Hoja 2 (seccién 1.2)

EJjErcicio 1. Explica por qué v, = w/k indica la velocidad de avance de las crestas de la onda
u(x,t) = Asen(kz — wt).

EJERCICIO 2. Muestra que si F' es conservativo, esto es, F' = —VV entonces el trabajo fv F-di
depende de los extremos de v pero no de la trayectoria que describe.

EJErcicio 3. Comprueba que las dimensiones son coherentes en la ecuacién de Schrédinger.

EJERrcICIO 4. Para L > 0, supongamos una funcién de ondas que en un instante tg es de
la forma ¥(z,ty) = Amax(0,1 — |z|/L). Calcula la probabilidad de que en dicho instante se
detecte en (—oo, —£] U [£, 00) la particula que representa.

EJERCICIO 5. Comprueba que W(x,t) = e2 %42~ 1Eet/h copn E¢ = 2m2h%€% /m satisface la ecuacién
de Schrodinger con V' = 0 para cualquier £ = 0.

EJErcicio 6. Consideremos W(x,t) = Ae—o@tiht/m) con o > (. Halla A para que esté
normalizada y calcula el potencial V' para que satisfaga la ecuacion de Schrédinger. Nota:
Dicho potencial, convenientemente escalado, tiene un papel muy destacado en fisica cudntica
y aparecerd mas tarde en el curso.

EJERCICIO 7. Demuestra el teorema de Ehrenfest en el caso tridimensional.

EJERCICIO 8. Si Uy(z,t) y Wa(x,t) son dos soluciones normalizadas de la misma ecuacién de
Schrodinger en una dimensién, demuestra que [, ¥i(x,t)¥s(z,t) dz no depende del tiempo.

EJERCICIO 9. Expresa TH — HZ en términos de p.

EJERcICIO 10. Demuestra que si ¥ resuelve la ecuacion de Schrédinger en una dimension
entonces %]\11]2 = —%%(%(\I’*\Px)) donde J(z) indica la parte imaginaria de z y ¥, es la
derivada parcial de V.

EJERCICIO 11. Aplica el ejercicio anterior a una solucién estacionaria W(z,t) = e *#t/Mp(z) y
deduce que si el potencial se anula en ciertos intervalos I;, se tiene ¢(x) = Ajeip"”/ h’+Bje—if”’”/ h
para x € I; con |4;|*> — |B,|? independiente de j. Escribe una férmula para p y comprueba que
tiene dimensiones de momento.

EJERCICIO 12. La ecuacién de Schrodinger es en parte relativista y en parte no. Vas a compro-
bar que las transformaciones de Galileo no preservan las soluciones, pero si la probabilidad.
En términos matematicos, demuestra que dada una solucién ¥ de la ecuaciéon unidimensional,
la funcién ¥'(z,t) = eii(m””%mvzt)/h\ll(ﬂs + vt,t) con v constante (con dimensiones de veloci-
dad), satisface la ecuacién de Schrodinger cambiando V' (z) por V(z + vt). Nota: Obviamente
se cumple |¥|? = |¥’|2, en ese sentido la probabilidad se conserva.

EJERCICIO 13. Para una funcién de ondas radial, ¥ (z,y, z,t) = g(v/22 + y% + 22,t) que sa-
tisface la ecuacion de Schrodinger halla qué ecuacién debe cumplir g. Indicacién: Todo lo que
debes hacer es recordar o hallar como es el operador laplaciano en coordenadas esféricas.



EJeErciciO 14. Consideremos la ecuacién de Schrodinger independiente del tiempo en tres
dimensiones con un potencial V' (z,y, z) = Vi(z) + Va(y) + Va(2). Si ¢}, j = 1,2,3, son solu-
ciones normalizadas para el caso unidimensional con potenciales V; y energias F;, prueba que
Y(x,y, z) = ¥1(x)a(y)s(z) es solucién normalizada del problema tridimensional para cierta
energia F. Exprésala en términos de las Ej.

EJERCICIO 15. Sea ¢(x) = Aze='7" con A,a € R* solucién de la ecuacién de Schrodinger
independiente del tiempo para un potencial V con V(0) = 0. Halla A € R* para que esté
normalizada y calcula V' y E. jQué dimensiones tienen a y A?

