Odd zeta values

Introduction. It is well-known that the Riemann zeta function $\zeta(s)=\sum_{n=1}^{\infty} n^{-s}$ admits an analytic extension to $\mathbb{C}-\{1\}$. The special values $\zeta(n)$ can be evaluated for $n \in \mathbb{Z}^{+}$even and for $n \in \mathbb{Z}^{-}$odd, moreover $\zeta(-2 n)=0$ for $n \in \mathbb{Z}^{+}$. The first negative odd values are $\zeta(-1)=-1 / 12$ and $\zeta(-3)=1 / 120$. A bulletproof faith on the infinite series would lead to the astonishing relations

$$
1+2+3+4+5+6+\cdots=-\frac{1}{12} \quad \text { and } \quad 1^{3}+2^{3}+3^{3}+4^{3}+5^{3}+6^{3}+\cdots=\frac{1}{120}
$$

Believe or not, it has some significance on theoretical physics.
J. F. González-Hernández called my attention noting that $\zeta(-1)=\zeta(-13)$ and he asked me if there are more coincidences of negative odd zeta values.

We are going to show that for $m<n$ positive integers

$$
\zeta(1-2 n)=\zeta(1-2 m) \quad \text { if and only if } \quad n=7 \text { and } m=1
$$

To show it, consider the asymmetric form of the functional equation

$$
\zeta(s)=2^{s} \pi^{s-1} \sin \left(\frac{\pi s}{2}\right) \Gamma(1-s) \zeta(1-s)
$$

It implies for $n \geq 3$

$$
-\frac{\zeta(1-2(n+1))}{\zeta(1-2 n)}=\frac{(2 n+1) n \zeta(2 n+2)}{2 \pi^{2} \zeta(2 n)}>\frac{7 \cdot 3}{2 \pi^{2} \zeta(6)}>1
$$

In particular, $|\zeta(1-2 n)|$ is strictly increasing for $n \geq 3$. As $|\zeta(-13)|=|\zeta(-1)|>|\zeta(-3)|$, we have that $|\zeta(1-2 n)|$ is greater than the previous values for $n>7$. The proof is complete checking in a table that there are not more coincidences for $n \leq 7$. Actually, after the previous comments the only part of the table you need is:

n	3	4	5	6
$\zeta(1-2 n)$	$-1 / 252$	$1 / 240$	$-1 / 132$	$691 / 32760$

