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La ecuación de Schrödinger es una ecuación en derivadas parciales que regula la evolución de los estados
cuánticos. Con ella, los comportamientos discretos observados en algunos de los experimentos que dieron lugar
a la f́ısica cuántica corresponden a los autovalores de ciertos operadores diferenciales.

2.1. Creando una ecuación

Inicialmente la mecánica cuántica se teorizó con los importantes trabajos de W. Heisenberg,
M. Born y P. Jordan [12], [3], [2] basados en matrices infinitas, lo cual suena razonable para
expresar intercambios discretos de enerǵıa como los que sugeŕıan los experimentos. Con este
lenguaje la multiplicación de matrices correspond́ıa a una forma de operar frecuencias en series
de Fourier . Sin embargo, E. Schrödinger cambió esta perspectiva dándole una orientación
ondulatoria regida por una ecuación en derivadas parciales [18], [17]. El triunfo de la versión
de Schrödinger, que es la que ha llegado hasta nuestros d́ıas, es comprensible, porque es más
versátil y porque está más cerca de los métodos matemáticos habituales de la f́ısica, tanto en
su tiempo como en la actualidad.

Antes de comenzar, debes repasar o aprender un poco de la terminoloǵıa al uso en los
fenómenos ondulatorios aśı como la conservación de la enerǵıa en la mecánica clásica. Ese es
el contenido de los dos siguientes breves apartados, que podŕıan resultarte prescindibles.

Ondas. Cuando nos hablan de ondas a todos se no vienen a la cabeza los senos y cosenos.
En f́ısica a menudo las ondas corresponden a expresiones del tipo

u(x, t) = A

{
sen
cos

}
(kx− ωt)

que, matemáticamente, son soluciones de la ecuación de ondas utt = v2puxx con vp = ω/k. El
análisis de Fourier esencialmente dice que todas las soluciones son superposiciones de ellas.
Tanto en matemáticas como en f́ısica, en muchas situaciones conviene unificar los senos y
cosenos introduciendo ondas complejas, que convenientemente superpuestas por medio de las
fórmulas atribuidas a L. Euler dan lugar a las ondas reales consideradas antes:

(1) φ(x, t) = Aei(kx−ωt) =⇒

A cos(kx− ωt) = 1
2

(
φ(x, t) + φ(−x,−t)

)
,

A sen(kx− ωt) = 1
2i

(
φ(x, t)− φ(−x,−t)

)
.
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Un ejemplo matemático de la utilidad de este truco es que en las series de Fourier de funciones
1-periódicas las fórmulas son más sencillas y simétricas con ondas complejas que con reales.
Un ejemplo de la f́ısica y la ingenieŕıa es que es más fácil analizar circuitos de corriente alterna
suponiendo que la diferencia de potencial y la corriente son ondas complejas.

La siguiente tabla recoge parte de la terminoloǵıa habitual en f́ısica [6, §29.3] para estas
ondas sinusoidales en una dimensión:

Śımb. Significado Dim.

A Amplitud : altura de las crestas −
ν Frecuencia angular : número de oscilaciones por unidad de tiempo T−1

ω Frecuencia: 2πν, número de radianes por unidad de tiempo T−1

T Periodo: ν−1, lo que tarda en repetirse un ciclo T

λ Longitud de onda: separación entre crestas para tiempo fijado L

k Número de ondas: 2π/λ salvo el signo L−1

vp Velocidad de fase: ω/k, avance de las crestas por unidad de tiempo LT−1

Estas gráficas tratan de ilustrar el significado de la amplitud, el periodo y la longitud de
onda:

t

A

T

Onda con x fijado

x
A

λ

Onda con t fijado

En tres dimensiones la situación es similar salvo que k y x son vectores porque hay que
señalar una dirección, de hecho ya en el caso unidimensional hay dos posibilidades para el signo
de k, correspondientes a las dos direcciones (sentidos) que hay en R. La ecuación de ondas en

tres dimensiones es utt = v2p∆u con ∆ = ∂2

∂x2 + ∂2

∂y2
+ ∂2

∂z2
el operador laplaciano.

La unidad en el SI para indicar la frecuencia es el hercio (por el f́ısico Hertz), es decir,
1Hz = 1s−1 donde Hz es el śımbolo para el hercio.

Enerǵıa en un campo. Un modelo matemático recurrente en f́ısica consiste en que las
part́ıculas de prueba experimentan en cada punto del espacio una fuerza dada por un campo
vectorial , una función F⃗ : R3 −→ R3. Especialmente relevante es el caso en que F⃗ = −∇V ,
cuando esto ocurre se dice que el campo es conservativo y que V es su potencial o la enerǵıa
potencial . El potencial V está definido salvo una constante aditiva y en f́ısica a veces hay con-
venios para fijarla. En nuestro contexto unidimensional, el campo que da la fuerza es escalar y
simplemente estamos escribiendo F (x) = −V ′(x). Ya hab́ıamos mencionado la enerǵıa cinética
1
2mv

2 de una part́ıcula con masa m y velocidad v. Con ambos tipos de enerǵıa, se define la
enerǵıa total de dicha part́ıcula como

E = Ecin + Epot =
1

2
mv2 + V =

p2

2m
+ V.
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El interés de esta cantidad es que permanece constante a lo largo de la trayectoria x = x(t) de
la part́ıcula, se conserva, porque

dE

dt
= mv

dv

dt
+ V ′dx

dt
= (ma− F )v = 0.

Un análisis similar funciona en tres dimensiones con v2 o p2 el cuadrado de la norma de las
cantidades vectoriales correspondientes.

Ya hemos visto cómo Einstein sugirió que las ondas de luz estuvieran, de algún modo, com-
puestas por part́ıculas de luz. El paso de ondas a cuantos también es natural con la explicación
de la radiación del cuerpo negro o con el átomo de Bohr interpretando que la radiación debida a
la fórmula de Larmor no se produce porque no hay enerǵıa suficiente para producir un cuanto.
Aunque suene paradójico, la idea que triunfó fue la hipótesis de L. de Broglie, planteada en su
tesis doctoral en 1924, consistente en que la materia era de naturaleza ondulatoria. Además,
esta idea surǵıa a partir de la f́ısica clásica, cuando se comparaban ecuaciones de mecánica y
de la óptica geométrica (la que considera la luz formada por rayos), algo que tiene sus antece-
dentes en W. R. Hamilton. De Broglie asociaba a una part́ıcula en movimiento con momento
lineal p una onda de materia con longitud de onda

(2) λ =
h

p
o, equivalentemente, ℏk = p.

Si pensamos en el átomo de Bohr la onda asociada al electrón pegada a su órbita con esta
longitud de onda, la condición de cuantización de Bohr equivale a pedir que no entre en
conflicto con ella misma, que sea estacionaria.

