 1, 2, 3, 4} ρA = 1.4655 . . . pA(t) = −1− t2 + t3

A = {0, 1, 2, 4} ρA = 1.5750 . . .

pA(t) = 1− 2t5 + t6 − t7 + t8 − t9 + t11 − 2t12 + t13

A = {0, 1, 4} ρA = 1.6863 . . .

pA(t) = 1 + 3t5 + 2t8 − t9 − t10 + 2t11 − 6t12 + t13 + t16 − t18 + t19 − 2t20 + t21

A = {0, 1, 5} ρA = 1.6825 . . .

pA(t) = −1−2t3−t4−t6−3t7+t8+2t9−4t10−2t11+t12−6t13+8t14+t15−9t16

+13t17−4t18−2t19−3t20+13t21+11t22−3t23+20t24+12t25−5t26−2t27+10t28

−t29−10t30−t31+t32−11t33+t34−t35+4t36−2t37+t38+t39−2t40+t42−2t43+t44

A = {0, 2, 5} ρA = 1.6827 . . . pA(t) = 1+t+3t2+3t3+3t4+4t5+t6+2t7+

2t8−t9+2t10−2t11+9t12−t13+7t14+12t15−11t16+17t17−12t18+6t19−12t20+

12t21−20t22 +12t23−6t24 +2t25−2t26 +3t27−2t28 + t29− t30 + t31−2t32 + t33

For sets A with simple structure we are able to calculate c(A,Z) = ρA.
For example, we have
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Proposition 3.21. Let k ∈ N, k ≥ 2 y Ak = {0, 1, . . . , k − 1}. We have

pAk
(t) | tk+1 − 2tk + tk−1 − 1

and thus

ρAk
= 1 +

2 log(k − 1)

k − 1
(1 + o(1)).

Proof: We could prove it by calculating the characteristic polynomial
the matrix MAk

, but

UAk
(N) = {C ⊂ IN : x ∈ C ⇒ ∃j ∈ Ak, x− j + Ak ⊂ C}

in a direct way we see that UAk
(N) can be expressed for N ≥ k + 2 as the

disjoint union

UAk
(N) = ∆1 ∪∆2 ∪∆3,

where

∆1 = {C1 ∪ {N} : C1 ∈ UAk
(N − 1)},

∆2 = {C2 ∪ (N − k + 1 + Ak) : C2 ∈ UAk
(N − k − 1)},

∆3 = {C3 ∪ {N} : C3 ∈ UAk
(N − 1), N − 1 ∈ C3},

whence we have the recurrence

|UAk
(N)| = |UAk

(N −1)|+ |UAk
(N −k−1)|+(|UAk

(N −1)|− |UAk
(N −2)|),

and we deduce the result for pAk
(t). From this follows the claim for ρAk

,
taking into account ρk−1

Ak
(ρAk

− 1)2 = 1. 2

However we do not know the way to control ρA in the general case. Con-
sidering

Ak = {1, 2, 4, 6, . . . , 2k}

we notice (taking B ⊂ 2Z) that for every k ∈ N we have

c(k,Z) ≥
√

2.

We can prove a somewhat stronger result.

Proposition 3.22. For any k ∈ N we have

c(k,Z) ≥ 2
1
2
+3−k

.
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Proof: Let A a finite subset of Z and A′ = {1} ∪ 3A. Writing

B = 3B0 ∪ (3B1 + 1) ∪ (3B2 + 2)

we can see that

B +A′ = [3(B0 +A ∪B2 + 1)] ∪ [3(B1 +A ∪B0) + 1] ∪ [3(B2 +A ∪B1) + 2]

and taking B2 = ∅ we prove that

c(A′,Z) ≥ 2
1
3 c(A,Z)

1
3 .

Beginning with A0 = {0} and defining Aj+1 = {1} ∪ 3Aj, by the inequality
we have just demonstrated we have

c(Ak,Z) ≥ 2
1
2
+3−k

.

2

Taking into account Theorem 3.11 it seems reasonable to think that

lim
k→∞

c(k,Z) =
√

2.

