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Abstract

We give a proof with almost no prerequisites of the Taylor expansions
of (arcsinx)2 and (arcsinh x)2 where arcsin and arcsinh are the inverse
functions of sin and sinh in a neighborhood of the origin. These expansions
are not usually covered in Calculus courses.

1 Some fairly known related series

Consider f(x) = (1 + x)−1/2. It is clear that its n-th derivative is of the form
f (n)(x) = cn(1 + x)−1/2−n. Computing f (n+1) one deduces cn+1 = −

(
1
2 + n

)
cn

with c0 = 1. It is easy to check that (−1)n2−2nn!
(
2n
n

)
satisfies this recurrence,

giving a closed expression for cn. Then we have the Taylor expansion

(1)
1√

1 + x
=

∞∑
n=0

(−1)n

22n

(
2n

n

)
xn.

Without any consideration about the growth of the central binomial coefficients,
we know that this is an actual equality for any x in the open unit disk because
f(z) = (1 + z)−1/2 defines a holomorphic function there. It also proves that we
can replace x by x2 and integrate term by term, getting

(2) arcsinh x =

∞∑
n=0

(−1)n

22n

(
2n

n

)
x2n+1

2n + 1
for |x| < 1.

Recall that arcsinh x is the inverse function of sinhx = 1
2

(
ex − e−x

)
and its

derivative is (1+x2)−1/2. As a matter of fact, arcsinhx equals log
(
x+
√
x2 + 1

)
.

Replacing instead x by −x2 in (1), we get in the same way

(3) arcsinx =

∞∑
n=0

1

22n

(
2n

n

)
x2n+1

2n + 1
for |x| < 1.

In fact, (2) and (3) are equivalent because by the Euler formula, we know
sinh(ix) = (eix − e−ix)/2 = i sinx, which implies arcsin t = −i arcsinh(it).

2 The expansions

We are going to show the Taylor expansions, valid for |x| < 1,

(4) (arcsinx)2 =

∞∑
n=1

(2x)2n

2n2
(
2n
n

) and (arcsinh x)2 =

∞∑
n=1

(−1)n+1(2x)2n

2n2
(
2n
n

) .
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As before, arcsin t = −i arcsinh(it) shows that they are equivalent and it is
enough to prove the second one.

Consider the integral∫ 1

0

∫ 1

0

2 sinhu coshu dt

cosh2 u− t2 sinh2 u
du dt

and apply Fubini theorem. To perform first the integration in u, we substitute
cosh2 x = 1 + sinh2 x and to reverse the order of integration, we use the partial
fraction decomposition

2 sinhu coshu

cosh2 u− t2 sinh2 u
=

sinhu

coshu + t sinhu
+

sinhu

coshu− t sinhu
.

Doing both calculations and noting coshu± sinhu = e±u, we have∫ 1

0

log
(
1 + (1− t2) sinh2 x

)
1− t2

dt =

∫ 1

0

log
coshu + sinhu

coshu− sinhu
du = x2.

The Taylor expansion log(1 + x) =
∑

(−1)n+1xn/n shows

∞∑
n=1

(−1)n+1

n
In−1 sinh2n x = x2 with Ik =

∫ 1

0

(1− t2)k dt.

Then (4) follows if we prove n
(
2n
n

)
In−1 = 22n−1. This is plain for n = 1 and

follows easily by induction using (2n + 1)In = 2nIn−1. This relation is well
known. A simple proof consists in writing (1− t2)n−1 as (1− t2)n−1(1− t2 + t2)
to get

2nIn−1−2nIn = 2n

∫ 1

0

(1−t2)n−1t2 dt = 2n

∫ 1

0

(1−t2)n−1t2 dt+

∫ 1

0

d
(
t(1−t2)n

)
.

Expanding d
(
t(1− t2)n

)
we cancel the previous integral and we get an extra In.

3 A combinatorial reformulation

We can get x−2(arcsinx)2 in two ways: squaring the expansion (3) and using
directly (4). Shifting n by one in the latter formula, we get the shocking relation( ∞∑

n=0

1

22n

(
2n

n

)
x2n

2n + 1

)2

=

∞∑
n=0

22n+1x2n

(n + 1)2
(
2n+2
n+1

) .
When we open the square, the coefficient of x2n is

n∑
k=0

1

22n
·

(
2k
k

)(
2n−2k
n−k

)
(2k + 1)(2n− 2k + 1)

.

Comparing it with the coefficient in the right hand side and cleaning a little the
result, we get the cumbersome relation:

(2n + 2)!

(n!)2

n∑
k=0

(
2k
k

)(
2n−2k
n−k

)
(2k + 1)(2n− 2k + 1)

= 24n+1.

It would be nice to have a simple combinatorial interpretation of this formula
because it would give an alternative combinatorial proof of the expansions (4).
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