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1 The product

Behold the following result!

Theorem 1.1. Let B1 and B2 be integers and let a1 and a2 be positive divisors of B2
1 + 1

and B2
2 + 1, respectively. Then

∞∏
n=1

e2πn/a2
(

cosh 2πn
a1
− cos 2πnB1

a1

)
e2πn/a1

(
cosh 2πn

a2
− cos 2πnB2

a2

) =
eπ/6a1

√
a1

eπ/6a2
√
a2
.

The curious point is that there is something arithmetic involved. It is in general false
without the divisibility condition. Note that each factor tends exponentially to 1, then
the convergence is assured. For small values of a1 and a2, few terms are enough to get
a good approximation. For instance, for a1 = 2, a2 = B1 = B2 = 1 the right hand side is
e−π/12

√
2 = 1.088471 . . . and with only three terms of the product we get 6 correct significant

digits.
If you are a modular person, after reading the following lines showing the relation with η,

you will be able to find a quick proof by yourself, perhaps adding a teaspoon of class number
one or a grain of complex multiplication. If you are modular but not to the bone, you will
have a chance of reading §3. Anyway, the challenge here is to provide a proof simpler enough
to fit in a lecture, only one, of an undergraduate course. This is done in §2 assuming an
analytic result known as Kronecker limit formula which is proved in [2] with little more than
the residue theorem. The proof is reproduced in §4 adapted to a special case, for the sake of
clarity, and with complementary comments to convince you that it generalizes finely.

We start defining the Dedekind η function on the upper half complex plane as

η(z) = eπiz/12
∞∏
n=1

(
1− e2πinz

)
.

It converges quickly if z is far apart from the real axis.
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For u, v ∈ R we have the identity
∣∣1 − eu+iv∣∣2 = 2(coshu − cos v)/e−u. Taking u + iv =

2πi(Bj + i)/aj , we see that the infinite product in Theorem 1.1 is

∞∏
n=1

∣∣1− e2πi(B1+i)/a1
∣∣2∣∣1− e2πi(B2+i)/a2
∣∣2 =

eπ/6a1
∣∣η((B1 + i)/a1

)∣∣2
eπ/6a2

∣∣η((B2 + i)/a2
)∣∣2

Then Theorem 1.1 is equivalent to say that
∣∣η((Bj + i)/aj

)∣∣2/√aj is constant. It does not
depend on the choice of aj and Bj fulfilling the hypotheses.

Modular people know how to relate the values of η(z) at different points connected by
some symmetries and then they may find the previous claim fairly easy. We pedestrians
aspire for a proof not requiring any knowledge about those relations and symmetries. At the
same time, we can learn a formula, the aforementioned Kronecker limit formula, that plays
a role in some explicit evaluations.

2 A proof for everybody (summoning Kronecker)

The Riemann zeta function and the Epstein zeta function ζ(s,Q) associated to a positive
definite binary quadratic form Q are defined for s > 1 by

ζ(s) =

∞∑
n=1

n−s and ζ(s,Q) =
∑

~n∈Z2\{~0}

(
Q(~n)

)−s
.

Both definitions can be extended analytically to real and complex values beyond s > 1. It is
well known that for the Riemann zeta function there is an obstacle at s = 1. Some insight
about this point comes from the identity (1− 21−s)ζ(s) =

∑∞
n=1(−1)n+1n−s, which reduces

to multiplication term by term. Recalling
∑∞

n=1(−1)n+1n−1 = log 2, we have

(1) lim
s→1+

(s− 1)ζ(s) = (log 2) lim
s→1+

s− 1

1− 21−s
= 1

by L’Hôpital’s rule. This means that ζ(s) is approximately (s−1)−1 for s > 1 close to 1. The
Kronecker limit formula implies that ζ(s,Q) is approximately 2π√

D
(s− 1)−1 near 1 and shows

that the difference tends to a constant that can be expressed in terms of the Dedekind η
function. Kronecker show yourself, we beckon you!