As a consequence of that theorem we can prove a partial result. Defining
`(A) = supa,a′∈A |a− a′| we have

Proposition 3.23. Let A, with |A| = k and `(A) = d ≤ (1/2)k(log k)1/10.
Then

c(A,Z) ≤ 2
1
2
+2dk−1(log k)−1/10+o(1).

Proof: Let p a prime in the interval [k(log k)10, 2k(log k)10]. We have
|A| = k � p(log p)−1/10, hence applying Theorem 3.11 we get

|Sp−d(A,Z)| ≤ |S(A,Z/pZ)| ≤ 2
p
2
+o(p).

Besides, from (3.16) it can be deduced that c(A,Z)p−d ≤ |Sp−d(A,Z)| and
thus

c(A,Z) ≤ 2
1
2
+ d

k(log k)1/10−d
+o(1) ≤ 2

1
2
+2dk−1(log k)−1/10+o(1).

2

Corollary 3.24. Let λ > 0 and

cλ(k,Z) = sup{c(A,Z) : |A| = k, `(A) ≤ λ|A|}.

Then
lim
k→∞

cλ(k,Z) =
√

2.
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In the rest of the section we are going to treat k = 3. To this end we
start generalizing the concept of sumset.

LetH be a finite abelian group, l ∈ N and G = Zd×H. Let f : G→ P(G)
be a real function such that f(·, h) is constant for every h ∈ H. From
f we build the following function f̃ : P(G) → P(G) defined by f̃(B) =⋃
b∈B(b + f(b)). For any s ∈ Z, 0 ≤ s ≤ d and D ⊂ G, D = Zs × J and

J ⊂ Zd−s × H a finite set we define (the existence of the limit is proved as
in Lemma 3.12)

c(f,D,G) = lim
x→∞

|{f̃(B) : B ⊂ IsN × J}|1/|Is
N×J |.

When f is constantly equal to A we have f̃(B) = B + A and we write
c(f,D,G) = c(A,D,G); moreover we abbreviate c(f,G,G) as c(f,G). With
these notations we have the following result:

Theorem 3.25. Let a, b ∈ Z, 0 < a < b with (a, b) = 1. We have

c(U2,Z× Ib−1,Z2)1−1/b ≤ c({0, a, b},Z) ≤ c(U2,Z× Ib,Z2),

with U2 = {(0, 0), (1, 0), (0, 1)}.

Proof: Considering bijection

w : Z → Z× Z/bZ

defined as w(m) = ([m/b],m + bZ) (the quotient and the remainder when
dividing by b), we deduce that

c({0, a, b},Z) = c(f,Z× Z/bZ)

with

f(m,λ) =

{
{(0, 0), (1, 0), (0, a)} if 0 ≤ λ ≤ b− a− 1
{(0, 0), (1, 0), (1, a)} if b− a ≤ λ ≤ b− 1.

Besides, by the automorphism a−1 : Z/bZ → Z/bZ follows that

c(f,Z× Z/bZ) = c(g,Z× Z/bZ)

with

g(m,λ) =

{
{(0, 0), (1, 0), (0, 1)} if 0 ≤ aλ ≤ b− a− 1
{(0, 0), (1, 0), (1, 1)} if b− a ≤ aλ ≤ b− 1.

On the other hand we realize that

c(g′,Z× Ib−1,Z2)1−1/b ≤ c(g,Z× Z/bZ) ≤ c(g′,Z× Ib,Z2),
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where g′ is the function induced by g in the group Z2. Finally, bijections dj :
Z2 → Z2 defined by dj(n,m) = (n,m) for m ≤ j and dj(n,m) = (n + 1,m)
for m > j can be used to prove

c(g′,Z× Ib,Z2) = c(U2,Z× Ib,Z2).

2

Corollary 3.26. With the hypothesis of Theorem 3.25 we have

c(U2,Z2)1−1/b ≤ c({0, a, b},Z) ≤ c(U2,Z2)1+1/b

and in particular
lim
b→∞

c({0, a, b},Z) = c(U2,Z2).