+

-

+

-

Para radiaciones electromágneticas (por ejemplo, la luz), la electrodinámica clásica afirma
p = E/c donde p es el momento lineal (que ya no se define como masa por velocidad), E
la enerǵıa y c la velocidad de fase (la velocidad de la luz). Como para cada fotón se cumple
E = hν = ℏω, se tiene p = ℏω/vp = ℏk = h/λ. Entonces (2) está en consonancia con la
electrodinámica clásica. Otra concordancia notable, es que la mecánica clásica se basa en el
principio de mı́nima acción, un principio variacional que afirma que las part́ıculas libres se
mueven de forma que la integral del momento lineal en función del espacio es estacionaria
(localmente mı́nima). Por otro lado, el principio de Fermat de la óptica geométrica [6, §26],
[4, §3] afirma algo similar para λ−1, lo cual sugiere que p y λ−1 son proporcionales [9]. El
espaldarazo experimental llegó en 1927, cuando se publicó el resultado de unos experimentos
que mostraban que los electrones se difractaban como si fueran ondas con una longitud de
onda compatible con (2). La difracción es un fenómeno consistente en que las ondas tienden a
desviarse al pasar pasar por una abertura.
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La fórmula (2) abrió un nuevo periodo en la f́ısica cuántica y propició la contribución
fundamental de E. Schrödinger quien, en estos comienzos de la mecánica cuántica ondulatoria,
introdujo la ecuación básica que rige la evolución de la onda asociada a una part́ıcula. En vez de
seguir sus argumentos [10] (parcialmente reflejados en [9] y [8]), procederemos de una manera
que allanará el camino al formalismo actual. Debe quedar claro que la ecuación de Schrödinger
no se deduce de primeros principios, es un postulado en śı misma de la f́ısica cuántica, a todo
lo que podemos aspirar es a motivarla. Seguramente los matemáticos se sentirán complacidos
al leer los siguientes fragmentos de una carta de Schrödinger a Wien poco antes de publicar su
famosa ecuación:

Una nueva teoŕıa atómica me ocupa en este momento. ¡Ojalá supiera más matemáti-
cas! Soy muy optimista al respecto y espero que, si logro dominar los cálculos, todo
saldrá muy bien. Creo que puedo proporcionar un sistema vibratorio [. . . ] que tenga
las frecuencias del término de hidrógeno como frecuencias naturales [. . . ]

Espero poder informar pronto sobre el asunto con un poco más de detalle y de
manera fácil de entender. Por el momento, todav́ıa tengo que aprender matemáticas
para poder resolver completamente el problema de la oscilación –una ecuación
diferencial lineal, similar a la de Bessel, pero menos conocida [. . . ]

Está claro que una part́ıcula no es una onda como (1) que se extiende por todo el espa-
cio, sino que está localizada, es posible concretar una pequeña región en la que está. ¿Cómo
reconciliar esto con (2)? En el lado de la f́ısica hay una analoǵıa en la óptica geométrica antes
mencionada: observamos rayos de luz (más evidentes en los láseres), pero tales rayos están
formados por superposiciones de muchas ondas. En el lado matemático, la situación es familiar
en el análisis de Fourier (J. Fourier resolvió la ecuación del calor suponiendo que todas las
funciones son superposiciones de ondas). Por ejemplo, cos(8πt) se extiende por toda la recta
real con frecuencia 4. La identidad integral basada en la transformada de Fourier

e−πt2 cos(8πt) =

∫ ∞

−∞
g(ν) cos(2πνt) dν con g(ν) = e−π(ν−4)2 .

indica cómo obtener una versión localizada alrededor del origen de cos(8πt) superponiendo
ondas de infinidad de frecuencias siendo las más relevantes las que tienen frecuencias cercanas
a 4, nótese que máx g = g(4).

t
-1-2 1 2

Gráfica de f(t) = cos(8πt)

t
-1-2 1 2

Gráfica de f(t) = e−πt2 cos(8πt)

Motivados por esto, para construir la ecuación buscada vamos a suponer que las ondas
de materia son superposiciones de ondas (1) que tienen k = p/ℏ y ω = E/ℏ para que sean
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compatibles con (2) y con ω = E/ℏ, que equivale a la fórmula de Planck-Einstein. Esto es,

φ(x, t) = Aei(px−Et)/ℏ.

Vamos ahora a definir el operador momento lineal que baja p del exponente y multiplica a φ. En
f́ısica cuántica básica para distinguir los operadores de las cantidades clásicas se suele escribir
un circunflejo encima1. El operador en cuestión es

p̂ = −iℏ ∂
∂x

=⇒ p̂(φ) = pφ.

También, para cualquier función de la posición g = g(x) se define el operador asociado que
simplemente multiplica por dicha función:

ĝ = g· =⇒ ĝ(φ) = gφ

Si queremos que se satisfaga la conservación de la enerǵıa debemos imponer

Ĥφ = Eφ con Ĥ =
p̂2

2m
+ V̂

donde p̂2 es el operador momento lineal aplicado dos veces. Se dice que Ĥ es el operador
hamiltoniano por ser el análogo del hamiltoniano que da la enerǵıa en la mecánica clásica,
llamado aśı en honor a Hamilton. Se puede evitar cualquier referencia a E utilizando una
derivada con respecto del tiempo:

iℏ
∂φ

∂t
= Ĥφ.

Recordemos que nuestra suposición era que las ondas de materia, digamos Ψ(x, t), son superpo-
siciones de las ondas básicas φ(x, t). Como Ĥ y derivar con respecto del tiempo son operadores
lineales, respetan las superposiciones, entonces Ψ(x, t) satisface una ecuación similar

iℏ
∂Ψ

∂t
= ĤΨ.

a la que se llama ecuación de Schrödinger , añadiendo a veces dependiente del tiempo para
distinguirla de otra que veremos más adelante que solo actúa sobre la posición.

Las versiones matemáticamente expĺıcitas para una y tres dimensiones espaciales de la
ecuación de Schrödinger son las ecuaciones en derivadas parciales:

(3) iℏ
∂Ψ

∂t
= − ℏ2

2m

∂2Ψ

∂x2
+ VΨ y iℏ

∂Ψ

∂t
= − ℏ2

2m
∆Ψ+ VΨ.

La primera se sigue descodificando la notación en el argumento anterior y la segunda se obtiene
de manera similar salvo que p̂ es el operador vectorial −iℏ∇. En esta última ∆ es el operador

1Muchos matemáticos refunfuñarán por la confusión con la notación de la transformada de Fourier, la cual,
para mayor escándalo, en f́ısica cuántica se indica muchas veces solo cambiando el nombre de la variable.
Si f = f(x) es una función, f(p) significa su transformada de Fourier con cierta normalización.
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laplaciano que en f́ısica casi siempre se denota con ∇2, como si fuera aplicar dos veces el
gradiente, lo cual tiene cierto sentido aqúı.

Terminemos con dos observaciones al margen que solo llamarán tu atención si tienes conoci-
mientos de f́ısica clásica, en el segundo caso con alguna profundidad. La mecánica clásica de una

part́ıcula en un campo conservativo se puede construir a partir de H = E con H = p2

2m +V , de

modo que la ecuación Ĥφ = Eφ que cumple cada “trozo” de Ψ con enerǵıa definida es la ecua-
ción clásica pasando a operadores mediante la regla de que los momentos lineales se traducen
en derivadas (con cierta normalización) y las posiciones (o funciones de ellas) en multiplicacio-
nes. En los primeros tiempos de la f́ısica cuántica esto dio una gúıa muy útil para transformar
ecuaciones clásicas en cuánticas y constituye lo que se llama primera cuantización. La segunda
observación, más avanzada, es que px−Et es el producto de Minkowski de dos cuadrivectores
en la cinemática relativista, lo que sugiere que nuestras φ(x, t) son relativistas, invariantes
Lorentz, sin embargo estamos aplicando la conservación de la enerǵıa no relativista lo que no
es coherente y aboca a perder la oportunidad de que la ecuación de Schrödinger represente
correctamente part́ıculas con velocidades cercanas a la de la luz. El propio Schrödinger era
consciente de ello, pero se vio forzado a esta incongruencia porque cuando usaba la enerǵıa
relativista le saĺıa una ecuación que no teńıa sentido f́ısico. En gran medida este problema lo
resolvió P. Dirac introduciendo una ecuación matricial en que las ondas de materia pasaban
a ser vectores de cuatro coordenadas con propiedades exóticas bajo cambios de coordenadas
llamados espinores.

