The expanded infinite potential well

Following this paper by C. Alangul, consider the quantum infinite potential well in \([0,1]\) with the \(N\)-th eigenstate as initial condition. After a sudden expansion to \([0,\Lambda]\), with \(\Lambda>1\), the evolution of the system is ruled by the Schrödinger equation \[\begin{cases} i\hbar \partial_t\Psi(x,t)= -\dfrac{\hbar^2}{2m}\partial_{xx}\Psi(x,t)\quad\text{for $0<x<\Lambda $}, \quad \text{$t>0$,} \\[6pt] \Psi(0,t)=\Psi(\Lambda ,t)=0,\quad \Psi(x,0)=\sqrt{2}\,\theta(1-x)\sin(N\pi x) \end{cases}\] where \(\theta(x)\) is the Heaviside step function taking the value \(1\) if \(x\ge 0\) and \(0\) if \(x<0\).

For \(a/q\) an irreducible fraction, define \(p:[0,1/2]\longrightarrow\mathbb{R}\) given by \[p(x) = 2\Lambda \Big|\Psi\big(2\Lambda x,\frac aq T\big)\Big|^2 \qquad\text{with}\quad T=\frac{4m\Lambda^2}{\pi \hbar}.\] This is the probability density corresponding to the fractional time \(aT/q\) when \([0,\Lambda]\) is normalized to \([0,1/2]\).

If \(\Lambda>q\) for \(q\) odd or \(\Lambda>q/2\) for \(q\) even the probability density "fragmentizes" into blocks of \(2N\) peaks (coming from the initial condition) separated by forbidden zones (\(0\)-level plateaux) of width \(q^{-1}-\Lambda^{-1}\) or \(2q^{-1}-\Lambda^{-1}\) depending on whether \(q\) is odd or even. The blocks in the extremes can be halved. If \(q\) is odd, there are \(qN\) peaks in total and if \(q\) is even, there are \(qN/2\).

These are some plots of \(p\) under these conditions choosing \(\Lambda=10.7\). All the figures in this document are produced with the sagemath code below. Full resolution versions are obtained clicking on the images.

fig107d10_2d7_1   fig107d10_1d12_2   fig107d10_3d10_1
\(\Lambda=10.7,\)    \(\dfrac aq=\dfrac{2}{7},\)    \(N=1\) \(\Lambda=10.7,\)    \(\dfrac aq=\dfrac{1}{12},\)    \(N=2\) \(\Lambda=10.7,\)    \(\dfrac aq=\dfrac{3}{10},\)    \(N=1\)

Now, consider the cases \(\Lambda<q\) when \(q\) is odd and \(\Lambda<q/2\) when \(q\) is even. If \(2N\Lambda\) is an odd integer, a plateau in the probability density \(p\) appears over the interval \[[c-r,c+r]\cap [0,1/2] \qquad\text{with}\quad c = \Big\langle\frac {2a}q N\Lambda+\frac 12\Big\rangle\] where \(\langle x\rangle\) is the function giving the distance to the nearest integer and \[r = \frac 1q\Big\langle\frac {q+\Lambda}{2\Lambda}\Big\rangle \quad\text{if }2\nmid q \qquad\text{and}\qquad r = \frac 2q\Big\langle\frac {q+2\Lambda}{4\Lambda}\Big\rangle \quad\text{if }2\mid q.\]

In the following examples, the center and the boundary of the plateaux are marked with vertical lines.

fig5d2_1d3_1   fig5d2_13d18_3   fig5d4_11d6_2
\(\Lambda=\dfrac52,\)    \(\dfrac aq=\dfrac{1}{3},\)    \(N=1\) \(\Lambda=\dfrac52,\)    \(\dfrac aq=\dfrac{13}{18},\)    \(N=3\) \(\Lambda=\dfrac54,\)    \(\dfrac aq=\dfrac{11}{6},\)    \(N=2\)

The intervals in which the plateaux appear are \([2/15,1/5]\), \([3/10,11/30]\) and \([7/30,13/30]\), respectively.

These are more examples exhibiting plateaux:

fig7d2_8d5_3   fig11d4_3d7_6   fig13d6_7d10_3
\(\Lambda=\dfrac72,\)    \(\dfrac aq=\dfrac{8}{5},\)    \(N=3\) \(\Lambda=\dfrac{11}{4},\)    \(\dfrac aq=\dfrac{3}{7},\)    \(N=6\) \(\Lambda=\dfrac{13}{6},\)    \(\dfrac aq=\dfrac{7}{10},\)    \(N=3\)

This time, the intervals are \([2/35,1/7]\), \([25/77,30/77]\) and \([43/130,61/130]\), respectively.

