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Spectralimethods On the Kuznetsov formula

Exotic approximate identities and Maass forms

Non-holomorphic modular forms

In 1949, H. Maass introduced these forms to study L-functions in
real quadratic fields.

The problem:  Are there modular forms corresponding to
these L-functions?

Classic modular forms Non-holomorphic forms
Holomorphic (A = 0). Eigenfunctions of A.
Finite vector spaces. Hilbert space (Spectral theory).
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Spectral methods

On the Kuznetsov formula

Exotic approximate identities and Maass forms

Geometrically:

In the upper half plane H, we consider the hyperbolic distance d.
When a Fuchsian group I' acts on H, the quotient space N'\H
acquires a Riemannian structure.

H= —

The non-holomorphic modular forms are the functions of IN'\H.
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Non-compact case

Compact case

Introduction to the
Spectral Theory
of Automorphic Forms

Honryk Iwanioc
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Spectralimethods On the Kuznetsov formula

Exotic approximate identities and Maass forms

Fourier

Any periodic function can be represented by a series of sines and

cosines .

f(X) — Z a’7627rmx
»[ AT = g2 pR g2minx. A= d?/dx? ]
Maass

Any automorphic function can be expanded into eigenfunctions

contribution of the
f _ s
(2) Z ajuj (2) + (continuous spectrum)
———

discrete spectrum

A = hyperbolic Laplacian
- = ).y yp p
Ay Ajdy uj = Maass form
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Spectralimethods On the Kuznetsov formula

Exotic approximate identities and Maass forms

Fourier

Any periodic function can be represented by a series of sines and

cosines F(x) = Z a,,e27ri"X
»[ Ae2minx — _47T2n2e27rinx' A = dZ/dX2 ]
Maass

Any automorphic function can be expanded into eigenfunctions

f(z) = Zajuj(z) ; if T\H is compact.
—_—

discrete spectrum

A = hyperbolic Laplacian
- R Y yp p
Ayj Ajuj, uj = Maass form
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Spectral methods

On the Kuznetsov formula

Exotic approximate identities and Maass forms

e The constant eigenfunction: [uo(z) = |I'\H|_1/2]

o First nontrivial Maass forms:
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Spectralimethods On the Kuznetsov formula

Exotic approximate identities and Maass forms

Automorphic kernel

Given a function k : [0,00) — R

K(z, W):Zk(d('yz, w)), z,weH
vyer

is automorphic in z and w:  K(z,w) = K(yz,w) = K(z,yw).

Pretrace formula

K(z,w) = Zh Yui(z)u;(w) + .

Jj=>0

where h is the Selberg transform of k (up to a change of variables).
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Spectrallipethiods On the Kuznetsov formula

Exotic approximate identities and Maass forms

The Kuznetsov formula SLy(Z)

Zh(tj)yj v;(m) Z S(n,m;c) ( \/W>+

c

o A consequence of the Kuznetsov formula is that there is
cancellation among Kloosterman sums for different moduli.

O This can also be used to deduce spectral results from
arithmetic results via Kloosterman sums.
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Spectrallipethiods On the Kuznetsov formula

Exotic approximate identities and Maass forms

The Kuznetsov formula SL»(Z)

Zh(t)yj Y)vi(m) + Z S(n,m;c) ( m)—i—

C

[ Jit(x) :
2 h(t)———= f
1/ t (t)cosh(m‘) dt, if mn>0

— 00

4 oo
;/ th(t)Kaie(x) sinh(nt) dt, if mn <0

» Asymmetry between the cases mn > 0 and mn < 0.
» Difficulties to invert the integral transform h — H.
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Spectral methods
opectr On the Kuznetsov formula
Combinatorial methods . . . . .
. Exotic approximate identities and Maass forms
Analytical methods

The kernel of these transforms is by no means simple

[ F(x, 1) = e"t/2Kin(x) ]

YA SVAW V.VTY
LAY : VA

08 3 - » ¢ i
non-harmonic oscillation transition range exp. decay

almost zero transition range  harmonic oscillation

t large, x variable x large, t variable
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Spectrallipethiods On the Kuznetsov formula

