Inicial del primer apellido

Nombre y Apellidos (por favor, con letra clara).....

- 1) Sea L el cuerpo de descomposición de $P=x^6+2x^5+3x^4+12x^3+21x^2+22x-5$ sobre $\mathbb Q$. Sabiendo que $\mathcal G(L/\mathbb Q)\cong D_8$ y que P tiene una raíz $\alpha\in\mathbb R^+$, resolver los siguientes apartados
 - 0'5 i) Demostrar que P es soluble por radicales.

0'75 - ii) Demostrar que $[\mathbb{Q}(\alpha):\mathbb{Q}]\neq 6$ y deducir que P no es irreducible en $\mathbb{Q}[x]$.

0'75 - iii) Demostrar que L/\mathbb{Q} admite una subextensión M/\mathbb{Q} que no es normal.

0'5 - iv) Demostrar que α es construible con regla y compás. 2) Sea L el cuerpo de descomposición de $x^{11} - 1 \in \mathbb{Q}[x]$.

0'5 - i) Hallar el orden de $\mathcal{G}(L/\mathbb{Q})$ y demostrar que $\sigma \in \mathcal{G}(L/\mathbb{Q})$ dado por $\sigma(\zeta) = \zeta^2$, $\zeta = e^{2\pi i/11}$, tiene orden mayor que 5 y por tanto genera $\mathcal{G}(L/\mathbb{Q})$.

0'75 - ii) Demostrar que

$$\frac{(\zeta^4 + \zeta^5 + \zeta^9 + \zeta^3 + \zeta)(\zeta^8 + \zeta^{10} + \zeta^7 + \zeta^6 + \zeta^2)}{(\zeta^4 + \zeta^5 + \zeta^9 + \zeta^3 + \zeta)^{100} + (\zeta^8 + \zeta^{10} + \zeta^7 + \zeta^6 + \zeta^2)^{100}}$$

pertenece a Q.

0'5 - iii) Demostrar que $M_1=\mathbb{Q}(\sqrt[7]{3})$ no es un cuerpo intermedio $\mathbb{Q} \subset M_1 \subset L$.

0'75 - iii) Demostrar que $M_2=\mathbb{Q}(\sqrt[5]{3})$ no es un cuerpo intermedio $\mathbb{Q} \subset M_2 \subset L$.

- 3) Decir razonadamente si las siguientes afirmaciones son verdaderas o falsas.
- 0'5 i) \mathbb{F}_4 no está contenido en \mathbb{F}_{32}

0'5 - ii) El polígono de 37 lados es construible con regla y compás.

 $0^{\circ}5$ - iii) S_4 tiene al menos 7 subgrupos de orden 2.

0'5 - iv) $x^5 + 2x^2 + 2x + 2$ no tiene raíces en $\mathbb{Q}(\sqrt[17]{2})$.

0'5 - v) $\mathbb{Q}(\pi+e,\pi-e)/\mathbb{Q}$ es una extensión algebraica.

0'5 - vi) El grado del cuerpo de descomposición de $x^4 - 9$ sobre $\mathbb Q$ es 4.

0'5 - vii) $\sigma(x)=x^6$ es un automorfismo de $\mathcal{G}(\mathbb{F}_{81}/\mathbb{F}_3)$.

0'5 - viii) El grado de $\mathbb{Q}(\sqrt{3}, \sqrt{3} + 2\sqrt[4]{3}, 2\sqrt{3} + 5\sqrt[4]{3} + 7\sqrt[8]{3})/\mathbb{Q}$ es 8.

0'5 - ix) Si $\mathbb{Q} \subset M \subset L$ con L/\mathbb{Q} normal y finita y $\mathcal{G}(L/\mathbb{Q})$ abeliano, entonces M/\mathbb{Q} tiene las mismas propiedades.

0'5 - x) Dos polinomios de igual grado irreducibles en $\mathbb{Q}[x]$ tienen cuerpos de descomposición isomorfos.