EJERCICIO 16. Explica por qué si ¢ = ¥ (z) es una solucién normalizada de la ecuacién de
Schrodinger independiente del tiempo ffooo ¢*p(y) = 0. Indicacién: Una forma de proceder,
aunque no la mas rapida, es recordar la relacién entre p y *H — HT de un ejercicio anterior.

EJERCICIO 17. En el caso de la particula libre en la circunferencia, demuestra la conservacién de
la probabilidad (si ¥(z,0) estd normalizada, entonces ¥(x,t) también lo estd para cualquier t)
utilizando la identidad de Parseval para series de Fourier. Nota: Tal identidad afirma que si f
es 1-periédica fol |f|? es la suma de los cuadrados de sus coeficientes de Fourier.

EJERCICIO 18. Si un potencial es par, V(z) = V(—z), demuestra que cada solucién de la
ecuaciéon de Schrodinger independiente del tiempo para cierta energia es suma de una solucién
par y otra impar (quizd una de las dos idénticamente nula).

EJercicio 19. Consideremos la ecuacién de Schriodinger independiente del tiempo en una
dimensién con un potencial que cumple V' (z) > Vj para cierta constante V. Demuestra que
no hay soluciones normalizables con E < Vj. Indicacién: Comprueba la identidad "¢ =
(") — (¢)? o P"p* = (Y*') — |o'|? si trabajas con niimeros complejos.

EJERcICIO 20. En el pozo de potencial infinito con L = 1/5, Dada la condicién inicial ¥(z,0) =
Asen®(5mz) halla A para que esté normalizada y obtén una férmula explicita para ¥(z,t).
;Cudl es la probabilidad de detectar la particula en z > 1/10 en el instante ¢t = 207~ 1A~ 1m?

EJERCICIO 21. Sea ¥(x,t) solucién de la ecuacién de Schrodinger para el pozo de potencial
infinito y sea T' = 4mL?/(mh). Comprueba que T tiene dimensiones de tiempo y demuestra que
U(2,0) = V(z,T) y VU(z,T/4) = 1520 (x,0) — LU (L — 2,0). Nota: Estas y otras repeticiones
de las condiciones iniciales en algunos sistemas se llaman resurgimiento cudntico o, a veces,
efecto Talbot cudntico por el pionero de la fotografia H. F. Talbot que observé un analogo
optico.

EJERCICIO 22. Calcula las soluciones de la la ecuacién de Schrodinger independiente del tiempo
para el pozo de potencial cibico infinito en tres dimensiones. Es decir, para V(z,y, z) = 0 si
z,y,z € [0,L] y V(z,y,2) = oo en otro caso. Halla el nimero de soluciones linealmente
independientes para los seis valores mas pequenos de la energia. Indicaciéon: Puedes dar por
supuesto que el método de separacion de variables es aplicable aqui.

EJERcICIO 23. Considera el pozo de potencial finito con L = 1. jA partir de qué valor de Vj
hay solo una solucién par con energfa —Vy < E < 0?7 Calcula el limite de E/VZ cuando Vp — 0
y explica la paradoja de que E/V} sea adimensional y el resultado por V{ no lo sea.



EJERCICIO 24. En fisica muchas veces se usan potenciales con deltas de Dirac. Mas alld de
la definicién matemédtica que quizd conozcas, intuitivamente la delta de Dirac 6 = §(z) se
entiende como la derivada de H donde H(z) =0enz < 0y H(z) =1 en z > 0, de modo
que | ;0 = 1 para cualquier intervalo 0 € I. Con esta informacién, determina las soluciones
normalizables de la ecuacién de Schrodinger independiente del tiempo para V = ad con o < 0.
. Qué dimensiones tiene a? Indicacién: En cierto modo, §(x) = 0 para z # 0 y 6(0) = oo, por
tanto, V' =0 en R — {0}. Después hay que ajustar las cosas en el origen para que ¢" sea como
la derivada de una funcién escalén. Salvo normalizaciones, solo hay una solucién.

EJjercicio 25. Considera el potencial V(z) = V;(z) + VoL §(z — L/2) donde V; corresponde al
pozo de potencial infinito y ¢ es la delta de Dirac. Comprueba que la solucién de Hy = E1 con
E minima es de la forma ¢ (z) = Asen(xv2mE/h) en |0, %] y ¥(z) = Bsen((L —z)vV2mE/h)
en [£, L]. Demuestra que E es la menor solucién positiva de la ecuacién
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