Proposition 2.1 (Kronecker limit formula). Let Q(x, y) = ax2 + bxy + cy2 be a real form
with D = 4ac− b2 > 0 and a > 0. Then

lim
s→1+

(√D
4π

ζ(s,Q)− ζ(2s− 1)
)

= log

√
a/D

|η(zQ)|2
with zQ =

−b+ i
√
D

2a
.
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I have downgraded this theorem to proposition to emphasize that it is not so hard to
prove. In [2] there is a proof that requires little more than the residue theorem. To not
repeat myself, if you are interested I have adapted it in §4 to Q(x, y) = x2 + y2 which allows
more reductions and any hard working reader should be able to obtain the general case from it,
perhaps following the hints included there. A last comment is that if you look up authorized
sources (like Wikipedia) Proposition 2.1 does not seem like the standard Kronecker limit
formula. Take my word, it is a compact equivalent version.

Proposition 2.1 is purely analytic, a limit, while Theorem 1.1 is somehow arithmetic. The
integers enter into the game through the humble and important group of matrices

SL2(Z) =

{
M =

(
m11 m12

m21 m22

)
: mjk ∈ Z, det(M) = 1

}
.

The key result to deduce Theorem 1.1 form the Kronecker limit formula is that for the
integral case with D = 4 there is only a possible Epstein zeta function!

Lemma 2.2. If Q(x, y) = ax2+bxy+cy2 is a positive definite quadratic form with a, b, c ∈ Z
and 4ac− b2 = 4 then there exists M ∈ SL2(Z) such that Q(M~v) = x2 + y2 where ~v = (x, y).
In particular, for any of these forms we have ζ(s,Q) = ζ(s, x2 + y2).

Of course, here it is in use the typical typographical abuse: We have to think ~v as a
vertical vector to multiply M~v. This lemma is based on an elementary reduction algorithm
due to Lagrange and Gauss for general binary quadratic forms (with a, b, c ∈ Z). If you want
to trumpet proudly “I read Gauss”, go to his materpiece [3, Art.171].

Proof. Note that the last part follows from the first part because M ∈ SL2(Z) only rearranges
the elements of Z2. In other words, M : Z2 −→ Z2 is a bijective map.

If b = 0 then clearly the result is true with M the identity matrix. If b 6= 0 we are
going to show that there is a “reduction matrix” R ∈ SL2(Z) such that Q′(~v) = Q(R~v) has a
smaller value of |b|. Repeating the process a number of times we get x2 + y2 = Q(M~v) with
M = RnRn−1 · · ·R1 and we are done.

Let us see how to construct R. If 〈x〉 is the nearest integer function (define it as you want
at half-integers), a possible choice of R is

R =

(
〈b/2a〉 1
−1 0

)
if a < c and R =

(
0 −1
1 〈b/2c〉

)
if a > c.

There is not an a = c case with b 6= 0 because 4 = 4a2 − b2 = (2a − b)(2a + b) implies
2a− b = 2a+ b = 2. Both cases are similar changing the role of the variables. Let us check
for instance the second one:

Q(R~v) = ay2 − by
(
x+

〈 b
2c

〉
y
)

+ c
(
x+

〈 b
2c

〉
y
)2

= . . . x2 +
(

2c
〈 b

2c

〉
− b
)
xy + . . . y2.
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The absolute value of the new xy coefficient is clearly less than |b| when |b| > c and |b| ≤ c
is impossible because it would imply 4ac− b2 ≥ 4(c+ 1)c− c2 > 4.

Proof of Theorem 1.1. Consider the quadratic forms Qj = ajx
2− 2Bjxy+ (B2

j + 1)y2/aj for
j = 1, 2. By the last part of Lemma 2.2 the limits in Proposition 2.1 corresponding to both
quadratic forms are identical. Then we conclude

log

√
a1/2∣∣η((B1 + i)/a1

)∣∣2 = log

√
a2/2∣∣η((B2 + i)/a2

)∣∣2
and, as mentioned before, the constancy of

∣∣η((Bj + i)/aj
)∣∣2/√aj establishes the result.

3 The quick proof for modular people

The Dedekind η function is a modular function that satisfies

(2) η(z + 1) = eπi/12η(z) and η(−1/z) =
√
−izη(z).