Proof: This is a consequence of Theorem 3.25 and of inequalities

c(U2,Z2) ≤ c(U2,Z× Ib,Z2) ≤ c(U2,Z2)1+1/b.

2

Remark 3.27. If we would know that c(U2,Z × Ib,Z2) decreases when b in-
creases, we could prove by using Theorem 3.25 that

c(3,Z) < c({0, 1},Z),

but using a computer in order to obtain several characteristic polynomials
associated to the constants c(U2,Z× Ib,Z2).

Remark 3.28. Until now we have not been capable of finding the value of
c(U2,Z2). We even do not know how to solve a simpler problem: to calculate
the number of subsets of I2

n (for large n) not containing a pair of points at
distance 1. The only related question we know is that of calculating the
number of ways in which on can fill I2

n with dominoes, which is solved in
section 4 of [Lov].

Theorem 3.29. We have

c({(0, 0), (1, 0), (0, 1)},Z2) < c({0, 1},Z).

Proof: We check that c({0, 1},Z) = c({(0, 0), (1, 0)},Z2). For any set
D = B + {(0, 0), (1, 0), (0, 1)} with B ⊂ N2 finite, we are going to build a
set D′ = B′ + {(0, 0), (1, 0)} with B′ ⊂ Z2 finite. To this end we proceed as
follows:
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Let M ∈ N such that D ⊂ I2
M , then we begin from point (M,M). From

there we go to the point (M−1,M), and then to (M−2,M) and we continue
in the same way until we arrive at (1,M). Then we go to point (M,M − 1)
and after that to (M − 1,M − 1). In general we go from the point (a0, b0)
to (a0 − 1, b0) except when a0 = 1, that we go to (M, b0 − 1). In this way
we continue until arriving at (1, 1). Following this path, we do not change
the set D on which we are moving except when we are at a point x0 ∈ D
such that x0 + (1, 0) and x0 + (−1, 0) are not in D. In this case, we change
D locally. We begin by defining some abbreviations: o ≡ x0 + (−4, 0) 6∈ D,
r ≡ x0 + (−3, 0) 6∈ D, s ≡ x0 + (−3,−1) 6∈ D, u ≡ x0 + (−2, 0) 6∈ D,
v ≡ x0 + (−2,−1) 6∈ D, w ≡ x0 + (−2,−2) 6∈ D, x ≡ x0 + (−1, 0) 6∈ D, y
≡ x0 +(−1,−1) 6∈ D, z ≡ x0 +(−1,−2) 6∈ D, a ≡ x0 6∈ D, b ≡ x0 +(0,−1) 6∈
D, c ≡ x0 + (0,−2) 6∈ D, d ≡ x0 + (1, 0) 6∈ D, e ≡ x0 + (1,−1) 6∈ D,
f ≡ x0 + (1,−2) 6∈ D, g ≡ x0 + (2, 0) 6∈ D, h ≡ x0 + (2,−1) 6∈ D, i

≡ x0 + (2,−2) 6∈ D, j ≡ x0 + (3, 0) 6∈ D, l ≡ x0 + (3,−2) 6∈ D, n ≡
x0 + (4,−1) 6∈ D, ~n ≡ x0 + (4,−2) 6∈ D, q ≡ x0 + (5,−2) 6∈ D. In the
same way we define the equivalents with capital letters meaning the same
but with the relation of ownership; for example H≡ x0 + (2,−1) ∈ D. For
convenience we also abbreviate ∆ ≡ xABCdEFI, ϑ ≡ rUVxYABcdE, γ ≡ ϑWZ,
λ ≡ XAbdEH, τ ≡ xaBDEGh, σ ≡ vxYABDE. In this way, we modify the set
D locally according to the following rules (whenever there is a coincidence
between different rules, the one with largest number will be chosen):

