
Wavelets: theory and practice Deadline: End of the course

## Experimental part

Choose a 1-periodic signal f = f(t) with zero average on each period and such that you know an explicit formula for  $F(t) = \int_0^t f$ . This is the case, for instance, for a cosine wave or a sawtooth signal.

Write code with the software you prefer to find the contribution of j < J to  $\sum \sum c_{jk} \psi_{jk}$ , the wavelet expansion of  $f\chi_{[0,1]}$  with  $\psi$  the Haar wavelet. Plot the result for some values of J.



If you sample the result and repeat the data a number of times you can hear an approximation of the original signal quantized in time. As we saw in the course (I posted an audio file on the web), for a pure tone sometimes a strange high pitch appears. This is due to the high frequencies introduced by the sharp jumps.

## Mathematical part

Prove that this procedure of truncating the wavelet expansion to j < J is actually equivalent to quantize in time substituting the signal by the step function that gives its average on each interval  $\left[2^{-J}k, 2^{-J}(k+1)\right)$ ,  $k \in \mathbb{Z}$ . This is very simple in many ways, for instance thinking about the multiresolution analysis.

<sup>\*</sup>Some experiments are classical, some are my idea and others come from specific sources. In the latter case I have omitted the reference here on purpose to force the students to work on their own. If you are the author, please do not get angry. I intend to incorporate the references to the final version of the notes.