Of course, the first formula is trivial. Absolutely, the second is not. To my knowledge the
simplest proof is still one due to Siegel [8] (see also [5, §9.2]) based on the residue theorem.
Let us go fancy proclaiming that |=(z)|1/2|η(z)|2 is invariant under z 7→ z+ 1 and z 7→ −1/z,
where =(z) is the imaginary part of z. This follows immediately from (2) using =(z+1) = =(z)
and =(−1/z) = |z|−2=(z).

If you are really a modular person you know that z 7→ z + 1 and z 7→ −1/z generate all
the maps z 7→ (m11z+m12)/(m21z+m22) with M = (mjk) ∈ SL2(Z). Hence |=(z)|1/2|η(z)|2
is also invariant by them. In the particular case z = i we get∣∣η(i)

∣∣2 =
∣∣=(γM (i)

)∣∣1/2∣∣η(γM (i)
)∣∣2 with γM (i) =

m11i+m12

m21i+m22
.

It only remains to check that if 0 < a | B2 + 1 then there exists M ∈ SL2(Z) such that
γM (i) = (B+ i)/a. Actually, we have already done it because taking Q(x, y) = ax2−2Bxy+
(B2 + 1)y2/a in Lemma 2.2, as before, and choosing ~v = (i, 1), we have 0 = Q(M~v) =(
m21i+m22

)2
Q
(
γM (i), 1

)
. The roots of Q(z, 1) = 0 are (B ± i)/a and =

(
γM (i)

)
> 0 (check

it!), therefore necessarily γM (i) = (B + i)/a, as expected.

4 Who fears Kronecker limit formula?

The case Q(x, y) = x2 + y2 of Proposition 2.1 reads

(3) lim
s→1+

( 1

2π
ζ(s, x2 + y2)− ζ(2s− 1)

)
= − log

(
2|η(i)|2

)
.

Let us see how to get it using only undergraduate tools.
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Proof of Proposition 2.1 for Q(x, y) = x2 + y2. Define the abbreviations gs(x) = 2(x2 + 1)−s

and G(s) = −
∫∞
−∞ gs(x) dx. The limit in (3) equals L1 − L2 with

L1 = lim
s→1+

1

2π

(
ζ(s,Q) + ζ(2s− 1)G(s)

)
, L2 = lim

s→1+
ζ(2s− 1)

( 1

2π
G(s) + 1

)
.

L’Hôpital’s rule shows L2 = (4π)−1G′(1) because, by (1), (2s − 2)ζ(2s − 1) → 1 (and the
residue theorem assures G(1) = −2π). Then the result follows if we prove

(4) L1 = − log |η(i)|2 and G′(1) = 4π log 2.

We have G′(1) = 2
∫∞
−∞

log(x2+1)
x2+1

dx. To compute this integral the easy way is to look up
a table (e.g. [4, 4.295.1]). If you want to be fully in charge, check the following formula
performing the change of variables x = tan(t/2) and the application of Cauchy’s integral
formula on the unit circle C parametrized as z = eit

G′(1) = −
∫ π

−π
log | cos(t/2)|2 dt = −<

∫
C

log
(1 + z

2

)dz
iz

= 4π log 2.

For the first formula in (4) we separate from ζ(s, x2 + y2) =
∑

m,n(m2 + n2)−s the terms
with n = 0 which contribute 2ζ(2s). By the residue theorem in the band Bε = {|=z| < ε}
with 0 < ε < 1,

ζ(s, x2 + y2) = 2ζ(2s) +
∞∑
n=1

1

n2s

∑
m∈Z

gs
(m
n

)
=
∞∑
n=1

−1

2n2s−1

∫
∂Bε

gs(z)i cot(πnz) dz,

because 2πiRes
(
i cot(πnz),m/n

)
= −2. As gs is even,

∫
∂Bε

= −2
∫
Lε

with Lε = {=z = ε}
oriented to the right and the sum is

∑
n n

1−2s ∫
Lε

. Note that
∫
Lε
gs =

∫
L0
gs = −G(s).

Then adding ζ(2s− 1)G(s) is equivalent to replace i cot(πnz) by i cot(πnz)− 1 in
∫
Lε

. The

expansion i cotw − 1 = 2e2iw/(1− e2iw) = 2(e2iw + e4iw + . . . ) assures an exponential decay
and we have, substituting ζ(2) = π2/6,

L1 =
1

2π

(π2
3

+

∞∑
n,k=1

2

n

∫
Lε

g1(z)e
2πinkz dz

)
.