1) xABdE 7→ xaBdE. 10) ∆GhJ 7→ τCFiJ.
2) ∆H 7→ λcfi. 11) ∆GhJL~n 7→ xabcdEfGHIJL~n.
3) ∆GHJKL~Nq 7→ xabcdEfGHiJKl~nq. 12) ∆wZhL 7→ λWZCfIL.
4) ∆GHJKL~NQ 7→ xabcdEfGHiJKl~NQ. 13) ∆wZhl 7→ λWZCfil.
5) ∆HL~n 7→ λcfIL~n. 14) ∆vY 7→ σcFI.
6) ∆wZHL 7→ λwZCfIL. 15) ∆vwYZ 7→ σwzCFI.
7) ∆wZHl 7→ λwZCfil. 16)ϑSw 7→ rSUVwXyaBcdE.
8) ∆gh 7→ τcfi. 17) γ 7→ ruVWXYZAbcde.
9) ∆ghL~n 7→ λcfgIL~N. 18) γoHk 7→ ORuVWxYZAbcDehk.

19) γOHk 7→ ORuVWXYZAbcdehk.

In this way, when we arrive at the point (1, 1) the set D have already
been transformed into the set D′ that we named at the beginning of the
proof. In fact, for any N ∈ N this transformation defines and injection from
SN({(0, 0), (1, 0), (0, 1)},Z2) into SN+10({(0, 0), (1, 0)},Z2), which proves that
c({(0, 0), (1, 0), (0, 1)},Z2) ≤ c({0, 1},Z).

Besides, defining A = {(x, y) ∈ Z2 : max(|x|, |y|) ≤ 10} one can check
that for any set D′ in the image of the application and for any x0 ∈ Z2 we
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have D′∩ (x0 +A) 6= {x0− (1, 0), x0, x0 +(1, 0)}. Let us see that this already
demonstrates the strict inequality between the constants:

For what we have just proved we deduce that

c(U2,Z2)N
2+o(N2) ≤ |{C ⊂ I2

N : C is V -set,(C − x0) ∩ A 6= A∗∀x0 ∈ Z2}|

with A∗ = {(−1, 0), (0, 0), (1, 0)} and V = {(0, 0), (1, 0)}. Hence

c(U2,Z2)(21N)2+o(N2) ≤ |Ω21N |N

with

ΩN = {D ⊂ IN × I21 : D is V -set, (D − (a, 11)) ∩ A 6= A∗ ∀a ∈ Z}.

On the other hand

c(V,Z2)(21N)2+o(N2) = |{D ⊂ I21N × I21 : D is V -set }|N .

We have |ΩjN | ≤ |ΩN+1|j for any j ∈ N, which proves the existence of

c0 = lim
N→∞

|ΩN |1/N

and the inequality |ΩN | ≥ cN−1
0 . We conclude that

|{D ⊂ I21N × I21 : D is V -set }| ≥
N∑
k=0

(
N

k

)
c21N−21k−1
0 = c−1

0 (c210 + 1)N

whence

c(V,Z2)212 ≥ c(U2,Z2)212

+ 1.

2

Corollary 3.30. There exists b0 ∈ N such that for any b ≥ b0 and (a, b) = 1
we have

c({0, a, b},Z) < c({0, 1},Z).

Remark 3.31. The injection of Theorem 3.29 seems to indicate that some-
thing similar can be done for the remaining sets {0, a, b}.
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3.4 A-sets modulo p

In this section we shall study the number of A-sets of Z/pZ, with p prime,
where A is any set with more than one element, proving Theorem 3.6.

Let a, b, c ∈ Z, holding 0 ≤ b/2 ≤ c ≤ b ≤ a ≤ p. We define the following
sets:

G(b, c) = {B ⊂ Z/pZ : |B| = c, |B + {0, 1}| = b}.

F (b, a) = {E : B + {0, 1} ⊂ E,B ⊂ Z/pZ, |E| = a, |B + {0, 1}| = b}.

In order to study the behaviour of these sets when a, b and c varies.