Under the previous conditions, if \(q\) divides \(2N\Lambda\) when \(q\) is odd or if \(q\) divides \(4N\Lambda\) when \(q\) is even, the plateaux correspond to forbidden zones (they carry zero probability) that are clipped at the extremes of the interval \([0,1/2]\).

fig3d2_5d3_1   fig3d2_1d6_3   fig3d2_7d18_3
\(\Lambda=\dfrac32,\)    \(\dfrac aq=\dfrac{5}{3},\)    \(N=1\) \(\Lambda=\dfrac32,\)    \(\dfrac aq=\dfrac{1}{6},\)    \(N=3\) \(\Lambda=\dfrac32,\)    \(\dfrac aq=\dfrac{7}{18},\)    \(N=3\)

Using the formulas, the forbidden zones are \([1/3,1/2]\), \([0,1/6]\) and \([0,1/18]\), respectively. The rule is that for \(q\) odd they appear in the right extreme and for \(q\) even in the left extreme.

The proofs of the results mentioned here and a more detailed study of the expanded infinite well are the contents of a forthcoming joint paper.




The code

This is the SAGE code that produces all the images:

def c_a_q(a,k,q):
  # argument and conjugate
  # a constant factor of abs = 1 is indeterminate
  if is_even(q):
    if is_odd(k+q/2): return 0
    ai = ZZ( Mod(a,q)^-1 )
    argu = pi*ai*k^2/q/2
    return sqrt(2)*( cos(argu)+i*sin(argu) )
  fai = ZZ( Mod(4*a,q)^-1 )
  argu = 2*pi*fai*k^2/q
  return cos(argu)+i*sin(argu)
  
  
def dist(t):
  """
  Distance to Z
  """
  return abs( t - round(t) )
  
  

def dgraph(La,fr,N):
  if La<=1:
    print 'LAMBDA MUST BE GREATER THAN 1'
    return point([(0,0)],size=0)

  
  a, q = numerator(fr), denominator(fr)
    
  L = []
  h = 1/383

  # precompute Gauss sums
  GS = [ c_a_q(a,k,q) for k in srange(q)]

  ma = 0
  for xv in srange(0,1/2+1/2*h,1/2*h):
    S = 0.0
    lb1 = ceil( (-1/2/La+xv)*q )
    ub1 = ceil( (1/2/La+xv)*q )
    
    for k in srange( lb1, ub1 ):
      u = xv-k/q
      S += GS[k] * sin(2*La*N*pi*u)
      
    res = (4*La/q*abs(S)^2).n()
    if ma<res: ma=res
    
    L.append( (xv,res) )
    
  P = list_plot(L, plotjoined=True, thickness=3, fontsize=22)



  center = dist( 2*a*N*La/q+1/2 )

  if is_even(q):
    eps = 2*dist( q/4/La+1/2 )/q
  else:
    eps = dist( q/2/La+1/2 )/q
    
  if N*La-1/2 in ZZ:
    plate = True
  else:
    plate = False
    plates = r'$2N\Lambda$'+' is not odd'
    print plates

  if (La>q and is_odd(q)) or (2*La>q and is_even(q)):
    plates = 'FRAGMENTATION CASE'
    print plates
    plate = False


  if plate:
    P += line([(center+eps, 0), (center+eps, ma) ], color='red', thickness=1, linestyle='--', zorder=100)
    P += line([(center-eps, 0), (center-eps, ma) ], color='red', thickness=1, linestyle='--', zorder=100)
    P += line([(center, 0), (center, ma) ], color='magenta', thickness=1, zorder=100)

#    P += text('\n'+r'$\Lambda$='+str(La)+', a/q='+str(a/q)+', N='+str(N)+', pl=['+str(max(0,center-eps))+','+str(min(1/2,center+eps))+']', (0,ma*11/10), fontsize =15, horizontal_alignment='left')
    
    print 'c =', center,' r =',eps
    print '\n'+r'$\Lambda$='+str(La)+', a/q='+str(a/q)+', N='+str(N)+', pl=['+str(max(0,center-eps))+','+str(min(1/2,center+eps))+']'
  else:
    print plates
  
    
  P.set_axes_range(0, 0.5, 0, ma)
  return P


# Lambda, a/q, N

#fragmentation
LFN = [(107/10,2/7,1), (107/10,1/12,2), (107/10,3/10,1)]

#No fragmentation
LFN += [(5/2,1/3,1), (5/2,13/18,3), (5/4,11/6,2)]

#No fragmentation2
LFN += [(7/2,8/5,3), (11/4,3/7,6), (13/6,7/10,3)]

#No fragmentation 0-level
LFN += [(3/2,5/3,1), (3/2,1/6,3), (3/2,7/18,3)]

      
      

for item in LFN:
  La, fr, N = item[0], item[1], item[2]
  print '-------------'
#  print 'La =',La, ' a/q =',fr, ' N =',N
  P = dgraph(La,fr,N)
  fname = 'fig'+str(La)+'_'+str(fr)+'_'+str(N)+'.png'
  fname = './dark/' +fname.replace('/','d')
  print fname
  P.save(fname)