Exotic approximate identities and Maass forms

The Kuznetsov formula SL»(Z)

C

Zh(t)w n)v;(m) + - i%s(n, m; c) H(‘“T_V'm”'> n
c=1

Theorem
For all x > 0, H(x) = G(x) where

G(x) = 4nx /000 k(r)Jo(x\/r + €o) dr, ]

with g =1 if mn >0 and ¢ =0 if mn < 0.
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Spectrallipethiods On the Kuznetsov formula

Exotic approximate identities and Maass forms

Why a new formulation?

o The application of the Kuznetsov formula becomes simpler than
with the original statement, because the transforms h — k and
k — G are almost as simple as Fourier transforms.

B, bounds h
B, bounds A’

Bo(x)Bi(x)

2/ . 2X
— k?(sinh 5) <C T

For h(t) = e~*/T" we obtain a quick proof of

S ()P /T 4 T

uniformly for [n| < CT27%, § > 0.
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Spectrallipethiods On the Kuznetsov formula

Exotic approximate identities and Maass forms

Why a new formulation?

o The application of the Kuznetsov formula becomes simpler than
with the original statement because the transforms h — k and
k — G are almost as simple as Fourier transforms.

o We find an extra-short and natural proof of the Kuznetsov formula.
This proof avoids any knowledge about special functions except the
definition of J.

| Jo(x) . [ \/gcos(x —/4) ]

| VAVA\/\V/ \/A\/\\/\\/
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Spectrallipethiods On the Kuznetsov formula

Exotic approximate identities and Maass forms

Why a new formulation?

o The application of the Kuznetsov formula becomes simpler than
with the original statement because the transforms h — k and
k — G are almost as simple as Fourier transforms.

o We find an extra-short and natural proof of the Kuznetsov formula.
This proof avoids any knowledge about special functions except the
definition of Jp.

o It allows to use pairs k and h given by closed formulas.

{ G(x) = 471'X,u_1e_xz/4“7 w>0 ]

k(r)=e "« s h(t):4eu/2\/§K,-t(u/2)

J
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Spectrallipethiods On the Kuznetsov formula

Exotic approximate identities and Maass forms

Why a new formulation?

o The application of the Kuznetsov formula becomes simpler than
with the original statement because the transforms h — k and
k — G are almost as simple as Fourier transforms.

o We find an extra-short and natural proof of the Kuznetsov formula.
This proof avoids any knowledge about special functions except the
definition of Jp.

o It allows to use pairs k and h given by closed formulas.
o The reversed Kuznetsov formula becomes more natural.
We can think of it as a Fourier inversion.

G(x) = 4nx /000 k(r)Jo(x\/r + €o) dr
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Spectralimethods On the Kuznetsov formula

Exotic approximate identities and Maass forms

1. Spectral methods

9 Exotic approximate identities and Maass forms

Dulcinea Raboso Spectral, combinatorial and analytic methods in number theory



Spectralimethods On the Kuznetsov formula

Exotic approximate identities and Maass forms

Two well-known examples of approximate identities

Both are linked to the Fourier expansion of classical modular forms. The
first through the function 6 and the second through the j-invariant.

o \

15
1 2
Z( 3 e_"2/4> —  3.141592653580793328 . . .

n=-—15
L m = 3.141592653589793238. .. )

B )

e™I63  —  262537412640768743.999999999999250 . . .
\744—1—6403203 = 262537412640768744

J

F. Chamizo and D. Raboso, Modular forms and almost integers (Spanish).
Gac. R. Soc. Mat. Esp. 13 (2010), no. 3, 539-555.
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Spectralimethods On the Kuznetsov formula

Exotic approximate identities and Maass forms

Two examples of our identities

r(n) = #{(a,b) € Z? : &+ b? = n} J
RS m r(n)r(n+4) [ A4
5—n§::0(3+(_1) )W, J—/_OomV(t)lZ dt

f(t) = C(s)L(s,xa)/C(2s)  with s=1+it.

