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La ecuacién de Schrodinger es una ecuacién en derivadas parciales que regula la evolucién de los estados
cuanticos. Con ella, los comportamientos discretos observados en algunos de los experimentos que dieron lugar
a la fisica cudntica corresponden a los autovalores de ciertos operadores diferenciales.

2.1. Creando una ecuacién

Inicialmente la mecanica cuantica se teorizé con los importantes trabajos de W. Heisenberg,
M. Born y P. Jordan [12], [3], [2] basados en matrices infinitas, lo cual suena razonable para
expresar intercambios discretos de energia como los que sugerian los experimentos. Con este
lenguaje la multiplicacién de matrices correspondia a una forma de operar frecuencias en series
de Fourier. Sin embargo, E. Schrodinger cambid esta perspectiva dandole una orientacion
ondulatoria regida por una ecuacién en derivadas parciales [I§], [17]. El triunfo de la versién
de Schrédinger, que es la que ha llegado hasta nuestros dias, es comprensible, porque es mas
versatil y porque estd mas cerca de los métodos matematicos habituales de la fisica, tanto en
su tiempo como en la actualidad.

Antes de comenzar, debes repasar o aprender un poco de la terminologia al uso en los
fenémenos ondulatorios asi como la conservacion de la energia en la mecédnica clasica. Ese es
el contenido de los dos siguientes breves apartados, que podrian resultarte prescindibles.

Ondas. Cuando nos hablan de ondas a todos se no vienen a la cabeza los senos y cosenos.
En fisica a menudo las ondas corresponden a expresiones del tipo

sen
COS

u(z,t) = A{ } (kz — wt)

que, matematicamente, son soluciones de la ecuacion de ondas uy = vgum con v, = w/k. El
analisis de Fourier esencialmente dice que todas las soluciones son superposiciones de ellas.
Tanto en matemadticas como en fisica, en muchas situaciones conviene unificar los senos y
cosenos introduciendo ondas complejas, que convenientemente superpuestas por medio de las
férmulas atribuidas a L. Euler dan lugar a las ondas reales consideradas antes:

Acos(kx — wt) = 5(p(z,t) + o(—z, 1)),
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Un ejemplo matemaético de la utilidad de este truco es que en las series de Fourier de funciones
1-periddicas las féormulas son mas sencillas y simétricas con ondas complejas que con reales.
Un ejemplo de la fisica y la ingenieria es que es més facil analizar circuitos de corriente alterna
suponiendo que la diferencia de potencial y la corriente son ondas complejas.

La siguiente tabla recoge parte de la terminologia habitual en fisica [6l §29.3] para estas
ondas sinusoidales en una dimensién:

Simb. | Significado Dim.
A Amplitud: altura de las crestas —

v Frecuencia angular: nimero de oscilaciones por unidad de tiempo T-!
w Frecuencia: 2wyv, nimero de radianes por unidad de tiempo T-!
T Periodo: 1, lo que tarda en repetirse un ciclo T

A Longitud de onda: separacion entre crestas para tiempo fijado L

k Nimero de ondas: 2w/ salvo el signo Lt
Up Velocidad de fase: w/k, avance de las crestas por unidad de tiempo LT-!

Estas graficas tratan de ilustrar el significado de la amplitud, el periodo y la longitud de

N A A
Vinvah Wil w A van

Onda con z fijado Onda con t fijado

En tres dimensiones la situacion es similar salvo que k y x son vectores porque hay que
senalar una direccién, de hecho ya en el caso unidimensional hay dos posibilidades para el signo
de k, correspondientes a las dos direcciones (sentidos) que hay en R. La ecuacién de ondas en

- : 2 0t | 9t | o :
tres dimensiones es u; = UpAu con A = 5 + 92 T o2 el operador laplaciano.
La unidad en el SI para indicar la frecuencia es el hercio (por el fisico Hertz), es decir,

1Hz = 15" donde Hz es el simbolo para el hercio.

