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Abstract
We give a proof with almost no prerequisites of the Taylor expansions
of (arcsinz)? and (arcsinh z)? where arcsin and arcsinh are the inverse
functions of sin and sinh in a neighborhood of the origin. These expansions
are not usually covered in Calculus courses.

1 Some fairly known related series

Consider f(z) = (1 + x)~Y/2. It is clear that its n-th derivative is of the form
f™(z) = ¢y (14 z)~Y/27". Computing f"*Y one deduces c 41 = — (3 +n)c,
with c¢p = 1. It is easy to check that (—1)”2*2”n!(2:) satisfies this recurrence,
giving a closed expression for ¢,. Then we have the Taylor expansion
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Without any consideration about the growth of the central binomial coefficients,
we know that this is an actual equality for any x in the open unit disk because
f(2) = (1 4+ 2)~'/2 defines a holomorphic function there. It also proves that we
can replace x by 22 and integrate term by term, getting

St —1)" /2 2n+1
(2) arcsinh z = 7;) (223 <:) an 1 for |z| < 1.
Recall that arcsinh z is the inverse function of sinhx = %(em — e’m) and its

derivative is (14+-22)~1/2. As a matter of fact, arcsinh z equals log (z+Va? +1).
Replacing instead z by —z2 in (1), we get in the same way
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(3) arcsinx:nz;)w(:> ;n+1 for |z| < 1.
In fact, (2) and (3) are equivalent because by the Euler formula, we know
sinh(iz) = (e!® — e~%®) /2 = isinx, which implies arcsint = —i arcsinh(it).

2 The expansions

We are going to show the Taylor expansions, valid for |z| < 1,

(4) (arcsinz) Z and (arcsinh z)? Z D" 2y
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As before, arcsint = —iarcsinh(it) shows that they are equivalent and it is
enough to prove the second one.

Consider the integral

bort 2sinhucoshu dt
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o Jo cosh”wu — t2sinh”u
and apply Fubini theorem. To perform first the integration in u, we substitute

cosh? z = 1+ sinh? z and to reverse the order of integration, we use the partial
fraction decomposition

2 sinh u cosh u sinh u sinh u

cosh?u — t2sinh?w  coshu + tsinhw  coshw — tsinhw’
+u

Doing both calculations and noting cosh u & sinhu = e™*, we have

/1 log (1 +(1- tj) sinh? gg) it — /1 log coshu + S%nhu du 9
0 1t 0 coshu — sinhu

The Taylor expansion log(1 + z) = >_(—1)""12" /n shows
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Then (4) follows if we prove n(2:) I,_1 = 2*"=1 This is plain for n = 1 and
follows easily by induction using (2n + 1)I,, = 2nl,_;. This relation is well
known. A simple proof consists in writing (1 —#2)"~1 as (1 —2)""1(1 -2 +¢2)
to get
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onl,,_1—2nl, = 2n/ (1=t 12 dt = 2n/ (1—t*)" 142 dt+/ d(t(1—t*)").
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Expanding d(t(1—t?)") we cancel the previous integral and we get an extra I,,.

3 A combinatorial reformulation

We can get 2~ 2(arcsinz)? in two ways: squaring the expansion (3) and using
directly (4). Shifting n by one in the latter formula, we get the shocking relation
(i 1 <2’ﬂ> .132" )2 i 22n+1$2n
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When we open the square, the coefficient of 2™ is
2kY (2n—2k
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22n " (2k+1)(2n — 2k + 1)
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Comparing it with the coefficient in the right hand side and cleaning a little the
result, we get the cumbersome relation:

(2n +2)! ¢~ GIC)
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(n!)? = (2k + 1)(2n—2k+1)

It would be nice to have a simple combinatorial interpretation of this formula
because it would give an alternative combinatorial proof of the expansions (4).