Note that g1(z) = 2
(
(z − i)(z + i)

)−1
. The residue theorem in {=z > ε} gives promptly

L1 =
π2

6
+

∞∑
n,k=1

2

n
e−2πnk =

π2

6
−
∞∑
k=1

log
(
1− e−2πk

)2
where we have employed the Taylor expansion log(1− x)2 = −2(x/1 + x2/2 + . . . ). The sum
is log

(
eπ/6|η(i)|2

)
and the proof of (4) is complete.
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The question is how close is this to a full proof of Proposition 2.1. Actually, it is quite
close. Essentially, the whole point is to replace x2 +1 by Q(x, 1) = ax2 + bx+ c, restoring the
constants coming from Proposition 2.1. Read [2, §3] for the full details. Here there are some
hints for an intermediate level of details. In the general case, G(s) = −2

∫∞
−∞Q(x, 1)−s dx,

L1 = lim
s→1+

√
D

4π

(
ζ(s,Q) + ζ(2s− 1)G(s)

)
and L2 = lim

s→1+
ζ(2s− 1)

(√D
4π

G(s) + 1
)
.

Again the limit in the statement is L1 − L2. The computation of G′(1) to evaluate L2 is as
before because we can transform Q(x, 1) into a multiple of x2 + 1 completing squares. This
leads to √

D

4π
G′(1) = log

√
D

a
.

The evaluation of L1 follows the same lines. The only noticeable issue is that at some point
we used that gs was even and Q(x, 1) is not in general. The simple solution is to substitute
gs(x) by Q(x, 1)−1 +Q(x,−1)−1. With this change, we get

L1 = − log η(zQ)− log η(−z̄Q) = − log
∣∣η(zQ)

∣∣2.
The values zQ and −z̄Q come from the fact that gs(z) has simple poles at these points in the
upper half plane.

5 A sharper result

Theorem 1.1 is a direct consequence of the stronger less symmetric result:

Theorem 5.1. Let a be a positive divisor of B2 + 1, B ∈ Z. Then

∞∏
n=1

2e−2πn/a
(

cosh
2πn

a
− cos

2πnB

a

)
=

1

4
Γ2
(1

4

)
eπ/6a

√
a

π3

where Γ indicates the classical gamma function.

The last sentence is not very informative if you have not heard about the gamma function.
In this case, you only need to know that

Γ
(1

4

)
= 4

∫ ∞
0

e−t
4
dt = 3.6256099 . . .

and it is not known a closed expression for this constant in term of high school mathematical
constants.

6



Dividing the formula of Theorem 5.1 for two choices of the parameters, we get Theo-
rem 1.1. Then both results become equivalent if we assume Theorem 5.1 for a single couple
(a,B). For instance (1, 0), which gives

∞∏
n=1

2e−2πn
(

cosh(2πn)− 1
)

=
eπ/6

4π3/2
Γ2
(1

4

)
.

This follows immediately squaring the evaluation

(5) η(i) =
Γ(1/4)

2π3/4
.

An strategy to get it (see [2] and [5]) is to use the nontrivial factorization

ζ(s, x2 + y2) = 4ζ(s)
∞∑
n=0

(−1)n

(2n+ 1)s

which allows to compute the limit in the Kronecker limit formula in an alternative way.

The evaluation (5) relates to the classical problem of the inversion of elliptic integrals
with theta functions [1] led by Jacobi and preceded by Gauss [6]. Even if you do not know
what I am talking about, you will enjoy the impressive and highly nontrivial formulas

√
2η(i) =

∞∑
n=−∞

e−πn
2

=

(
2

π

∫ π/2

0

√
2 dt√

2− sin2 t

)1/2

.

The identity (5) is also a special case of the Chowla-Selberg formula [7]. This is a curious
formula that was announced by its authors almost 20 years before they published the proof.
The Fields medalist Selberg did not like to collaborate with other colleagues. In the nowadays
ultra-connected scientific world, it sounds astonishing that Chowla-Selberg formula was the
only joint work that Selberg published in his long and fruitful mathematical life.
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