Imaginarás que si hay una primera cuantización es que hay una segunda cuantización (el
nombre se debe a Jordan). Aśı es y está relacionada con ambas observaciones pues utiliza fami-
lias de operadores y fundamenta la teoŕıa cuántica de campos, la teoŕıa de los que disponemos
en la actualidad para combinar la f́ısica cuántica y la relatividad especial, dando cuenta de las
part́ıculas elementales. Para ilustrar su complejidad, basta decir que uno de los Millennium
Prize Problems [19] esencialmente pregunta si tiene sentido matemático.

2.2. Interpretación y propiedades

Antes de nada, vamos a cambiar el término antiguo onda de materia por el más general y
moderno función de ondas. En nuestro contexto la función de ondas es una función Ψ = Ψ(x, t)
asociada a una part́ıcula que resuelve la ecuación de Schrödinger. En un contexto más amplio,
una función de ondas puede representar el estado de un sistema cuántico más complejo, por
ejemplo de un átomo con muchos electrones.

La pregunta más fundamental es qué representa la función de ondas Ψ. Paradójicamente,
Schrödinger inventó su ecuación antes de tener clara la respuesta. Debido a la aparición de un
factor i en el primer miembro, necesariamente Ψ toma valores complejos2. Si Ψ representa a
la part́ıcula, parece natural suponer que fijado un tiempo t habrá “más part́ıcula” en x cuanto
mayor sea |Ψ(x, t)|, lo mismo que hay “más ola” en la zona cercana a su cresta.

2Es poco conocido que Schrödinger intentó algunas cosas extrañas para escapar de los números complejos
[13] hasta acabar aceptándolos. Recientemente, [16] ha alcanzado cierta fama (seguramente ef́ımera) afirmando
que la necesidad de los números complejos se puede comprobar experimentalmente y tal experimento se ha
llevado a cabo.
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La idea que triunfó es la regla de Born [1] [10, §13.7], formulada unos d́ıas después del
art́ıculo de Schrödinger [18], que afirma:

Para cada t fijado, |Ψ(x, t)|2 es proporcional a la probabilidad de detectar la part́ıcu-
la en x.

Más adelante veremos que “detectar” o “medir” es algo que lleva a un problema todav́ıa no
resuelto en la fundamentación de la f́ısica cuántica.

Desde el punto de vista matemático, lo que estamos diciendo es que si normalizamos Ψ
multiplicándola por una constante para que se cumpla

∫
|Ψ(x, t)|2 dx = 1 entonces f(x) =

|Ψ(x, t)|2 es la función de densidad de la part́ıcula que ahora, al menos en cuanto a detección
se refiere, pasa a ser un ente probabilista. Eso suena un poco feo (y, de hecho, más de lo que
parece a este nivel), pero es lo que hay. En palabras de Schrödinger: “No soy amigo de la teoŕıa
de la probabilidad, la he odiado desde el primer momento en que nuestro querido amigo Max
Born la dio a luz” [10, §12.2]. Con esta interpretación, dimΨ = L−1/2 en una dimensión y
dimΨ = L−3/2 en tres dimensiones.

Un primer problema técnico es que para que Ψ sea normalizable debemos admitir que sea de
cuadrado integrable. De hecho, cuando es necesario se supone que Ψ o sus derivadas en x tienen
cierto decaimiento a la larga en dicha variable. Esto es cuestionable porque ni siquiera g ∈ L2(R)
implica ĺımx→∞ g(x) = 0. Repitiendo literalmente una aclaración del famoso texto básico de
f́ısica cuántica [11] “Un matemático competente puede darte contraejemplos patológicos, pero
no aparecen en f́ısica, para nosotros la función de ondas y todas sus derivadas tienden a cero
en el infinito”.

Un problema mucho más serio es que la normalización no solo es necesaria para un tiempo
fijado sino para todo tiempo. Si Ψ satisface la ecuación de Schrödinger, entonces κΨ con κ en R
o en C también la satisface, por que es lineal. Eso permite que la normalización para cada t sea
posible bajo las premisas anteriores. Ahora bien, si κ dependiera de t entonces κ(t)Ψ dejaŕıa de
cumplir en general la ecuación. Si, por ejemplo, |Ψ(x, 0)|2 es función de densidad y |Ψ(x, 1)|2
no lo es porque su integral es 1/2 hemos perdido la mitad de la probabilidad y si fuera 2, la
interpretación probabilista seŕıa imposible. Lo único compatible con esta interpretación es que
la probabilidad se conserve, es decir, en nuestro contexto unidimensional, que haya un milagro
matemático por el que la primera ecuación de (3) implique

d

dt

∫ ∞

−∞
|Ψ(x, t)|2 dt = 0.

Veamos cómo se demuestra tal milagro. Derivando bajo el signo integral, nos enfrentamos a

∂

∂t
|Ψ|2 = ∂

∂t
(Ψ∗Ψ) = Ψ∗∂Ψ

∂t
+Ψ

∂Ψ∗

∂t
,

donde, siguiendo la tradición en f́ısica, la estrella indica el conjugado (porque la barra se utiliza
para otra cosa). El golpe de gracia es que utilizando (3),

∂

∂t
|Ψ|2 = iℏ

2m

(
Ψ∗∂

2Ψ

∂x2
−Ψ

∂2Ψ∗

∂x2

)
= − ∂j

∂x
con j(x, t) =

iℏ
2m

(
Ψ
∂Ψ∗

∂x
−Ψ∗∂Ψ

∂x

)
.
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De aqúı,
d

dt

∫ ∞

−∞
|Ψ(x, t)|2 dt = −

∫ ∞

−∞

∂j

∂x
dx = j(−∞, t)− j(∞, t)

que es cero bajo nuestras hipótesis de que Ψ y su derivada con respecto de x tienden a cero
cuando x→ ∞.

Una vez que sabemos que la interpretación de la función de ondas es consistente, debemos
abordar el problema de si es coherente con la realidad. Si la ecuación de Schrödinger tiene
sentido f́ısico, para ondas muy concentradas, que parecieran part́ıculas, debeŕıamos recuperar
la f́ısica clásica. El electrón en el átomo de hidrógeno puede que se comporte como una onda
según (2) o según (3), pero las antiguas televisiones con sus tubos de rayos catódicos funcio-
naban cuando se aplicaban leyes clásicas a los electrones considerados como part́ıculas que
impactaban a la pantalla.

Partiendo de que |Ψ|2 es una función de densidad para cualquier tiempo, la posición media
y la fuerza media se definen como

⟨x⟩ =
∫ ∞

−∞
x|Ψ(x, t)|2 dx y ⟨F ⟩ = −

∫ ∞

−∞
V ′(x)|Ψ(x, t)|2 dx.