D .
5-3 . 14
T=7T—6 with 0 < e < 4-107".

\

A2

s 1 2
> r(n)r(3n+2)y/ne (398" = 726%/x(1~ ¢), e~3-107".
" J
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Spectralimethods On the Kuznetsov formula

Exotic approximate identities and Maass forms

Spectral theory (pretrace formula)

Z k (vz,w)) = a0 + a1u1(2)ur(w) + - - - = ap.
~ver

We choose k, I', z and w such that K(z, w) has an arithmetically meaning.

D \

The group is [ = SL(Z). The error depends on the third eigen-

value (A3 = 190.13) due to certain symmetries of the eigenfunc-

tions. y
A2

The group is used to construct Shimura curve X(6,1). The error

depends on the first eigenvalue (A1 = 6.96) because in this case

there are no symmetries. )
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Spectralimethods On the Kuznetsov formula

Exotic approximate identities and Maass forms

Where do the products r(n) come from?

K(z,w) = Z k(d(vz, w)).

yel
It turns out that d((f: 2)/, i) is a function of a® + b? + c? + d?
and ad — bc = 1. Note that
a+b+ct+d*=n (a—dP?+(c+b?=n-2
— » >
ad —bc=1 (a+d)*+(c—b)*=n+2

and the number of solutions is essentially r(n+2)r(n — 2).

H. lwaniec, Spectral Methods of Automorphic Forms.
Grad. Stud. Math. 53, Amer. Math. Soc., Providence, RIl, 2nd ed., 2002.
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Spectralimethods On the Kuznetsov formula

Exotic approximate identities and Maass forms

In the second example r(n) appears using a quaternion group: J

G={2 (jc++b;/j§ i Z\\g) e SLy(®)}

with a, b, ¢, d € Z of the same parity.

The equations become

3(b2 +d?) =m b b? +d? =2n
2 2 2 2 _
at+ct=m+4 a*+c=6n+4

Using r(n) = r(2n), the number of solutions is r(n)r(3n + 2).
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Distributional properties of powers of matrices
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Combinatorial methods RowladisSeariencd

Distributional properties of powers of matrices

Rowland’s Sequence

ax = ak—1 + ged(k, ak—1) with a; =7.

[ k |l1]2/3]4|5[6[ 789 10/11].. |
ak 7181910 |15 |18 |19 |20 |21 |22 (33
ak — k- 111513 ]1]1]1]1]11

Theorem E.S. Rowland

akx — ax_1 is 1 or prime for every k > 1.

E.S. Rowland, A natural prime-generating recurrence.
J. Integer Seq., 11(2): Article 08.2.8, 13, 2008.
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Spectral methods
Combinatorial methods
Analytical methods

Rowland’s Sequence

Distributional properties of powers of matrices

Auxiliary sequences

3)
|

n=Ch1 +1p(c, 1) -1
. and ry, = —7—"0

where 1fp(+) is the least prime factor of an integer.

Proposition
Ifp(c:_;), if k=r; for some n> 1.
A — k-1 = .
1, otherwise.
[ {ak — ak—1}k>1 contains infinitely many primes. ]
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Combinatorial methods RowladisSeariencd

Distributional properties of powers of matrices

Generalized Rowland’s sequence

ay = ax—1 + ged(k,ak—1) with a3 > 3 odd.

Lk J vt [ 213 ]4]5/[6][7]8]09 |
2 |[ 805 | 806 | 807 | 808 | 809 | 810 | 811 | 812 | 813
2 — 3k 1 [ 1 [ 1 [ 1|1 [1]1]1

10 | 11 12 | 13 | 14 | 15 | 16 | 17 | 18

814 | 825 | 828 | 829 | 830 | 835 | 836 | 837 | 846
1 11 3 1 1 5 1 1 9
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Spectral methods
Combinatorial methods
Analytical methods

Rowland’s Sequence

Distributional properties of powers of matrices

Auziliary sequences

fps1 =min {k > ry : ged(k, c)) # 1} | cpy1 = cn + ged(Cn, ry1) — 1
n = 1 ’ Cl = ai; — 2
Proposition
ak=ch+k+1 for r,<k<rmp.
ged(cp—1,rn), if k=r, for some n> 1.
A — k-1 =

1, otherwise.
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5 5 Rowland’s Sequence
Combinatorial methods AT a - .
Distributional properties of powers of matrices

Conjecture A

For any generalized Rowland'’s sequence, there exists a positive
integer N such that ay — ax_1 is 1 or prime for every k > N.

