
Hoja 2 (sección 1.2)

Ejercicio 1. Explica por qué vp = ω/k indica la velocidad de avance de las crestas de la onda
u(x, t) = A sen(kx− ωt).

Ejercicio 2. Muestra que si F es conservativo, esto es, F = −∇V entonces el trabajo
∫
γ
~F ·d~r

depende de los extremos de γ pero no de la trayectoria que describe.

Ejercicio 3. Comprueba que las dimensiones son coherentes en la ecuación de Schrödinger.

Ejercicio 4. Para L > 0, supongamos una función de ondas que en un instante t0 es de
la forma Ψ(x, t0) = Amáx(0, 1 − |x|/L). Calcula la probabilidad de que en dicho instante se
detecte en (−∞,−L

4 ] ∪ [L2 ,∞) la part́ıcula que representa.

Ejercicio 5. Comprueba que Ψ(x, t) = e2πiξx−iEξt/~ con Eξ = 2π2~2ξ2/m satisface la ecuación
de Schrödinger con V = 0 para cualquier ξ = 0.

Ejercicio 6. Consideremos Ψ(x, t) = Ae−α(x
2+i~t/m) con α > 0. Halla A para que esté

normalizada y calcula el potencial V para que satisfaga la ecuación de Schrödinger. Nota:
Dicho potencial, convenientemente escalado, tiene un papel muy destacado en f́ısica cuántica
y aparecerá más tarde en el curso.

Ejercicio 7. Demuestra el teorema de Ehrenfest en el caso tridimensional.

Ejercicio 8. Si Ψ1(x, t) y Ψ2(x, t) son dos soluciones normalizadas de la misma ecuación de
Schrödinger en una dimensión, demuestra que

∫
R Ψ∗1(x, t)Ψ2(x, t) dx no depende del tiempo.

Ejercicio 9. Expresa x̂Ĥ − Ĥx̂ en términos de p̂.

Ejercicio 10. Demuestra que si Ψ resuelve la ecuación de Schrödinger en una dimensión
entonces ∂

∂t |Ψ|
2 = − ~

m
∂
∂x

(
=(Ψ∗Ψx)

)
donde =(z) indica la parte imaginaria de z y Ψx es la

derivada parcial de Ψ.

Ejercicio 11. Aplica el ejercicio anterior a una solución estacionaria Ψ(x, t) = e−iEt/~ψ(x) y
deduce que si el potencial se anula en ciertos intervalos Ij , se tiene ψ(x) = Aje

ipx/~ +Bje
−ipx/~

para x ∈ Ij con |Aj |2−|Bj |2 independiente de j. Escribe una fórmula para p y comprueba que
tiene dimensiones de momento.

Ejercicio 12. La ecuación de Schrödinger es en parte relativista y en parte no. Vas a compro-
bar que las transformaciones de Galileo no preservan las soluciones, pero śı la probabilidad.
En términos matemáticos, demuestra que dada una solución Ψ de la ecuación unidimensional,
la función Ψ′(x, t) = e−i(mvx+

1
2
mv2t)/~Ψ(x+ vt, t) con v constante (con dimensiones de veloci-

dad), satisface la ecuación de Schrödinger cambiando V (x) por V (x + vt). Nota: Obviamente
se cumple |Ψ|2 = |Ψ′|2, en ese sentido la probabilidad se conserva.

Ejercicio 13. Para una función de ondas radial, Ψ(x, y, z, t) = g(
√
x2 + y2 + z2, t) que sa-

tisface la ecuación de Schrödinger halla qué ecuación debe cumplir g. Indicación: Todo lo que
debes hacer es recordar o hallar cómo es el operador laplaciano en coordenadas esféricas.



Ejercicio 14. Consideremos la ecuación de Schrödinger independiente del tiempo en tres
dimensiones con un potencial V (x, y, z) = V1(x) + V2(y) + V3(z). Si ψj , j = 1, 2, 3, son solu-
ciones normalizadas para el caso unidimensional con potenciales Vj y enerǵıas Ej , prueba que
ψ(x, y, z) = ψ1(x)ψ2(y)ψ3(z) es solución normalizada del problema tridimensional para cierta
enerǵıa E. Exprésala en términos de las Ej .

Ejercicio 15. Sea ψ(x) = Axe−a
4x2 con A, a ∈ R+ solución de la ecuación de Schrödinger

independiente del tiempo para un potencial V con V (0) = 0. Halla A ∈ R+ para que esté
normalizada y calcula V y E. ¿Qué dimensiones tienen a y A?