En tres dimensiones pasaŕıan a ser vectores de tres coordenadas ⟨x⃗⟩ y ⟨F⃗ ⟩ con −V ′ reemplazado
por−∇V . El teorema de Ehrenfest (por P. Ehrenfest, un f́ısico teórico amigo de Einstein) afirma
que la ecuación de Schrödinger implica

m
d2⟨x⃗⟩
dt2

= ⟨F⃗ ⟩.

Dicho de una forma colorista: la mecánica clásica (basada en F = ma) es la mecánica cuántica
(basada en la ecuación de Schrödinger) en promedio.

Veamos la demostración del teorema de Ehrenfest en una dimensión. En tres es bastante
similar. Escribiendo como antes |Ψ|2 = ΨΨ∗ y usando la ecuación de Schrödinger en la forma
∂Ψ
∂t = −iℏ−1Ĥ(Ψ) con Ĥ = p̂2

2m + V̂ ,

d⟨x⟩
dt

=

∫ ∞

−∞

(
− iℏ−1xĤ(Ψ)Ψ∗ + iℏ−1xΨĤ(Ψ∗)

)
dx.

Integrando por partes dos veces,
∫∞
−∞ f ′′g =

∫∞
−∞ fg′′, suponiendo el decaimiento adecuado en

el infinito, de ah́ı, ∫ ∞

−∞
Ĥ(f)g =

∫ ∞

−∞
fĤ(g),

por tanto,
d⟨x⟩
dt

= −iℏ−1

∫ ∞

−∞
Ψ∗(xĤ(Ψ)− Ĥ(xΨ)

)
dx.

Operando, el paréntesis interior es ℏ2
m

∂Ψ
∂x , de modo que

d⟨x⟩
dt

= − iℏ
m

∫ ∞

−∞
Ψ∗∂Ψ

∂x
dx =

1

m

∫ ∞

−∞
Ψ∗p̂(Ψ) dx.
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Esta igualdad es bastante sugestiva, porque, de algún modo, indica que la masa por el promedio
de la velocidad es el promedio del momento. Derivando de nuevo con respecto de t, todo
funciona como antes reemplazando el operador x̂ (multiplicar por x) por p̂. Es decir,

m
d2⟨x⟩
dt2

= −iℏ−1

∫ ∞

−∞
Ψ∗((p̂Ĥ)(Ψ)− (Ĥp̂)(Ψ)

)
dx.

Es sencillo comprobar que p̂Ĥ − Ĥp̂ coincide con −iℏV̂ ′, porque p̂3 − p̂3 = 0 y p̂(V ) = −iℏV ′,
y eso termina la prueba.

El último tema que vamos a abordar en este apartado es bajo qué condiciones esperamos
resolver la ecuación de Schrödinger y cómo podemos hacerlo.

La ecuación de Schrödinger es una ecuación de evolución, dado un perfil inicial Ψ(x, 0),
intuitivamente, es posible aproximar Ψ(x, ϵ) mediante

iℏ
(
Ψ(x, ϵ)−Ψ(x, 0)

)
≈ ĤΨ(x, 0)

y repitiendo el proceso (método de Euler , diferencias finitas) tendŕıamos un método numérico
para aproximar Ψ(x, t). Este esquema sugiere que bajo la condición Ψ(x, 0) = f(x) y pidiendo
alguna regularidad obtendremos solución única de la ecuación de Schrödinger. Se prueba que es
aśı en cursos de matemáticas. F́ısicamente esto tiene sentido porque Ψ(x, 0) tiene información
tanto acerca de la posición como del momento iniciales, al menos en promedio (recordemos
las fórmulas para ⟨x⟩ y su derivada temporal), y eso es todo lo que necesitamos para hallar la
evolución futura (o pasada) de una part́ıcula.

Un método que se aplica con éxito en las ecuaciones en derivadas parciales lineales clásicas
es el de separación de variables. Vamos a ver a qué conduce aqúı y cuál es su interpretación
f́ısica. Según este método hay que buscar soluciones del tipo Ψ(x, t) = f(t)ψ(x) y después
superponerlas. Al sustituir en la ecuación de Schrödinger y dividir por Ψ(x, t) se obtiene

iℏ
f ′(t)

f(t)
=
Ĥψ(x)

ψ(x)
.

Ahora bien, el primer miembro depende de t y el segundo de x, por tanto, ambos deben ser
iguales a una constante que llamaremos E, enseguida veremos el motivo de esta notación. El
primer miembro da lugar a una ecuación diferencial ordinaria de primer orden cuya solución
salvo multiplicación por constantes es f(t) = e−iEt/ℏ, mientras que ψ satisface la ecuación de
Schrödinger independiente del tiempo

(4) Ĥψ = Eψ

llamada śı porque Ĥ solo actúa sobre la posición x. Esto funciona en una y tres dimensiones
dando lugar a las ecuaciones:

− ℏ2

2m
ψ′′ + (V − E)ψ = 0 y − ℏ2

2m
∆ψ + (V − E)ψ = 0.
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Nótese que estas ecuaciones son reales. Con lo que sabemos de la motivación de la ecuación

de Schrödinger, E es la enerǵıa y (4) es el análogo cuántico de su conservación: p2

2m + V = E.
Por otro lado, f(t)Ψ(x) es lo que en f́ısica se llama una onda estacionaria, la que oscila en el
tiempo con un movimiento armónico y el método de separación de variables es la realización
de la confianza habitual de que toda onda sea superposición de ondas estacionarias.

La ecuación (4) afirma que E es un autovalor de Ĥ. Por analoǵıa con el álgebra lineal,
parece razonable que en ciertas situaciones los valores de E sean discretos, esto es, que la
enerǵıa esté cuantizada. Si este es el caso, existen unas enerǵıas En permitidas, que se dice que
conforman el espectro discreto, y unas soluciones ψn de (4) tales que la solución de la ecuación
de Schrödinger (dependiente del tiempo) es

Ψ(x, t) =
∑
n

ane
−iEnt/ℏψn(x)

con an coeficientes que se ajustan con la condición inicial Ψ(x, 0). En caso de que los valores
de E no fueran discretos, conformando el llamado espectro continuo, para superponer las
soluciones f(t)ψn(x) del método de separación de variables necesitaŕıamos integrar en lugar
de sumar. En algunos problemas se combinan ambas situaciones.

La regularidad exigida en (4) y la que permite que (3) tenga solución en algún sentido,
es algo sobre lo que hay mucha literatura matemática y algún problema abierto. En f́ısica,
es natural considerar potenciales con singularidades y la regla es que ψ se supone siempre
continua para respetar la interpretación ondulatoria y en el caso de una dimensión se requiere
que ψ′′ tenga a lo más las singularidades permitidas para V , para que aśı pueda cancelarlas
en (4).

2.3. Ejemplos destacados

El objetivo es considerar una serie de ejemplos comunes simples de naturaleza académica
en los que hay soluciones expĺıcitas de la ecuación de Schrödinger. La existencia de soluciones
expĺıcitas es muy inusual. Por otro lado, si se admiten soluciones aproximadas, la llamada
aproximación WKB [11], que no veremos aqúı, es muy útil en el caso unidimensional. Está
basada en un desarrollo de Taylor en ℏ donde el término de orden cero correspondeŕıa al
comportamiento clásico.

Antes de comenzar, conviene recordar lo básico del análisis de Fourier que debeŕıas de
conocer de cursos anteriores sin meternos en el incómodo rigor de las cuestiones de regularidad
([5], [15] y [7] son muy buenas referencias).