Fixed a; > 3 odd, the Conjecture A holds if any of these
conditions is satisfied:
{ There is an n such that 2r, — 1 = c,.

¢ There is an m such that ¢, is prime.

fny1 = min {k > r,: ged(k, ¢)) #1},  cap1 = o+ ged(Cn, fag1) — 1
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Combinatorial methods RowladisSeariencd

Distributional properties of powers of matrices

[nlf1]2]3]4|5[6[7][8|9]10]... |
mll1]5] 6 11122324147 ]48] 50

cn || 59112123 |45[47|93[95 |99

¢ 0
|nf1]2[3/4]5/6| 7 |89 /[10]..]
mf[1]3]5 |6 |41|42] 83 | 84 | 167 | 168

c, || 33135 |39 | 41 | 81| 63| 165 | 167 | 333 | 335

¢ 0

Loyl 1 | 21 3[4 ]5 1678/ 9] |

[ 1 | 5 ] 7 | 10| 12 | 131 132 ] 263 | 264

c, || 115 | 119 | 125 | 129 | 131 | 261 | 263 | 525 | 527
¢ 0

fny1 = min{k > r, : ged(k, cn) # 1}, cap1 = o+ ged(Cn, rag1) — 1
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5 5 Rowland’s Sequence
Combinatorial methods AT a - .
Distributional properties of powers of matrices

Congecture A

For any generalized Rowland'’s sequence, there exists a positive
integer N such that ay — ax_1 is 1 or prime for every kK > N.

ng=inf{n € Z*:c,=2r,— 1}, my=inf{n€Z" : ¢, is prime}.

Congjecture B

(i) np < oo, (il)) mo < oo, (iii) np=mo+1 < oc.

[ Conjecture B = Conjecture A ]

fpe1 = min {k > 1y ged(k, cp) # 1}, Cn+1 = Cn + ged(Cny rng1) — 1



5 5 Rowland’s Sequence
Combinatorial methods AT a - .
Distributional properties of powers of matrices

Rowland’s chains

They are finite sublists of primes inside of a sequence {ax — ax—1}.

For a; = 7, the first 15 primes of the sequence are
Cis = {5,3,11,3,23,3,47,3,5,3,101, 3,7, 11, 3}.

We give a characterization which allows to verify whether C,, is a
Rowland'’s chain. For example:

v
Cs = {3,19,5,3} ] lC3:{17,5,p} Vp>3]

Com ={p1,---+sPm,P1,---,Pm} With p1,...,pm distinct primesj
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Combinatorial methods Rowland’s Sequence

Distributional properties of powers of matrices

II. Combinatorial methods

9 Distributional properties of powers of matrices
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Combinatorial methods Kl EEeme:

Distributional properties of powers of matrices

We start with an example

o We choose a “large” prime
p = 2311.

o Given a matrix M, we take the pseudorandom points

Go) = (2)

reduced modulo p.

exp,(M) = order of M modulo p. J
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Combinatorial methods Kl EEeme:

Distributional properties of powers of matrices

p = 2311

A (703 633 g_ (704 635 c_ (703 787
~\934 841 ~ \653 589 — \862 965

—1 =1
expy(A) = p 1 expy(B) = 5= exp,(C€) = Fr
o
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Rowland’s Sequence

i ial h T q -
Combinatoriallmethods Distributional properties of powers of matrices

p = 2311

A (703 633 g_ (704 635 c_ (703 187
-~ \934 841 ~ \653 589 ~ \862 965
p—1 p—1
epr(A) =P 1 epr(B) = T epr(C) = ﬁ

