{{{id=1|
#
# FUNCIÓN FACTORIAL USANDO RECURSIÓN
#
#--------------------------------------------------------
def fact(n):
print n,'--->',
if n==1:
return 1
return n*fact(n-1)
#--------------------------------------------------------
@interact
def _(n=("n","1")):
print "n!=",fact(Integer(n))
///
}}}
{{{id=2|
#
# FUNCIÓN FACTORIAL SIN USAR RECURSIÓN
#
#--------------------------------------------------------
def fact(n):
res = 1
for i in range(1,n+1):
res = res*i
return res
#--------------------------------------------------------
@interact
def _(n=("n","1")):
print "n!=",fact(Integer(n))
///
}}}
{{{id=3|
#
# DESIGUALDAD |X^2-5|<4
#
#--------------------------------------------------------
P = plot( abs(x^2-5), -4,4, thickness=3)
P = P+line([(-4,4), (4,4)], color='red', thickness=3)
P = P+line([(-3,0), (-1,0)], color='green', thickness=4)+line([(-3,4), (-3,0)], color='green', linestyle='--')+line([(-1,4), (-1,0)], color='green', linestyle='--')
P = P+line([(1,0), (3,0)], color='green', thickness=4)+line([(1,4), (1,0)], color='green', linestyle='--')+line([(3,4), (3,0)], color='green', linestyle='--')
P.show(ymin=0, ymax=5)
///
}}}
{{{id=5|
#
# ÍNFIMO DE {(-1)^n*n+1/n+n+1 CON n NATURAL}
#
#--------------------------------------------------------
N= 10
f(n) = (-1)^n*n+1/n+n+1
heigh = 0.5
c=line([(f(1),-heigh), (f(1),heigh)], color='green')
for n in range(1,N+1):
print n,'-->',float(f(n))
c = c + line([(f(n),-heigh), (f(n),heigh)], color='green')
c.show(aspect_ratio = 1,xmin=0, xmax=6)
///
1 --> 2.0
2 --> 5.5
3 --> 1.33333333333
4 --> 9.25
5 --> 1.2
6 --> 13.1666666667
7 --> 1.14285714286
8 --> 17.125
9 --> 1.11111111111
10 --> 21.1
}}}
{{{id=6|
///
}}}