Una función f : R −→ C de periodo uno “buena” admite un desarrollo de Fourier

f(x) =
∑
n∈Z

cn e
2πinx donde cn =

∫ 1

0
f(x) e−2πinx dx.

La suma se dice que es la serie de Fourier y los cn los coeficientes de Fourier Una vez que uno
sabe que f tiene un desarrollo de Fourier, la fórmula para los cn es fácil de deducir porque∫ 1
0 e

2πinxe−2πimx dx es 1 si n = m y 0 en otro caso.
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Por otro lado, una función f : R −→ C no periódica, pero con “buen decaimiento en el
infinito” admite una especie de desarrollo de Fourier con integrales:

f(x) =

∫ ∞

−∞
F(f)(ξ) e2πixξ dξ donde F(f)(ξ) =

∫ ∞

−∞
f(x) e−2πiξx dx.

Lo primero es la fórmula de inversión y lo segundo define la transformada de Fourier .

Part́ıcula libre en una circunferencia. Supongamos V = 0 que es lo mismo que imponer
desde el punta de vista clásico que la part́ıcula no está sometida a ningún cambio. Además,
suponemos que está confinada a una circunferencia de longitud L que no altera la dinámica
(el rozamiento y la fuerza centŕıfuga son despreciables). Matemáticamente lo que estamos
haciendo es imponer que Ψ sea L-periódica en x. Las soluciones de la ecuación de Schrödinger
independiente del tiempo heredan esta simetŕıa, aśı que debemos resolver

(5) − ℏ2

2m
ψ′′ − Eψ = 0 con ψ(x) = ψ(x+ L).

Por el curso que seguiste de ecuaciones diferenciales ordinarias debeŕıas saber que las soluciones
de y(n)+an−1y

(n−1)+ · · ·+a1y′+a0y = 0 son combinaciones lineales de erx donde r recorre las
ráıces de xn+an−1x

n−1+· · ·+a1x+a0 = 0 salvo añadir algunas más cuando hay ráıces múltiples.
En nuestro caso las ráıces son ±r con r = ℏ−1

√
−2mE y las soluciones asociadas ψ+(x) = Aerx

y ψ−(x) = Ae−rx excepto para E = 0 en cuyo caso la ráız es doble y ψ(x) = A + Bx que se
reduce a ψ = A al imponer la periodicidad. Si E < 0 claramente ψ no es L-periódica, entonces
este caso no ocurre. Si E > 0 la periodicidad exige rL = 2πin con n ∈ Z que implica que la
enerǵıa está cuantizada, solo puede tomar los valores

En =
2π2ℏ2n2

mL2
con n ∈ Z.

A pesar de que el signo de n no influye en la enerǵıa, podemos aprovecharlo para parametrizar
ψ+ y ψ− escribiendo que

ψn(x) =
1√
L
e2πinx/L y En =

2π2ℏ2n2

mL2

dan “todas” las soluciones ψ y E de (5) con ψ normalizada, entendiendo que para n ̸= 0 en
realidad {ψn, ψ−n} es una base del espacio de soluciones para una misma enerǵıa En = E−n.
Entonces la solución de la ecuación de Schrödinger dependiente del tiempo es

Ψ(x, t) =
∑
n∈Z

anψn(x)e
−iEnt/ℏ =

1√
L

∑
n∈Z

ane
2πinx/L−iEnt/ℏ.

Tomando t = 0 y con el cambio x 7→ Lx, tenemos que Ψ(Lx, 0) es 1-periódica y la fórmula de
los coeficientes de Fourier implica

an =
√
L

∫ 1

0
Ψ(Lx, 0)e−2πinx dx =

∫ L

0
Ψ(x, 0)ψ∗

n(x) dx.

Si recuerdas la identidad de Parseval , nota que con ella se obtiene una prueba directa de la
conservación de la probabilidad: si Ψ(x, 0) está normalizada, entonces Ψ(x, t) también lo está
para cualquier t.
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Part́ıcula libre en la recta real. De nuevo consideramos que la part́ıcula no está sometida
a ningún campo, V = 0, pero ahora el espacio es toda la recta real en lugar de la circunferencia,
con lo que perdemos la condición ψ(x) = ψ(x+ L) en (5). Esta condición solo afectaba a que
n/L deb́ıa ser un entero entre L y todo debeŕıa ser similar salvo cambiar n/L por un número
arbitrario ξ, no entero en general. Lo que conduce a ψξ(x) = e2πiξx y Eξ = 2π2ℏ2ξ2/m.
Después habŕıa que cambiar la suma por una integral porque tenemos una cantidad continua
de enerǵıas. Con todo esto la solución seŕıa

(6) Ψ(x, t) =

∫ ∞

−∞
A(ξ)ψξ(x)e

−iEξt/ℏ dξ =

∫ ∞

−∞
A(ξ) e2πiξx−iEξt/ℏ dξ con Eξ =

2π2ℏ2

m
ξ2.

Aśı se procede en muchos textos, por ejemplo [11, §2.4], pero a un matemático no experimen-
tado le puede causar cierto resquemor que ahora las ψξ no son normalizables y que hayamos
descartado sin más explicación las soluciones E < 0 que correspondeŕıan a ξ imaginario puro
y ψξ con crecimiento exponencial en +∞ o −∞.

Para justificar (6), notemos primero que e2πiξx−iEξt/ℏ satisface la ecuación de Schrödinger
(aunque no sea normalizable). Por la linealidad de la integral entonces Ψ(x, t) también la cum-
ple y por la fórmula inversión con A igual a la transformada de Fourier de Ψ(x, 0) obtenemos
una solución de la ecuación bajo la condición inicial elegida. La unicidad nos dice que no hay
que considerar ningún caso más, (6) es correcta con la elección indicada de A.

El paquete de ondas gaussiano. Ahora analizaremos con más detalle un caso particular
del ejemplo anterior para ilustrar un fenómeno cuántico. La filosof́ıa expresada anteriormente
es que algo nos parece una part́ıcula cuando es una onda concentrada y que momento y enerǵıa
nos parece p y E si tiene mucho de la onda ei(px−Et)/ℏ. Con esta idea, para a > 0 consideramos
en el instante t = 0 el paquete de ondas gaussiano

f(x) =
4

√
2

πa2
e−x2/a2eipx/ℏ.

El coeficiente con la ráız cuarta es solo para normalizar. Tomando Ψ(x, 0) = f(x) estamos
considerando la función de ondas en el instante inicial de una part́ıcula de anchura comparable
a a y mv inicial esencialmente p. Según (6), la evolución viene dada por

Ψ(x, t) =

∫ ∞

−∞
F(f)(ξ) e2πiξx−iEξt/ℏ dξ con Eξ =

2π2ℏ2

m
ξ2.

Utilizando la bien conocida transformada de Fourier de la gaussiana [5]

e−πξ2 =

∫ ∞

−∞
e−πx2

e−2πiξx dx,

tras un cambio de variable se obtiene F(f)(ξ). Aburriéndose con más cambios de variable (en
realidad, hay atajos posibles) se llega a la fórmula expĺıcita, aunque bien fea,

Ψ(x, t) =
4

√
2

π

√
ma

ma2 + 2iℏt
ei
(
px− p2

4πm
t
)
/ℏ e

−m(x−pt/m)2

ma2+2iℏt .
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Por tanto, la función de densidad es

|Ψ(x, t)|2 =
√
δ(t)

πa2
e−δ(t)

(
x−pt/m

a

)2
con δ(t) =

2

1 + 4ℏ2a−4m−2t2
.