2000
2000

B 1300
1500

o0
000

sof) s0| -

EQ 60 00 000

TR Y
500 000 500 2000
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Rowland’s Sequence

i ial h T q -
Combinatoriallmethods Distributional properties of powers of matrices

p = 2311

A (703 633 g_ (704 635 c_ (703 187
-~ \934 841 ~ \653 589 ~ \862 965
p—1 p—1
epr(A) =P 1 epr(B) = T epr(C) = ﬁ

2000
2000

B 1500
o0 "

50| -

:

E 00 e 000 0 1000 1300 2000
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Rowland’s Sequence

i ial h T q -
Combinatoriallmethods Distributional properties of powers of matrices

p = 2311

A (703 633 g_ (704 635 c_ (703 187
-~ \934 841 ~ \653 589 ~ \862 965
p—1 p—1
epr(A) =P 1 epr(B) = T epr(C) = ﬁ

2000
20001,

B 1500
100 00| "L

1000}

s, 50

. :
£ ey e 000 0 1000 1300 2000
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Rowland’s Sequence

i ial h T q -
Combinatoriallmethods Distributional properties of powers of matrices

p = 2311

A (703 633 g_ (704 635 c_ (703 787
~\934 841 ~ \653 589 — \862 965

—1 =1
expy(A) = p 1 expy(B) = 5= exp,(C€) = Fr
o
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Rowland’s Sequence

i ial h T q -
Combinatoriallmethods Distributional properties of powers of matrices

p = 2311

A (703 633 g_ (704 635 c_ (703 787
~\934 841 ~ \653 589 — \862 965

-1 -1
exp,(A) = p— 1 exp,(B) = o= exp,(€) = Bn
v
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Rowland’s Sequence

i ial h T q -
Combinatoriallmethods Distributional properties of powers of matrices

p = 2311

4 (793 633 5 (704 635 c_ (703 787
- \934 841 ~ \653 589 ~ \862 965
p—1 p—1
epr(A) =pP— 1 epr(B) = 2 epr(C) = ﬁ

2000
2000 2000

1500
1500

1500

1000

50

EQ 60 00 000

500 1600 oo 2000 ED ey Hao 000
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Rowland’s Sequence

i ial h T q -
Combinatoriallmethods Distributional properties of powers of matrices

p = 2311

A (703 633 g_ (704 635 c_ (703 187
-~ \934 841 ~ \653 589 ~ \862 965
p—1 p—1
epr(A) =P 1 epr(B) = T epr(C) = ﬁ

2000
2000

1500

1500

1000,

50

EQ 60 00 000
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Rowland’s Sequence

i ial h T q -
Combinatoriallmethods Distributional properties of powers of matrices

p = 2311

A (703 633 g_ (704 635 c_ (703 187
-~ \934 841 ~ \653 589 ~ \862 965
p—1 p—1
epr(A) =P 1 epr(B) = T epr(C) = ﬁ

2000
2000

1500

1500

1000,

50

EQ 60 00 000

500 1000 00 2000
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Rowland’s Sequence

i ial h T q -
Combinatoriallmethods Distributional properties of powers of matrices

p = 2311

A (703 633 g_ (704 635 c_ (703 187
-~ \934 841 ~ \653 589 ~ \862 965
p—1 p—1
epr(A) =P 1 epr(B) = T epr(C) = ﬁ

L 2000
2000 2000

£ 1300
1500 1500

1000,

50 50

ED ey e 00 0 1000 1300 2000
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Rowland’s Sequence

i ial h T q -
Combinatoriallmethods Distributional properties of powers of matrices

p = 2311

4 (793 633 5 (704 635 c_ (703 787
- \934 841 ~ \653 589 ~ \862 965
p—1 p—1
epr(A) =pP— 1 epr(B) = T epr(C) ﬁ
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Rowland’s Sequence

i ial h T q -
Combinatoriallmethods Distributional properties of powers of matrices

