Crazy inverses

Introduction. When we were kids, we learned how to expand $(a+b)^{2}$ or $(a+b)^{3}$ into finite terms, but nobody taught us something similar for $(a+b)^{-1}$. If it does not exist for real numbers, you can hardly expect something for matrices. But there are some crazy formulas for the inverse of a sum of matrices if one of them has rank 1. For instance, if A is invertible and $\sigma \neq-1$ is the sum of the elements of A^{-1} we have $(A+\mathbf{1})^{-1}=A^{-1}-A^{-1} \mathbf{1} A^{-1} /(1+\sigma)$ with $\mathbf{1}$ the square matrix with all its entries 1 . In general, we have the Sherman-Morrison identity saying that for c a column matrix and r a row matrix, with the same dimension as an invertible matrix B, we have that $B+c r$ is invertible when $\tau:=r B^{-1} c \neq-1$ and its inverse equals $B^{-1}-B^{-1} c r B^{-1} /(1+\tau)$.

Note that any matrix of rank one can be written as $c r$ and that if c and r have all their coordinates 1 , we recover the first result.

The proof of $(A+\mathbf{1})^{-1}=A^{-1}-A^{-1} \mathbf{1} A^{-1} /(1+\sigma)$ is as follows:
It is plain to check that $1 B=1 D(B)$ where $D(B)$ is the diagonal matrix with the $j j$ entry being the sum of the j-th column of B. Expanding the product,

$$
(A+\mathbf{1})\left(A^{-1}-\frac{A^{-1} \mathbf{1} A^{-1}}{1+\sigma}\right)=I+\frac{\sigma}{1+\sigma} \mathbf{1} A^{-1}-\frac{1}{1+\sigma} \mathbf{1} A^{-1} \mathbf{1} A^{-1}=I+\frac{\sigma \mathbf{1} A^{-1}-\mathbf{1} D\left(A^{-1} \mathbf{1}\right) A^{-1}}{1+\sigma}
$$

The entry $i j$ of $A^{-1} \mathbf{1}$ is the sum of the i-th row of A^{-1}, then $D\left(A^{-1} \mathbf{1}\right)=\sigma I$ and $1 D\left(A^{-1} \mathbf{1}\right) A^{-1}=\sigma \mathbf{1} A^{-1}$. This shows that the previous expression is the identity, as expected.

To deduce the Sherman-Morrison identity, take U and V invertible such that $c=U 1_{c}$ and $r=1_{r} V$, where 1_{c} and 1_{r} are the column and row matrices having all the coordinates one. Note that $1_{c} 1_{r}=\mathbf{1}$, then

$$
(B+c r)^{-1}=\left(B+U 1_{c} 1_{r} V\right)^{-1}=\left(U U^{-1} B V^{-1} V+U 1 V\right)^{-1}=V^{-1}\left(U^{-1} B V^{-1}+\mathbf{1}\right)^{-1} U^{-1}
$$

Taking $A=U^{-1} B V^{-1}$ in the formula for $(A+1)^{-1}$ we get the result with τ the sum of the entries of $V B^{-1} U$ and it is enough to note that this sum is $1_{r} V B^{-1} U 1_{c}=r B^{-1} c$.