Lemma 3.32. Let 0 < α/2 < λ < α < 1, with αp, λp integers. Then
i) we have

|G(αp, λp)| � pg(α, λ)p,

where

g(α, λ) =
λλ

(α− λ)(α−λ)(2λ− α)(2λ−α)

(1− λ)1−λ

(α− λ)(α−λ)(1− α)(1−α)
.

ii) Let g1(α) = maxα/2≤λ≤α g(α, λ). Then g1 is increasing ∀α, 0 ≤ α <
3/4.

Proof: We notice that

G(αp, λp) = {B ⊂ Z/pZ : |B| = λp,B is the union of (α− λ)p intervals},

where interval means a sequence {a, a+1, a+2, . . . , a+k−1} ⊂ B (with k ≥ 1)

such that a − 1 /∈ B y a + k /∈ B. Then we can write B = ∪(α−λ)p
r=1 I(r) with

I(r) an interval. Hence we can identify up to translation any set B with an
element (i1, j1, i2, j2, . . . , i(α−λ)p, j(α−λ)p) of N2(α−λ)p satisfying the conditions
ir, jr ≥ 1,

i1 + i2 + . . .+ i(α−λ)p = αp

and
j1 + j2 + . . .+ j(α−λ)p = (1− α)p.

(ir is the size of I(r) and jr is the number of elements of Z/pZ between I(r)

and I(r+1)). Thus, the number of elements in G(αp, λp) is bounded by

p

(
λp− 1

(α− λ)p− 1

)(
(1− λ)p− 1

(α− λ)p− 1

)
,

(factor p comes from possible translations). By using Stirling’s formula we
obtain i).
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For ii), differentiating g with respect to λ, we deduce that g is increasing
in λ if and only if r(λ) > 0, where

r(λ) = λ(α− λ)2 − (2λ− α)2(1− λ).

But r(α/2) > 0, r(α) < 0 and there is only one root (that we shall call
λmax(α)) of equation r(λ) = 0 in the interval α/2 < λ < α. It is obvious that
g(α, λmax(α)) = g1(α). Hence if g is increasing in α for λ = λmax(α) then g1

is also increasing due to the inequalities

g1(α) = g(α, λmax(α)) ≤ g(α+ ∆, λmax(α)) ≤ g1(α+ ∆)

(for ∆ > 0 sufficiently small). Calculating ∂g/∂α we realize that g is increas-
ing in α for any α holding

α− λ < λ(1− λ), (3.18)

that under our conditions is equivalent to

λ > λ0(α) (3.19)

with λ0(α) = 1−
√

1− α. In this way, if λmax(α) > λ0(α) then g1 is increasing
for this α. But it happens if and only if r(λ0(α)) > 0. Since λ0(α) satisfies
(3.18), we have

r(λ0(α)) = λ0(α)3(1− λ0(α))(1− 2λ0(α)),

and then

r(λ0(α)) > 0 ⇔ λ0(α) = 1−
√

1− α < 1/2 ⇔ α < 3/4.

2

Lemma 3.33. Let 0 < α < δ < 1, p prime and αp, δp ∈ N. We have

|F (αp, δp)| � p3( max
0≤α0≤1

0≤α1≤δ−α

f(δ, α0, α1))
p

where f(δ, α0, α1) is the function

(1− δ)(1−δ)(2δ − 1 + α0)
2δ−1+α0

αα0
0 α

α1
1 (1− δ − α0 − α1)2(1−δ−α0−α1)(3δ − 2 + α1 + 2α0)3δ−2+α1+2α0

.
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Proof: Let ni the number of intervals of length i in E ∀i ≥ 1, and n0

the number of elements s ∈ Z/pZ such that s /∈ E and s − 1 /∈ E. Then
we have

∑
i ini = δp y

∑
i(i + 1)ni = p. Besides, since B + {0, 1} ⊂ E and

B + {0, 1} does not have isolated elements, we have 2n2 + 3n3 + . . . ≥ αp.
Therefore

∑
ni = (1 − δ)p and n1 ≤ (δ − α)p. In this way, the number of

sets E satisfying lemma conditions will be up to translation smaller than or
equal to

((1− δ)p)!× coefficient of x(1−δ)pyδp in
∞∑

n0=0

xn0

n0!

