- 1. Consideremos f(x) = (1+x)/(2+x) y p(x) su polinomio de Taylor de grado 1 en a=0. La cantidad |f(1)-p(1)| es
 - a) menor que 0.1.
 - b) 0.1.
 - c) mayor que 0.1.
- 2. La ecuación $x^5 5x 3 = 0$
 - a) no tiene solución.
 - b) tiene una solución.
 - c) tiene tres soluciones.
- 3. $1 + 2x + 3x^2 + 4x^3 + \dots$ es la serie de Taylor en a = 0 de la función
 - $a) \frac{1+3x}{1-x}$.
 - b) e^{2x} .
 - $c) \frac{1}{(1-x)^2}$.
- 4. La ecuación $y = (2x 1)^3 5$ define x como función de y, y además $\frac{dx}{dy}$ es igual a
 - a) $\frac{1}{2}(y+5)^{-2/3}$.
 - $b) \frac{1}{6(2x-1)^2}.$
 - c) $24y^2 24y + 6$.
- 5. La serie de Taylor $\sum_{n=1}^{\infty} \frac{3^{\frac{1}{\sqrt{n}}} x^n}{n^2}$
 - a) converge si $|x| \le 1/3$ y no converge en el resto.
 - b) converge si $|x| \leq 1$ y no converge en el resto.
 - c) converge para todo $x \in \mathbb{R}$.
- 6. La ecuación

$$y^3 + y = 2 - x^2$$

define y como función de x. El polinomio de Taylor de grado 2 de y(x) en a=0 es

- a) $1 x^2/4$.
- b) $1 + x + x^2/2$.
- c) $-2x + x^2/2$.