Two not so well known Taylor expansions

Fernando Chamizo

March 9, 2022

Abstract

We give a proof with almost no prerequisites of the Taylor expansions of $(\arcsin x)^{2}$ and $(\operatorname{arcsinh} x)^{2}$ where \arcsin and arcsinh are the inverse functions of sin and sinh in a neighborhood of the origin. These expansions are not usually covered in Calculus courses.

1 Some fairly known related series

Consider $f(x)=(1+x)^{-1 / 2}$. It is clear that its n-th derivative is of the form $f^{(n)}(x)=c_{n}(1+x)^{-1 / 2-n}$. Computing $f^{(n+1)}$ one deduces $c_{n+1}=-\left(\frac{1}{2}+n\right) c_{n}$ with $c_{0}=1$. It is easy to check that $(-1)^{n} 2^{-2 n} n!\binom{2 n}{n}$ satisfies this recurrence, giving a closed expression for c_{n}. Then we have the Taylor expansion

$$
\begin{equation*}
\frac{1}{\sqrt{1+x}}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{2 n}}\binom{2 n}{n} x^{n} \tag{1}
\end{equation*}
$$

Without any consideration about the growth of the central binomial coefficients, we know that this is an actual equality for any x in the open unit disk because $f(z)=(1+z)^{-1 / 2}$ defines a holomorphic function there. It also proves that we can replace x by x^{2} and integrate term by term, getting

$$
\begin{equation*}
\operatorname{arcsinh} x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{2 n}}\binom{2 n}{n} \frac{x^{2 n+1}}{2 n+1} \quad \text { for } \quad|x|<1 \tag{2}
\end{equation*}
$$

Recall that $\operatorname{arcsinh} x$ is the inverse function of $\sinh x=\frac{1}{2}\left(e^{x}-e^{-x}\right)$ and its derivative is $\left(1+x^{2}\right)^{-1 / 2}$. As a matter of fact, arcsinh x equals $\log \left(x+\sqrt{x^{2}+1}\right)$.

Replacing instead x by $-x^{2}$ in (1), we get in the same way

$$
\begin{equation*}
\arcsin x=\sum_{n=0}^{\infty} \frac{1}{2^{2 n}}\binom{2 n}{n} \frac{x^{2 n+1}}{2 n+1} \quad \text { for } \quad|x|<1 \tag{3}
\end{equation*}
$$

In fact, (2) and (3) are equivalent because by the Euler formula, we know $\sinh (i x)=\left(e^{i x}-e^{-i x}\right) / 2=i \sin x$, which implies $\arcsin t=-i \operatorname{arcsinh}(i t)$.

2 The expansions

We are going to show the Taylor expansions, valid for $|x|<1$,
(4) $(\arcsin x)^{2}=\sum_{n=1}^{\infty} \frac{(2 x)^{2 n}}{2 n^{2}\binom{2 n}{n}} \quad$ and $\quad(\operatorname{arcsinh} x)^{2}=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(2 x)^{2 n}}{2 n^{2}\binom{2 n}{n}}$.

As before, $\arcsin t=-i \operatorname{arcsinh}(i t)$ shows that they are equivalent and it is enough to prove the second one.

Consider the integral

$$
\int_{0}^{1} \int_{0}^{1} \frac{2 \sinh u \cosh u d t}{\cosh ^{2} u-t^{2} \sinh ^{2} u} d u d t
$$

and apply Fubini theorem. To perform first the integration in u, we substitute $\cosh ^{2} x=1+\sinh ^{2} x$ and to reverse the order of integration, we use the partial fraction decomposition

$$
\frac{2 \sinh u \cosh u}{\cosh ^{2} u-t^{2} \sinh ^{2} u}=\frac{\sinh u}{\cosh u+t \sinh u}+\frac{\sinh u}{\cosh u-t \sinh u} .
$$

Doing both calculations and noting $\cosh u \pm \sinh u=e^{ \pm u}$, we have

$$
\int_{0}^{1} \frac{\log \left(1+\left(1-t^{2}\right) \sinh ^{2} x\right)}{1-t^{2}} d t=\int_{0}^{1} \log \frac{\cosh u+\sinh u}{\cosh u-\sinh u} d u=x^{2}
$$

The Taylor expansion $\log (1+x)=\sum(-1)^{n+1} x^{n} / n$ shows

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} I_{n-1} \sinh ^{2 n} x=x^{2} \quad \text { with } \quad I_{k}=\int_{0}^{1}\left(1-t^{2}\right)^{k} d t
$$

Then (4) follows if we prove $n\binom{2 n}{n} I_{n-1}=2^{2 n-1}$. This is plain for $n=1$ and follows easily by induction using $(2 n+1) I_{n}=2 n I_{n-1}$. This relation is well known. A simple proof consists in writing $\left(1-t^{2}\right)^{n-1}$ as $\left(1-t^{2}\right)^{n-1}\left(1-t^{2}+t^{2}\right)$ to get
$2 n I_{n-1}-2 n I_{n}=2 n \int_{0}^{1}\left(1-t^{2}\right)^{n-1} t^{2} d t=2 n \int_{0}^{1}\left(1-t^{2}\right)^{n-1} t^{2} d t+\int_{0}^{1} d\left(t\left(1-t^{2}\right)^{n}\right)$.
Expanding $d\left(t\left(1-t^{2}\right)^{n}\right)$ we cancel the previous integral and we get an extra I_{n}.

3 A combinatorial reformulation

We can get $x^{-2}(\arcsin x)^{2}$ in two ways: squaring the expansion (3) and using directly (4). Shifting n by one in the latter formula, we get the shocking relation

$$
\left(\sum_{n=0}^{\infty} \frac{1}{2^{2 n}}\binom{2 n}{n} \frac{x^{2 n}}{2 n+1}\right)^{2}=\sum_{n=0}^{\infty} \frac{2^{2 n+1} x^{2 n}}{(n+1)^{2}\binom{2 n+2}{n+1}}
$$

When we open the square, the coefficient of $x^{2 n}$ is

$$
\sum_{k=0}^{n} \frac{1}{2^{2 n}} \cdot \frac{\binom{2 k}{k}\binom{2 n-2 k}{n-k}}{(2 k+1)(2 n-2 k+1)}
$$

Comparing it with the coefficient in the right hand side and cleaning a little the result, we get the cumbersome relation:

$$
\frac{(2 n+2)!}{(n!)^{2}} \sum_{k=0}^{n} \frac{\binom{2 k}{k}\binom{2 n-2 k}{n-k}}{(2 k+1)(2 n-2 k+1)}=2^{4 n+1}
$$

It would be nice to have a simple combinatorial interpretation of this formula because it would give an alternative combinatorial proof of the expansions (4).