(δ−α)p∑
n1=0

(xy)n1

n1!

∞∑
n2=0

(xy2)
n2

n2!
. . .

=

(δ−α)p∑
n1=0

∞∑
n0=0

((1− δ)p)!

n0!n1!
× coefficient of x(1−δ)p−n0−n1yδp−n1

in exp(xy2 + xy3 + . . .),

and expanding exp( xy
2

1−y ) this is equal to

(δ−α)p∑
n1=0

∑
n0=0

((1− δ)p)!

n0!n1!((1− δ)p− n1 − n0)!
× coefficient of y(3δ−2)p+n1+2n0

in (1− y)−((1−δ)p−n0−n1) =

=

(δ−α)p∑
n1=0

∑
n0=0

(
(1− δ)p

n0, n1, (1− δ)p− n1 − n0

)(
(2δ − 1)p+ n0

(1− δ)p− n1 − n0

)
.

Using Stirling’s formula for n0 = α0p y n1 = α1p and adding the factor p due
to the translations we obtain the result. 2

Theorem 3.34. Let A a subset of Z/pZ, |A| ≥ 2. Then

|S(A,Z/pZ)| � 1.9184p

Proof: Let us take two different elements in A ⊂ Z/pZ, x and y. We
have

S(A,Z/pZ) ⊂
⋃

0≤b/2≤c≤b≤a≤p

DA(a, b, c)

where

DA(a, b, c) = {B + A : B ⊂ Z/pZ, |B + A| = a, |B + {x, y}| = b, |B| = c}.
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Then
|S(A,Z/pZ)| ≤ (p+ 1)3 max

0≤c≤b≤a≤p
|DA(a, b, c)|. (3.20)

Since for any d ∈ (Z/pZ)× the applications M 7→ dM and M 7→ M + d
are bijections of P(Z/pZ), we have |DA(a, b, c)| = |DA′(a, b, c)|, where A′ =
(y−x)−1A and DA′(a, b, c) = {B+A′ : B ⊂ Z/pZ, |B+A′| = a, |B+{0, 1}| =
b, |B| = c}. Moreover we have DA′(a, b, c) ⊂ F (b, a) and |DA′(a, b, c)| ≤
|G(b, c)|. Thus

|DA(a, b, c)| ≤ min(|F (b, a)|, |G(b, c)|),

and finally by Lemmata 3.32i) and 3.33 and by (3.20), taking a = δp, b =
αp, c = λp, we obtain

|S(A,Z/pZ)| � p6( max
0<λ<α<δ<1

(min( max
0≤α0≤1,0≤α1≤δ−α

f(δ, α0, α1), g(α, λ))))p

� p6( max
0<α<1

min(f1(α), g1(α)))p

with
f1(α) = max

(δ,α0,α1)
δ−α1≥α

f(δ, α0, α1)

and g1(α) defined as in Lemma 3.32. Note that f1(α) is decreasing and by
Lemma 3.32ii) g1(α) is increasing if 0 ≤ α < 3/4.

Let α̃ be a real number with 0 ≤ α̃ < 3/4. If α < α̃, then g1(α) < g1(α̃).
If α > α̃ then f1(α) < f1(α̃). Thus

min(f1(α), g1(α)) ≤ max(f1(α̃), g1(α̃))

for any α, and then

|S(A,Z/pZ)| � p6(max(f1(α̃), g1(α̃)))p

for any α̃, 0 ≤ α̃ ≤ 3/4. We choose α̃ = 0.57402. Using Lagrange multipliers
we see that the maximum of the function f(δ, α0, α1) in the domain δ−α1 ≥ α̃
occurs at δ root of the equation

−1−15α̃−49α̃2−51α̃3−9α̃4+23δ+201α̃δ+415α̃2δ+233α̃3δ+24α̃4δ−178δ2

−955α̃δ2−1158α̃2δ2−347α̃3δ2−16α̃4δ2+635δ3+2023α̃δ3+1333α̃2δ3+169α̃3δ3

−1130δ4 − 1965α̃δ4 − 547α̃2δ4 + 975δ5 + 715α̃δ5 − 325δ6 = 0

and at α0 =
√

(1− δ)(δ − α̃), α1 = δ − α̃. As we know from the proof of
Lemma 3.32ii), the maximum of g(α̃, λ) in the domain 0 ≤ λ ≤ α̃ occurs at
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λ root of the equation r(λ) = 0. Finally we obtain δ ≈ 0.634563, λ ≈ 0.36603
and

|S(A,Z/pZ)| � 1.9184p.