p = 2311

A 703 633 B 704 635 c 703 787
- \934 841 ~ \653 589 ~ \862 965

-1 -1
expp(A) =p-—1 expp(B) = pT expp(C) =S %

2000
2000

£ 1300
1500

1000,

50

EQ 60 00 000

ED ey 00
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Rowland’s Sequence

i ial h T q -
Combinatoriallmethods Distributional properties of powers of matrices

p = 2311

4 (793 633 5 (704 635 c_ (703 787
- \934 841 ~ \653 589 ~ \862 965
p—1 p—1
epr(A) =pP— 1 epr(B) = T epr(C) = ﬁ
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Rowland’s Sequence

i ial h T q -
Combinatoriallmethods Distributional properties of powers of matrices

p = 2311

4 (793 633 5 (704 635 c_ (703 787
- \934 841 ~ \653 589 ~ \862 965
p—1 p—1
epr(A) =pP— 1 epr(B) = T epr(C) ﬁ
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Rowland’s Sequence

i ial h T q -
Combinatoriallmethods Distributional properties of powers of matrices

By changing the prime

703 787

C=1lg62 965

p = 2309

-1
expp(C) =P Tl

2000
1500 1500
1000 s

500 30

500 Tooo o0 2000 00 000 00 000

2000

1000

p = 2311
p—1
xp,(C) = 57

60

500 2000
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Combinatorial methods Kl EEeme:

Distributional properties of powers of matrices

Types of sieving

Primes

Sieve of Eratosthenes

classical sieve 2, 3, 4 5 6 7 8 910

11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
51, 52, 53, 54, b5, 56, 57, 58, 59, 60,
61, 62, 63, 64, 65, 66, 67, 68, 69, 70,
71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
81, 82, 83, 84, 85, 86, 87, 88, 89, 90,
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Combinatorial methods Rowland’s Sequence

Distributional properties of powers of matrices

Types of sieving

Primes
Sieve of Eratosthenes

classical sieve 2, 3 # 5 p 7.8 910
11, 2 13, M4, 15, 16, 17, 18, 19, 20,
21, 27, 23, 24, 25, 26, 27, 26, 29, 30,
31, 32 33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
61, 62 63, 64, 65, 66, 67, 68, 69, 70,
71, 72, 73, A, 75, 76, 77, 78, 79, 80,
1;% 83, 84, 85, 36, 87, 88, 89, 90,

2|n
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Combinatorial methods Reuilail's Senpems:

Distributional properties of powers of matrices

Types of sieving

Primes

Sieve of Eratosthenes
classical sieve 2, 3 5, 7, 9
11, 13, 18, 17, 19,
21, 23, 25, 27, 29,
31, 33, 35, 37, 39,
41, 43, /4’5 47, 49,
5, 53, 55, 57, 59,
61, 63, 65 67, 69,
71, 73, 75, 77, 79,
41, 83, 85, 97, 89,

3| n
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Combinatorial methods Reuilail's Senpems:

Distributional properties of powers of matrices

Types of sieving

Primes
Sieve of Eratosthenes

classical sieve 2z, & 5, 7,
11, 13, 17, 19,
23, 29,

31, 37,

41, 43, 47,
53, 59,

61, 67,
71, 73, 79,
83, 89,

We eliminate one class by prime.
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Combinatorial methods Kl EEeme:

Distributional properties of powers of matrices

Types of sieving

Squares

2, 3 4, 5 6 7 8 910

11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 30,

The large sieve 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50,

51, 52, 53, 54, 55, 56, 57, 58, 59, 60,

61, 62, 63, 64, 65, 66, 67, 68, 69, 70,

71, 72, 73, 74, 75, 76, 77, 78, 79, 80,

81, 82, 83, 84, 85, 86, 87, 88, 89, 90,
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Combinatorial methods

Types of sieving

Squares
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Combinatorial methods Kl EEeme:

Distributional properties of powers of matrices

Types of sieving

Squares

3 4 6 7 910
17 13, 15, 16, 18, 19,

21, 22, 24, 25, 27, 28, 30,

The large sieve 31, 33 34, 36, 37, 39, 40,
A2 43 45,46, 48, 49,

51, 52, 55, 57 56, 60,

61, 63, 64, 66, 67, 69, 70,

72, 73, 75,76, 78, 79, 80,

81, 82, 84, 85, 87 88, 90,

-
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Combinatorial methods Rowland’s Sequence