Ejercicio 16. Explica por qué si ψ = ψ(x) es una solución normalizada de la ecuación de
Schrödinger independiente del tiempo

∫∞
−∞ ψ

∗p̂(ψ) = 0. Indicación: Una forma de proceder,
aunque no la más rápida, es recordar la relación entre p̂ y x̂Ĥ − Ĥx̂ de un ejercicio anterior.

Ejercicio 17. En el caso de la part́ıcula libre en la circunferencia, demuestra la conservación de
la probabilidad (si Ψ(x, 0) está normalizada, entonces Ψ(x, t) también lo está para cualquier t)
utilizando la identidad de Parseval para series de Fourier. Nota: Tal identidad afirma que si f
es 1-periódica

∫ 1
0 |f |

2 es la suma de los cuadrados de sus coeficientes de Fourier.

Ejercicio 18. Si un potencial es par, V (x) = V (−x), demuestra que cada solución de la
ecuación de Schrödinger independiente del tiempo para cierta enerǵıa es suma de una solución
par y otra impar (quizá una de las dos idénticamente nula).

Ejercicio 19. Consideremos la ecuación de Schrödinger independiente del tiempo en una
dimensión con un potencial que cumple V (x) > V0 para cierta constante V0. Demuestra que
no hay soluciones normalizables con E < V0. Indicación: Comprueba la identidad ψ′′ψ =
(ψψ′)′ − (ψ′)2 o ψ′′ψ∗ = (ψ∗ψ′)′ − |ψ′|2 si trabajas con números complejos.

Ejercicio 20. En el pozo de potencial infinito con L = 1/5, Dada la condición inicial Ψ(x, 0) =
A sen3(5πx) halla A para que esté normalizada y obtén una fórmula expĺıcita para Ψ(x, t).
¿Cuál es la probabilidad de detectar la part́ıcula en x > 1/10 en el instante t = 20π−1~−1m?

Ejercicio 21. Sea Ψ(x, t) solución de la ecuación de Schrödinger para el pozo de potencial
infinito y sea T = 4mL2/(π~). Comprueba que T tiene dimensiones de tiempo y demuestra que
Ψ(x, 0) = Ψ(x, T ) y Ψ(x, T/4) = 1−i

2 Ψ(x, 0)− 1+i
2 Ψ(L− x, 0). Nota: Estas y otras repeticiones

de las condiciones iniciales en algunos sistemas se llaman resurgimiento cuántico o, a veces,
efecto Talbot cuántico por el pionero de la fotograf́ıa H. F. Talbot que observó un análogo
óptico.

Ejercicio 22. Calcula las soluciones de la la ecuación de Schrödinger independiente del tiempo
para el pozo de potencial cúbico infinito en tres dimensiones. Es decir, para V (x, y, z) = 0 si
x, y, z ∈ [0, L] y V (x, y, z) = ∞ en otro caso. Halla el número de soluciones linealmente
independientes para los seis valores más pequeños de la enerǵıa. Indicación: Puedes dar por
supuesto que el método de separación de variables es aplicable aqúı.

Ejercicio 23. Considera el pozo de potencial finito con L = 1. ¿A partir de qué valor de V0
hay solo una solución par con enerǵıa −V0 < E < 0? Calcula el ĺımite de E/V 2

0 cuando V0 → 0
y explica la paradoja de que E/V0 sea adimensional y el resultado por V0 no lo sea.



Ejercicio 24. En f́ısica muchas veces se usan potenciales con deltas de Dirac. Más allá de
la definición matemática que quizá conozcas, intuitivamente la delta de Dirac δ = δ(x) se
entiende como la derivada de H donde H(x) = 0 en x < 0 y H(x) = 1 en x > 0, de modo
que

∫
I δ = 1 para cualquier intervalo 0 ∈ I. Con esta información, determina las soluciones

normalizables de la ecuación de Schrödinger independiente del tiempo para V = αδ con α < 0.
¿Qué dimensiones tiene α? Indicación: En cierto modo, δ(x) = 0 para x 6= 0 y δ(0) = ∞, por
tanto, V = 0 en R−{0}. Después hay que ajustar las cosas en el origen para que ψ′′ sea como
la derivada de una función escalón. Salvo normalizaciones, solo hay una solución.

Ejercicio 25. Considera el potencial V (x) = Vi(x) + V0Lδ(x−L/2) donde Vi corresponde al
pozo de potencial infinito y δ es la delta de Dirac. Comprueba que la solución de Ĥψ = Eψ con
E mı́nima es de la forma ψ(x) = A sen(x

√
2mE/~) en [0, L2 ] y ψ(x) = B sen((L− x)

√
2mE/~)

en [L2 , L]. Demuestra que E es la menor solución positiva de la ecuación

~
√

2E

LV0
√
m

+ tan
L
√
mE

~
√

2
= 0.