Energia en un campo. Un modelo matematico recurrente en fisica consiste en que las
particulas de prueba experimentan en cada punto del espacio una fuerza dada por un campo
vectorial, una funcién F:R3 — RS Especialmente relevante es el caso en que F = -VV,
cuando esto ocurre se dice que el campo es conservativo y que V es su potencial o la energia
potencial. El potencial V' estd definido salvo una constante aditiva y en fisica a veces hay con-
venios para fijarla. En nuestro contexto unidimensional, el campo que da la fuerza es escalar y
simplemente estamos escribiendo F(z) = —V’(x). Ya habjfamos mencionado la energfa cinética
%mv2 de una particula con masa m y velocidad v. Con ambos tipos de energia, se define la
energia total de dicha particula como

1 2
E = Eon+ Bpot = smo® +V = 2 4 v,
2 2m
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El interés de esta cantidad es que permanece constante a lo largo de la trayectoria z = x(t) de
la particula, se conserva, porque

dE dv dx

7:mv—+vl—: ma — F)v = 0.

dt dt dt ( )
Un anélisis similar funciona en tres dimensiones con v? o p? el cuadrado de la norma de las
cantidades vectoriales correspondientes.

Ya hemos visto como Einstein sugirié que las ondas de luz estuvieran, de algiin modo, com-
puestas por particulas de luz. El paso de ondas a cuantos también es natural con la explicacion
de la radiacion del cuerpo negro o con el atomo de Bohr interpretando que la radiacién debida a
la férmula de Larmor no se produce porque no hay energia suficiente para producir un cuanto.
Aunque suene paraddjico, la idea que triunfé fue la hipétesis de L. de Broglie, planteada en su
tesis doctoral en 1924, consistente en que la materia era de naturaleza ondulatoria. Ademas,
esta idea surgfa a partir de la fisica cldsica, cuando se comparaban ecuaciones de mecéanica y
de la dptica geométrica (la que considera la luz formada por rayos), algo que tiene sus antece-
dentes en W. R. Hamilton. De Broglie asociaba a una particula en movimiento con momento
lineal p una onda de materia con longitud de onda

(2) A= — o0, equivalentemente, Ak = p.
p

Si pensamos en el atomo de Bohr la onda asociada al electron pegada a su dérbita con esta
longitud de onda, la condicién de cuantizacién de Bohr equivale a pedir que no entre en
conflicto con ella misma, que sea estacionaria.

Para radiaciones electromagneticas (por ejemplo, la luz), la electrodindmica cldsica afirma
p = E/c donde p es el momento lineal (que ya no se define como masa por velocidad), E
la energia y ¢ la velocidad de fase (la velocidad de la luz). Como para cada fotén se cumple
E = hv = hw, se tiene p = hw/v, = hk = h/\. Entonces estd en consonancia con la
electrodindmica clasica. Otra concordancia notable, es que la mecanica clasica se basa en el
principio de minima accion, un principio variacional que afirma que las particulas libres se
mueven de forma que la integral del momento lineal en funcién del espacio es estacionaria
(localmente minima). Por otro lado, el principio de Fermat de la 6ptica geométrica [6l, §26],
[4, §3] afirma algo similar para A, lo cual sugiere que p y A~! son proporcionales [9]. El
espaldarazo experimental llegé en 1927, cuando se publicé el resultado de unos experimentos
que mostraban que los electrones se difractaban como si fueran ondas con una longitud de
onda compatible con . La difraccion es un fenémeno consistente en que las ondas tienden a
desviarse al pasar pasar por una abertura.
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La férmula abrié un nuevo periodo en la fisica cudntica y propicié la contribucién
fundamental de E. Schrédinger quien, en estos comienzos de la mecédnica cuantica ondulatoria,
introdujo la ecuacién bésica que rige la evolucion de la onda asociada a una particula. En vez de
seguir sus argumentos [10] (parcialmente reflejados en [9] y [8]), procederemos de una manera
que allanard el camino al formalismo actual. Debe quedar claro que la ecuacién de Schrodinger
no se deduce de primeros principios, es un postulado en si misma de la fisica cudntica, a todo
lo que podemos aspirar es a motivarla. Seguramente los matematicos se sentiran complacidos
al leer los siguientes fragmentos de una carta de Schrédinger a Wien poco antes de publicar su
famosa ecuacion:

Una nueva teoria atémica me ocupa en este momento. jOjala supiera mas matemati-
cas! Soy muy optimista al respecto y espero que, si logro dominar los cdlculos, todo
saldrd muy bien. Creo que puedo proporcionar un sistema vibratorio [. .. | que tenga
las frecuencias del término de hidrégeno como frecuencias naturales [... |

Espero poder informar pronto sobre el asunto con un poco mas de detalle y de
manera facil de entender. Por el momento, todavia tengo que aprender matematicas
para poder resolver completamente el problema de la oscilacion —una ecuacion
diferencial lineal, similar a la de Bessel, pero menos conocida |[. .. ]