Distributional properties of powers of matrices

Types of sieving

Squares

The large sieve 36,
49,

64,

81,

We eliminate many classes by prime.
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Combinatorial methods Rowland’s Sequence

Distributional properties of powers of matrices

Types of sieving

The larger sieve

We eliminate many more classes by prime.
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Combinatorial methods Kl EEeme:

Distributional properties of powers of matrices

Types of sieving

Number of classes close to prime.

order of n in ]F;

exp,(n) = 0 ifp|n

It is very unlikely to find n such that exp,(n)

The larger sieve is small for many consecutive primes.

For p in a reasonably large range, k — n* (mod p) is a good
pseudorandom number generator for almost any choice of n.

P.X. Gallagher, A larger sieve. Acta Arith., 18:77-81, 1971.
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O | P o Rowland’s Sequence

Distributional properties of powers of matrices

Set (Interval):
GL2( [N] {A € GLz(Z) 0< a,J N}

Choose 0 < 0 < v

Primes:

{p prime : p< N7}

Elements that remain after sieving:

{A € GLy(Z)[N] : exp,(A) < N?, p< N7}
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Combinatorial methods Rowland’s Sequence

Distributional properties of powers of matrices

For a fixed prime p, we consider

{A € GLo(Fp) : det A= m}

How many matrices have exp,(A) = n? J

@ Diagonalizable case

((g mao_l) a €y, (g O?P) a€Fp-TF,

o Non-diagonalizable case

a 1 -
(0 a) aEIE"p

Canonical form <«----+  Trace J
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Combinatorial methods Kl EEeme:

Distributional properties of powers of matrices

Gallagher's sieve applied to the traces gives

Theorem

Given € > 0 and 0 < 6 < v <1, the number of matrices
A € GL2(Z)[N] such that exp,(A) < N? for all p < N7, is

< CN20+1+E

Theorem

Under the same conditions, with A € SLy(Z)[N], the number of
matrices is

< CN9+1+8

Using exponential sum techniques we also prove that there are
“nearby” matrices with the same order.
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Van der Corput’s method and optical illusions

Lattice points in the 3-dimensional torus

Analytical methods

Many problems in number theory lead to the estimation of
trigonometric sums

a<n<b
where e(x) = ™ and f is a real function.

Van der Corput’s method

o A-process: This corresponds to divide the range of summation
applying Cauchy’s inequality to reduce the oscillations, at the
cost of certain loss of accuracy in the estimation.

@ B-process: We transform the new sum by Poisson summation
combined with the stationary phase principle.
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Van der Corput’s method and optical illusions

Lattice points in the 3-dimensional torus

Analytical methods

Some examples

o .

If f" <) N
> e(f(n)) < C(NAYZ 4 A71/2).

n=1

\ J

o .

If /' is monotonic and |f'| <1/2,

N N
S e(f(n) :/1 e(F(x)) dx + O(1).

n=1
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Van der Corput’s method and optical illusions

Lattice points in the 3-dimensional torus

Analytical methods

Our trigonometric sum

N
S(N; o) = Z e(av/n) with ac > 0 fixed.

n=1

2

The derivative of a4/x decreases to 0, so we expect a good
approximation by

/N e(av/x) dx = ge(a\/ﬁ— 1/4) + O(1).

~N
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Spectral methods
Combinatorial methods
Analytical methods

Van der Corput’s method and optical illusions

Lattice points in the 3-dimensional torus

«---->

a=1/2 Archimedean spiral

Consequently a spiral should show up for every «,
[ (S(m )}V, ][ L(wa)2t(sint, - cos t) ]

with t € [1,27av/N|
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Analytical methods
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Van der Corput’s method and optical illusions

Lattice points in the 3-dimensional torus

Analytical methods

The approximation of the exponential sum

[ S(x; @) = A(x; ) + (translation), ]

where

Ax; a) = —e(o‘f;; 1/4) (

V/X + i cosh Iog(wa)),

that when x varies approximates an Archimedean spiral of width 1/7a.