Si ma2/t es mucho mayor que ℏ entonces δ(t) ≈ 2 y suponiendo a pequeño (para que se parezca
a una part́ıcula) el decaimiento de la exponencial nos dice que esencialmente veremos que se
mueve con x = pt/m = vt, de acuerdo con la primera ley de Newton. Al ser ℏ tan pequeño
esta es la situación t́ıpica en el mundo macroscópico para tiempos razonables. Sin embargo
para t arbitrariamente grande o para m y a más propios del mundo subatómico se consigue
que ma2/t sea menor que ℏ y δ(t) ≈ 0, con lo que la probabilidad se vuelve más uniforme. En
otras palabras, perdemos la certeza de dónde está la part́ıcula.

Las siguientes figuras ilustran diferentes aspectos del fenómeno mostrando la densidad
de |Ψ(x, t)|2 para un paquete gaussiano correspondiente a la masa de un protón mp con
p/mp = 1ms−1. En la primera figura si a tiene un tamaño pequeño, pero no subatómico
(un miĺımetro), la onda concentrada evolucionará como una part́ıcula de velocidad uno. Sin
embargo, si concentramos mucho el paquete gaussiano, por un fenómeno que estudiaremos
más adelante, la onda se difunde rápidamente, como muestra la segunda figura. Finalmente,
la tercera ilustra que tal difusión ocurre siempre que esperemos lo suficiente.

a = 10−3, t ∈ [0, 1] a = 2 · 10−7, t ∈ [0, 1] a = 10−3, t ∈ [109, 109 + 105]

El pozo de potencial infinito. La situación f́ısica ahora es que tenemos una part́ıcula
cuántica confinada al intervalo I = [0, L]. Es decir, está en un caja con paredes impenetrables
en x = y x = L, lo que lleva a que Ψ(x, t) = 0 para x ̸∈ I. En f́ısica la situación se suele indicar
diciendo que el potencial es V = 0 en I y V = ∞ en R− I.

V (x) =


0 si 0 ≤ x ≤ L,

∞ si x > L,

∞ si x < 0.

V = ∞ V = ∞

0 L

V = 0
x
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¿Por qué se escribe de esta forma tan rara? Si una part́ıcula tiene enerǵıa total E0, la conserva-
ción de la enerǵıa afirma E0 =

1
2mv

2+V y toda la zona {x ∈ R : V (x) > E0} le estaŕıa vedada
porque 1

2mv
2 > 0. Por tanto, imponer V = ∞ en una zona asegura que ninguna part́ıcula clási-

ca tendrá enerǵıa suficiente para llegar alĺı. Si prefieres algo más concreto matemáticamente,
suponemos que las funciones de onda admisibles en el instante se anulan para x ∈ R−I porque
formalmente para que el término V ψ de la ecuación se cancele con el resto, cuando V = ∞ la
única posibilidad es tener un ∞ · 0.

La ecuación de Schrödinger independiente del tiempo vuelve a ser como (5), pero ahora el
confinamientos al intervalo induce unas nuevas condiciones de frontera:

− ℏ2

2m
ψ′′ − Eψ = 0 en I con ψ(0) = ψ(L) = 0.

Repitiendo lo visto en el caso de la circunferencia, las soluciones son A + Bx para E = 0 y
combinaciones lineales de erx y e−rx con r = ℏ−1

√
−2mE para E ̸= 0. Al imponer ψ(0) =

ψ(L) = 0 vemos que no hay solución no idénticamente nula cuando E = 0. En el resto de los
casos, ψ(x) = Aerx +Be−rx y se debe cumplir

A+B = 0, AerL +Be−rL = 0.

Para que este sistema homogéneo en A y B tenga solución no trivial, el determinante debe ser
nulo, lo que implica e2rL = 1 y obliga a r = iπn/L con n ∈ Z− {0} que conduce a la enerǵıa
π2ℏ2n2/(2mL2) y como A = −B la ψ será sen πnx

L salvo multiplicar por una constante. El signo
de n solo cambia el signo de tal constante y, por tanto, para no repetir debemos restringirnos
a n > 0. En resumidas cuentas, las soluciones normalizadas y sus enerǵıas son

ψn(x) =

√
2

L
sin

πnx

L
y En =

π2ℏ2n2

2mL2
con n ∈ Z+.

Comparando con el caso de la part́ıcula en la circunferencia, nótese que ahora la enerǵıa mı́nima
no es cero. En cierto modo es imposible que una part́ıcula cuántica en una caja se esté quieta.
Quizá hayas óıdo decir que es imposible alcanzar el cero absoluto (la temperatura de cero
kelvin). Es el mismo fenómeno cuántico. Una vez más, el tamaño minúsculo de ℏ impide que
en el mundo macroscópico detectemos la cuantización de la enerǵıa o su valor mı́nimo.

En f́ısica cuántica las soluciones de mı́nima enerǵıa tienen a menudo una especial importan-
cia. Se dice que corresponden al estado fundamental . Recuérdese que ya apareció este nombre
al hablar del átomo de Bohr.

La solución de la ecuación de Schrödinger dependiente del tiempo es

Ψ(x, t) =
∞∑
n=1

anψn(x)e
−iEnt/ℏ =

2√
L

∞∑
n=1

ane
−iEnt/ℏ sen

πnx

L
.

Para hallar los an en función de Ψ(x, 0) podemos expresar el seno en términos de exponenciales

complejas y aplicar las fórmulas de Fourier o que
∫ L
0 sen

(
πnx
L

)
sen

(
πmx
L

)
dx = 0 para n,m ∈ Z+

distintos, mientras que es L/2 si son iguales. La fórmula resultante es

an =

∫ L

0
Ψ(x, 0)ψn(x) dx,

similar al caso de la circunferencia salvo que el conjugado es ahora innecesario.
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El pozo de potencial finito. Ahora para V0, L > 0 fijados consideramos el potencial dis-
continuo:

V (x) =


−V0 si − L ≤ x ≤ L,

0 si x > L,

0 si x < −L.

x
V = 0

−V0

−L L

Antes de comenzar, analicemos qué ocurriŕıa para una part́ıcula clásica de enerǵıa total
E. Recordando la conservación de la enerǵıa, necesariamente E ≥ −V0. Si E < 0 la part́ıcula
no puede salir del pozo, la parte |x| > L está vedada porque implicaŕıa 1

2mv
2 = E < 0. Para

−V0 < E < 0 la part́ıcula se queda eternamente rebotando contra las paredes con velocidad
v = ±

√
2(E + V0)/m. Por otro lado, si E > 0 la part́ıcula no queda atrapada por el pozo,

tiene enerǵıa suficiente para escapar de él dirigiéndose al infinito con velocidad constante. Por
tanto, es de esperar que para E > 0 tengamos en el lado cuántico una deformación del caso
de la part́ıcula libre en R con su espectro continuo, mientras que el caso −V0 < E < 0 sea
más parecido al pozo de potencial infinito con sus enerǵıas cuantizadas. Para no alargarnos,
consideraremos solo este caso que es el único que da lugar a soluciones normalizables, situación
que supondremos.