2

Corollary 3.35. We have

c(2,Z)p+o(p) ≤ |T (2,Z/pZ)| � 1.9184p+o(p)

with c(2,Z) = 1.75488 . . . the positive root of equation x3 − 2x2 + x− 1 = 0.

Proof: Lower bound is trivial, taking into account Proposition 3.20. For
the upper one, by Theorem 3.11 we know that

|T (γ(p),Z/pZ)| = 2p/2+o(p).

Hence it only remains to study when 3 ≤ |A| ≤ γ(p). In this case we have

|{B + A : A,B ⊂ Z/pZ, 3 ≤ |A| ≤ γ(p)}| ≤ p

(
p

γ(p)

)
max

3≤|A|≤γ(p)
|S(A,Z/pZ)|.

Since

p

(
p

γ(p)

)
= exp(o(p)),

by Theorem 3.34 we obtain the result. 2

Remark 3.36. We think that |T (2,Z/pZ)| = | ∪|A|=2 S(A,Z/pZ)|+O(αp) for
some α < c(2,Z), namely that the lower bound in the previous Theorem is
the correct one. We have not been able to prove it, in part because when
|A| ≥ 3, actually in the proof we only use that |A| ≥ 2. We should find the
suitable way of using that |A| ≥ 3.
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Notation

f � g := f = O(|g|).

f ∼ g := lim
f

g
= 1.

f � g := g � f � g.

f = O(g) := lim sup
|f |
g
<∞.

f = o(g) := lim sup
f

g
= 0.

f = Ω(g) := lim sup
|f |
g
> 0.

IA := Characteristic function of the set A.

|A| := Cardinal of the set A if it is finite, and Lebesgue measure of A
if it is infinite.

(a1, a2, . . . , ak) := Great common divisor of a1, a2, . . . , ak.

d(n) := Number of divisors of n.

ω(n) := Number of prime factors of n.

χ := Dirichlet character.(
d

n

)
:= Legendre-Jacobi-Kronecker symbol.

f̂ := Fourier transform, f̂(ξ) =
∫∞
−∞ f(x) e−2πiξx dx.

113



114 CHAPTER 3. THE NUMBER OF SUMSETS

Mf := Mellin transform, Mf (s) =
∫∞

0
f(x) xs−1 dx.

e(x) := e2πix.

C∞0 (M) := Differentiable functions of any order with compact support
M .

pk||n := pk|n and pk+1 6 |n.

dimHA := Hausdorff dimension of A.

dimMA := Minkowski dimension of A.

Hs(A) := Exterior s-dimensional Hausdorff measure of A.

GL(n,A) := Group of non-singular matrices n×n with coefficients in
A.

SL(n,A) := Group of matrices n × n with determinant 1 and coeffi-
cients in A.

L(s, χ) := Dirichlet L-function attached to the character χ.

{x} := Fractionary part of x.

‖x‖ := Distance to the nearest integer if x ∈ R, and euclidean norm
if it is a vector of more than one dimension.

Li(x) := Integral logarithm, Li(x) =
x∫
2

dt

log t
.

µ(n) := Möbius µ function, µ(1) = 1, µ(n) = 0 if n is not square-free
and µ(n) = (−1)k if n is a product of k different primes.

Λ(n) := Von Mangoldt symbol, Λ(n) = log p if n = pk with p prime,
and Λ(n) = 0 if n 6= pk.

ζ(s) := Riemann ζ function.

A× := Units of the ring A.
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