4

Optical illusions?
o The separation between successive turns tends to be 1/ma?.

o When o > 7! the width of the spiral is smaller than the distance
between consecutive values of the discretization.

o A(m;a) and A(ny; ) with ny, np € Z" become geometrically
consecutive if ay/ny ~ ay/ny + 1.
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Spectral methods
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Analytical methods

Van der Corput’s method and optical illusions

attice points in the 3-dimensional torus

Branch

It is a sequence {.A(tk; a)}iozo where tj satisfies the recurrence

relation
20/t + 1 1
2Rl 1)
«

tk+1:tk+{ 5

a=1 a=+3 a=1.3
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Van der Corput’s method and optical illusions

5 Lattice points in the 3-dimensional torus
Analytical methods . -

The recurrence relation (a? = n)

2y/nty +1 1
===+l

ter1 =t + [

We find an explicit solution of the recurrence when n is even.

The simplest case is n = 2,

k(k +1
t = % + [V2to | k + to.

What happens if n is odd? J
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Lattice points in the 3-dimensional torus

a=16 a =410
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Lattice points in the 3-dimensional torus
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Van der Corput’s method and optical illusions

Analytical methods Lattice points in the 3-dimensional torus

Lattice points

The problem: Estimation of the number of points with integer
coordinates in large closed domains.

For example, given a domain D € R?, we study the number of points of

72 in RD when R € R" increases.

The number of lattice points in RD is

SRR = R S R(RA),

Aez? nez?

where  is the characteristic function of D.

main term: |D|R?.

Il
oL ol

error term.
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Van der Corput’s method and optical illusions

Lattice points in the 3-dimensional torus

Analytical methods

The circle problem M.N. Huxley

#{ne 72 . |7l < R} = TR + OE(R131/208+5)

for every € > 0.

= The sphere problem D.R. Heath-Brown

4
#{Aez® . ||i| <R} = §7TR3 1 O, (R2Y10+)

- / for every € > 0.

S 2
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Van der Corput’s method and optical illusions

Lattice points in the 3-dimensional torus

Analytical methods

Lattice points in the R-scaled torus

1o () e (T <)

where 0 < p < p’ are fixed constants. Say p’ = 1.

NR)y=#{reZ® : R7'AeT}, R>1 J

Theorem

N(R) = |T|R® + MgR®/? 4 O.(R*/3*°)

for every € > 0, where Mg is a bounded periodic function.
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Van der Corput’s method and optical illusions

Lattice points in the 3-dimensional torus

Analytical methods

Poisson summation formula

N(R) =D x(R'A)"="R* > X(RA).

nez3 nez’
ii=(0,0,0) X(0)R?
= (0,0, n) R*Y " X(0,0, Rn)
n#0

Otherwise R3 Z Z )X(0, Rv/m, Rn)

n=—oco m=1
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Van der Corput’s method and optical illusions

Lattice points in the 3-dimensional torus

Analytical methods

Poisson summation formula

NR) =D x(R'A)"="R*> X(RA)

nez3 ez’
7= (0,0,0) 2m2p?R3
= (0,0, n) 4mpR2Y" A(27Rpn)
n=1 n
Otherwise 0] (R4/3+€)
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Van der Corput’s method and optical illusions

Lattice points in the 3-dimensional torus

Analytical methods

An idea about the estimation of the error term

o Stationary phase principle to get a new exponential sum.
@ Using the symmetries we “glue” the variables.

o After some manipulations the sum becomes one appearing in
the sphere problem.

Geometrically

The sections of a torus and a sphere
are alike and differ in a translation
which introduce a phase in the
Fourier transform side and is

eliminated with Cauchy’s inequality.

F. Chamizo and H. lwaniec, On the sphere problem.
Rev. Mat. Iberoamericana 11(2): 417-429, 1995.
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