Se puede probar que siempre que un potencial sea una función par, cada solución de Ĥψ = ψ
se puede escribir como combinación lineal (o suma) de una solución par y otra impar. Por ello
es gratis limitarnos a las soluciones que cumplan ψ(x) = ψ(−x) o ψ(x) = −ψ(−x). De nuevo,
para no extendernos demasiado, solo consideraremos la primera posibilidad. La segunda es
muy similar, solo conlleva pequeños cambios.

En definitiva, con estas restricciones, debemos hallar ψ y E tales que
− ℏ2

2m
ψ′′ − (V0 + E)ψ = 0 en |x| < L,

− ℏ2

2m
ψ′′ − Eψ = 0 en |x| > L,

bajo
−V0 < E < 0, ψ y ψ′ continuas,

ψ(x) = ψ(−x),
∫
R |ψ|2 <∞.

Nótese que como V tiene discontinuidades de salto en x = ±L, admitimos que ψ′′ tenga a lo
más discontinuidades de salto alĺı y eso implica la continuidad de ψ y ψ′.

Ya sabemos que la primera de las ecuaciones tiene solución general

Aerx +B e−rx con r = ℏ−1
√
2m(E + V0).

La paridad fuerza A = B y se obtiene un coseno salvo multiplicar por constantes. La solución
general de la segunda es

Aesx +B e−sx con s = ℏ−1
√
−2mE.

en x > L debe ser A = 0 para evitar el crecimiento exponencial que impediŕıa normalizar y en
x < L se tiene B = 0 por la misma razón. La paridad implica entonces que las soluciones son
proporcionales a e−s|x|.
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En resumen,

ψ(x) =

{
A cos(rx) si |x| ≤ L,

B e−s|x| si |x| ≥ L
con r = ℏ−1

√
2m(E + V0), s = ℏ−1

√
−2mE.

Para respetar la continuidad de ψ y ψ′, los dos trozos deben pegar bien. Esta exigencia equivale
a que el siguiente sistema homogéneo en A y B tenga solución no trivial:

A cos(rL) = B e−sL, −rA sen(rL) = −sB e−sL.

La anulación del determinante lleva a la condición necesaria y suficiente

s = r tan(rL).

Por otro lado, r y s no son independientes porque r2 + s2 = 2mV0ℏ−2. Tenemos, entonces, dos
ecuaciones no lineales con dos incógnitas y dados V0 y L podŕıamos pedir a un ordenador que
aproximara las soluciones y aśı obtener las correspondientes ψ y E. Es mucho mejor entender
geométricamente qué está ocurriendo. Para ello definimos R0 = Lℏ−1

√
2mV0 y reescribimos

las ecuaciones para r y s como

(rL)2 + (sL)2 = R2
0, sL = rL tan(rL).

Esto es lo mismo que decir que (rL, sL) está en la intersección en el primer cuadrante de la
circunferencia x2 + y2 = R2

0 con la gráfica de y = x tanx.

Debido a los ceros y las aśıntotas de tanx hay un corte por cada banda de anchura π, aśı que
hay aproximadamente R0/π enerǵıas y soluciones, de hecho son exactamente la parte entera
de R0/π más uno.

Si V0 crece (el pozo se hace profundo), f́ısicamente debeŕıa tender a un pozo de potencial
infinito cambiando E por E+V0, para llevar el fondo del pozo a nivel zero. Comprobemos esta
afirmación. Si V0 se hace grande, R0 también y las primeras intersecciones estarán muy arriba
y, por tanto, cerca de las aśıntotas, es decir,

rL ≈ πn

2
con n ∈ Z+ impar =⇒ En + V0 ≈

π2ℏ2n2

2m(2L)2
con n ∈ Z+ impar.
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La fracción de la derecha corresponde a las enerǵıas del pozo de potencial infinito cambiando
L por 2L, lo cual es lógico porque ahora la anchura es doble. La condición de que sea impar se
debe a que solo hemos considerado la simetŕıa ψ(x) = ψ(−x). El estudio de ψ(x) = −ψ(−x)
lleva a los niveles de enerǵıa restantes.

Las gráficas de las soluciones correspondientes a las tres enerǵıas más pequeñas son del tipo

Sabemos que en |x| > L hay un decaimiento exponencial. Para valores macroscópicos la pe-
queñez de ℏ implica que s es inmensamente grande y e−s|x| prácticamente nulo, de modo que
nos parece que la part́ıcula está confinada a [−L,L]. Sin embargo, cuánticamente hay una mı́ni-
ma probabilidad de detectarla fuera. Esta posibilidad cuántica de que una part́ıcula “atraviese
paredes” sin tener enerǵıa suficiente para hacerlo desde el punto de vista clásico se llama efecto
túnel [11] [14, §3.5] y se ilustra mejor considerando un modelo en el que una part́ıcula que
viene desde la izquierda, representada por un paquete de ondas, está sometida al potencial
−V . Al llegar a la pared x = −L gran parte del paquete de ondas se refleja hacia la izquierda,
pero una pequeña parte de él atraviesa el pozo y viaja hacia la derecha. Lejos de ser una mera
curiosidad, es la base del microscopio de efecto túnel , desarrollado en 1981, que permite “ver”
átomos individuales.

E. Mach ha pasado a la posteridad por su influencia sobre Einstein y porque su nombre se
asocia a velocidades superiores a la del sonido. Menos conocido es que fue uno de los últimos
f́ısicos que negó la teoŕıa atómica. Según se cuenta, cuando le hablaban de átomos replicaba
“¿Tú los has visto?”. Hoy, más de cien años después de su muerte, podemos decir que śı gracias
a fenómenos cuánticos.

Ejercicios de la sección 2

Ejercicio 1. Explica por qué vp = ω/k indica la velocidad de avance de las crestas de la onda
u(x, t) = A sen(kx− ωt).

Ejercicio 2. Muestra que si F es conservativo, esto es, F = −∇V entonces el trabajo
∫
γ F⃗ ·dr⃗

depende de los extremos de γ pero no de la trayectoria que describe.

Ejercicio 3. Comprueba que las dimensiones son coherentes en la ecuación de Schrödinger.

Ejercicio 4. Para L > 0, supongamos una función de ondas que en un instante t0 es de
la forma Ψ(x, t0) = Amáx(0, 1 − |x|/L). Calcula la probabilidad de que en dicho instante se
detecte en (−∞,−L

4 ] ∪ [L2 ,∞) la part́ıcula que representa.

Ejercicio 5. Comprueba que Ψ(x, t) = e2πiξx−iEξt/ℏ con Eξ = 2π2ℏ2ξ2/m satisface la ecuación
de Schrödinger con V = 0 para cualquier ξ = 0.
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Ejercicio 6. Consideremos Ψ(x, t) = Ae−α(x2+iℏt/m) con α > 0. Halla A para que esté
normalizada y calcula el potencial V para que satisfaga la ecuación de Schrödinger. Nota:
Dicho potencial, convenientemente escalado, tiene un papel muy destacado en f́ısica cuántica
y aparecerá más tarde en el curso.

Ejercicio 7. Demuestra el teorema de Ehrenfest en el caso tridimensional.

Ejercicio 8. Si Ψ1(x, t) y Ψ2(x, t) son dos soluciones normalizadas de la misma ecuación de
Schrödinger en una dimensión, demuestra que

∫
RΨ∗

1(x, t)Ψ2(x, t) dx no depende del tiempo.

Ejercicio 9. Expresa x̂Ĥ − Ĥx̂ en términos de p̂.

