- 1) Dibujar un diagrama de barras mostrando las frecuencias más probables para la suma de las puntuaciones al tirar dos dados cuando se repite el experimento 180 veces.
- 2) Al examinar la altura de 24 individuos redondeando a múltiplos de 10 cm obtenemos la siguiente tabla de frecuencias:

x_i	140	150	160	170	180	190	200
$\overline{n_i}$	1	2	8	3	4	3	3

- a) Calcular la media, la mediana y la varianza.
- b) Hallar el rango intercuartílico.
- 3) Explicar con un ejemplo por qué la mediana es menos sensible que la media cuando en una muestra se introduce un dato totalmente erróneo por un error experimental.
- 4) Un estudio sobre el efecto de la temperatura en el rendimiento de un proceso químico proporciona los siguientes resultados:

Temperatura (x)	-5	-4	-3	-2	-1	0	1	2	3	4	5
Rendimiento (y)	1	5	4	7	10	8	9	13	14	13	18

Calcular el coeficiente de correlación entre las dos variables. ¿Qué rendimiento cabría predecir para un nuevo proceso realizado a temperatura x = 3,5?

5) [5] El número medio de hijos por mujer en la Comunidad Europea ha evolucionado según se indica en la tabla siguiente:

Utilizar la recta de regresión para estimar el dato que se omite en la tabla.

6) Consultando el fichero de un departamento de pediatría, se obtuvieron los siguientes datos respecto a los pesos y edades de 58 niños atendidos:

Peso (en kg)	Edad (en años)						
1 cso (cn kg)	0	1	2	3	4		
0–5	2						
5-10	4	2					
10–15		8	9	7			
15-20		1	2	8	14		
20-25					1		

Obténgase la recta de regresión de Y (pesos) sobre X (edades). Con la recta obtenida, decídase cuál es el peso que debe esperarse para un niño de 5 años.

Los números entre corchetes indican problemas del libro de J. de la Horra.

7) [4] La concentración, X e Y, de dos sustancias en la sangre parece estar relacionada. Para estudiar esta posible relación, se miden estas cantidades en 30 personas obteniéndose los siguientes resultados:

$$\sum x_i = 41.2$$
; $\sum y_i = 63.8$; $\sum x_i y_i = 118.7$; $\sum x_i^2 = 188.2$; $\sum y_i^2 = 296.4$.

Hallar la recta de regresión de Y sobre X y el coeficiente de correlación lineal.

8) Una distribución estadística de variables X e Y es tal que $\bar{x}=3.5$, $\bar{y}=4\bar{x}$, y $v_x=3\operatorname{cov}_{x,y}$. Sabiendo que en una de las observaciones es $x_i=5$, ¿qué valor debe esperarse para y_i en el supuesto de una dependencia lineal entre las variables?

9) Ajústese una función del tipo $y = ae^{bx}$ a la siguiente distribución bidimensional:

	x_i	1	1,5	2	2,5	3	4
ĺ	y_i	2,2	6	16	44,5	121	895

10) Determina razonadamente si las siguientes afirmaciones son verdaderas o falsas:

a) Si añadimos 7 a todos los datos de un conjunto, el primer cuartil aumenta en 7 unidades y el rango intercuartílico no cambia.

b) Si todos los datos de un conjunto se multiplican por -2, la desviación típica se dobla.

c) Si todos los datos de un conjunto se multiplican por 2, la varianza se dobla.

d) Al restar una unidad a cada dato de un conjunto, la desviación típica siempre disminuye.

e) Si a un conjunto de datos con media \bar{x} se le añade un nuevo dato que coincide con \bar{x} , la media no cambia y la desviación típica disminuye.