Ejercicio 10. Demuestra que si Ψ resuelve la ecuación de Schrödinger en una dimensión
entonces ∂

∂t |Ψ|2 = − ℏ
m

∂
∂x

(
ℑ(Ψ∗Ψx)

)
donde ℑ(z) indica la parte imaginaria de z y Ψx es la

derivada parcial de Ψ.

Ejercicio 11. Aplica el ejercicio anterior a una solución estacionaria Ψ(x, t) = e−iEt/ℏψ(x) y
deduce que si el potencial se anula en ciertos intervalos Ij , se tiene ψ(x) = Aje

ipx/ℏ+Bje
−ipx/ℏ

para x ∈ Ij con |Aj |2−|Bj |2 independiente de j. Escribe una fórmula para p y comprueba que
tiene dimensiones de momento.

Ejercicio 12. La ecuación de Schrödinger es en parte relativista y en parte no. Vas a compro-
bar que las transformaciones de Galileo no preservan las soluciones, pero śı la probabilidad.
En términos matemáticos, demuestra que dada una solución Ψ de la ecuación unidimensional,
la función Ψ′(x, t) = e−i(mvx+ 1

2
mv2t)/ℏΨ(x+ vt, t) con v constante (con dimensiones de veloci-

dad), satisface la ecuación de Schrödinger cambiando V (x) por V (x + vt). Nota: Obviamente
se cumple |Ψ|2 = |Ψ′|2, en ese sentido la probabilidad se conserva.

Ejercicio 13. Para una función de ondas radial, Ψ(x, y, z, t) = g(
√
x2 + y2 + z2, t) que sa-

tisface la ecuación de Schrödinger halla qué ecuación debe cumplir g. Indicación: Todo lo que
debes hacer es recordar o hallar cómo es el operador laplaciano en coordenadas esféricas.

Ejercicio 14. Consideremos la ecuación de Schrödinger independiente del tiempo en tres
dimensiones con un potencial V (x, y, z) = V1(x) + V2(y) + V3(z). Si ψj , j = 1, 2, 3, son solu-
ciones normalizadas para el caso unidimensional con potenciales Vj y enerǵıas Ej , prueba que
ψ(x, y, z) = ψ1(x)ψ2(y)ψ3(z) es solución normalizada del problema tridimensional para cierta
enerǵıa E. Exprésala en términos de las Ej .

Ejercicio 15. Sea ψ(x) = Axe−a4x2
con A, a ∈ R+ solución de la ecuación de Schrödinger

independiente del tiempo para un potencial V con V (0) = 0. Halla A ∈ R+ para que esté
normalizada y calcula V y E. ¿Qué dimensiones tienen a y A?

Ejercicio 16. Explica por qué si ψ = ψ(x) es una solución normalizada de la ecuación de
Schrödinger independiente del tiempo

∫∞
−∞ ψ∗p̂(ψ) = 0. Indicación: Una forma de proceder,

aunque no la más rápida, es recordar la relación entre p̂ y x̂Ĥ − Ĥx̂ de un ejercicio anterior.

Ejercicio 17. En el caso de la part́ıcula libre en la circunferencia, demuestra la conservación de
la probabilidad (si Ψ(x, 0) está normalizada, entonces Ψ(x, t) también lo está para cualquier t)
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utilizando la identidad de Parseval para series de Fourier. Nota: Tal identidad afirma que si f
es 1-periódica

∫ 1
0 |f |2 es la suma de los cuadrados de sus coeficientes de Fourier.

Ejercicio 18. Si un potencial es par, V (x) = V (−x), demuestra que cada solución de la
ecuación de Schrödinger independiente del tiempo para cierta enerǵıa es suma de una solución
par y otra impar (quizá una de las dos idénticamente nula).

Ejercicio 19. Consideremos la ecuación de Schrödinger independiente del tiempo en una
dimensión con un potencial que cumple V (x) > V0 para cierta constante V0. Demuestra que
no hay soluciones normalizables con E < V0. Indicación: Comprueba la identidad ψ′′ψ =
(ψψ′)′ − (ψ′)2 o ψ′′ψ∗ = (ψ∗ψ′)′ − |ψ′|2 si trabajas con números complejos.

Ejercicio 20. En el pozo de potencial infinito con L = 1/5, Dada la condición inicial Ψ(x, 0) =
A sen3(5πx) halla A para que esté normalizada y obtén una fórmula expĺıcita para Ψ(x, t).
¿Cuál es la probabilidad de detectar la part́ıcula en x > 1/10 en el instante t = 20π−1ℏ−1m?

Ejercicio 21. Sea Ψ(x, t) solución de la ecuación de Schrödinger para el pozo de potencial
infinito y sea T = 4mL2/(πℏ). Comprueba que T tiene dimensiones de tiempo y demuestra que
Ψ(x, 0) = Ψ(x, T ) y Ψ(x, T/4) = 1−i

2 Ψ(x, 0)− 1+i
2 Ψ(L− x, 0). Nota: Estas y otras repeticiones

de las condiciones iniciales en algunos sistemas se llaman resurgimiento cuántico o, a veces,
efecto Talbot cuántico por el pionero de la fotograf́ıa H. F. Talbot que observó un análogo
óptico.

Ejercicio 22. Calcula las soluciones de la la ecuación de Schrödinger independiente del tiempo
para el pozo de potencial cúbico infinito en tres dimensiones. Es decir, para V (x, y, z) = 0 si
x, y, z ∈ [0, L] y V (x, y, z) = ∞ en otro caso. Halla el número de soluciones linealmente
independientes para los seis valores más pequeños de la enerǵıa. Indicación: Puedes dar por
supuesto que el método de separación de variables es aplicable aqúı.

Ejercicio 23. Considera el pozo de potencial finito con L = 1. ¿A partir de qué valor de V0
hay solo una solución par con enerǵıa −V0 < E < 0? Calcula el ĺımite de E/V 2

0 cuando V0 → 0
y explica la paradoja de que E/V0 sea adimensional y el resultado por V0 no lo sea.

Ejercicio 24. En f́ısica muchas veces se usan potenciales con deltas de Dirac. Más allá de
la definición matemática que quizá conozcas, intuitivamente la delta de Dirac δ = δ(x) se
entiende como la derivada de H donde H(x) = 0 en x < 0 y H(x) = 1 en x > 0, de modo
que

∫
I δ = 1 para cualquier intervalo 0 ∈ I. Con esta información, determina las soluciones

normalizables de la ecuación de Schrödinger independiente del tiempo para V = αδ con α < 0.
¿Qué dimensiones tiene α? Indicación: En cierto modo, δ(x) = 0 para x ̸= 0 y δ(0) = ∞, por
tanto, V = 0 en R−{0}. Después hay que ajustar las cosas en el origen para que ψ′′ sea como
la derivada de una función escalón. Salvo normalizaciones, solo hay una solución.

Ejercicio 25. Considera el potencial V (x) = Vi(x) + V0Lδ(x−L/2) donde Vi corresponde al
pozo de potencial infinito y δ es la delta de Dirac. Comprueba que la solución de Ĥψ = Eψ con
E mı́nima es de la forma ψ(x) = A sen(x

√
2mE/ℏ) en [0, L2 ] y ψ(x) = B sen((L− x)

√
2mE/ℏ)

en [L2 , L]. Demuestra que E es la menor solución positiva de la ecuación

ℏ
√
2E

LV0
√
m

+ tan
L
√
mE

ℏ
√
2

= 0.
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