Esté claro que una particula no es una onda como que se extiende por todo el espa-
cio, sino que estd localizada, es posible concretar una pequena region en la que esta. ;Cémo
reconciliar esto con ? En el lado de la fisica hay una analogia en la 6ptica geométrica antes
mencionada: observamos rayos de luz (mas evidentes en los ldseres), pero tales rayos estan
formados por superposiciones de muchas ondas. En el lado matematico, la situacién es familiar
en el andlisis de Fourier (J. Fourier resolvi6 la ecuacién del calor suponiendo que todas las
funciones son superposiciones de ondas). Por ejemplo, cos(87t) se extiende por toda la recta
real con frecuencia 4. La identidad integral basada en la transformada de Fourier

oo
e’ cos(87t) = / g(v) cos(2mvt) dv con g(v)= e~ m=4?,
—00
indica c6mo obtener una versién localizada alrededor del origen de cos(8nt) superponiendo
ondas de infinidad de frecuencias siendo las mas relevantes las que tienen frecuencias cercanas
a 4, ndétese que max g = g(4).

Grafica de f(t) = cos(8t) Gréfica de f(t) = e~ ™" cos(8t)

Motivados por esto, para construir la ecuacién buscada vamos a suponer que las ondas
de materia son superposiciones de ondas que tienen k = p/h y w = FE/h para que sean
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compatibles con y con w = E/h, que equivale a la férmula de Planck-Einstein. Esto es,
o(z,t) = Aepr=Et)/h,

Vamos ahora a definir el operador momento lineal que baja p del exponente y multiplica a ¢. En
fisica cuantica basica para distinguir los operadores de las cantidades clasicas se suele escribir
un circunflejo encimaﬂ El operador en cuestion es

~ L 0 .
= —ith— — = po.
p e ple) = py
También, para cualquier funcién de la posiciéon g = g(x) se define el operador asociado que
simplemente multiplica por dicha funcién:

g=9 = glp)=g¢
Si queremos que se satisfaga la conservacion de la energia debemos imponer

2
I;hp:Ego con ﬁ:p——l—f}
2m
donde p? es el operador momento lineal aplicado dos veces. Se dice que H es el operador
hamiltoniano por ser el analogo del hamiltoniano que da la energia en la mecanica clasica,
llamado asi en honor a Hamilton. Se puede evitar cualquier referencia a F utilizando una
derivada con respecto del tiempo: 5
., 0P =
ih T Hyp
Recordemos que nuestra suposicién era que las ondas de materia, digamos ¥(z, ), son superpo-
siciones de las ondas bésicas ¢(z,t). Como H y derivar con respecto del tiempo son operadores
lineales, respetan las superposiciones, entonces W(x,t) satisface una ecuacién similar

ovr -
th— = HV.
ot
a la que se llama ecuacion de Schrédinger, anadiendo a veces dependiente del tiempo para
distinguirla de otra que veremos mas adelante que solo actia sobre la posicién.
Las versiones matematicamente explicitas para una y tres dimensiones espaciales de la
ecuacion de Schrodinger son las ecuaciones en derivadas parciales:
ov h? 0w ov h?
3 th—m=———-5+VVU th— = ——AV + V.
(3) ot 2m Oz Y ot 2m
La primera se sigue descodificando la notacién en el argumento anterior y la segunda se obtiene
de manera similar salvo que p es el operador vectorial —iAV. En esta iltima A es el operador

'Muchos mateméticos refunfuiiarén por la confusién con la notacién de la transformada de Fourier, la cual,
para mayor escandalo, en fisica cudntica se indica muchas veces solo cambiando el nombre de la variable.
Si f = f(z) es una funcién, f(p) significa su transformada de Fourier con cierta normalizacién.



Seccién 2 6

laplaciano que en fisica casi siempre se denota con V2, como si fuera aplicar dos veces el
gradiente, lo cual tiene cierto sentido aqui.

Terminemos con dos observaciones al margen que solo llamaran tu atencién si tienes conoci-

mientos de fisica cldsica, en el segundo caso con alguna profundidad. La mecdnica clasica de una
. . . . 2

particula en un campo conservativo se puede construir a partir de H = F con H = 27’7” +V, de

modo que la ecuacién H @ = Ep que cumple cada “trozo” de ¥ con energia definida es la ecua-
cioén clasica pasando a operadores mediante la regla de que los momentos lineales se traducen
en derivadas (con cierta normalizacién) y las posiciones (o funciones de ellas) en multiplicacio-
nes. En los primeros tiempos de la fisica cuantica esto dio una guia muy 1til para transformar
ecuaciones clasicas en cuanticas y constituye lo que se llama primera cuantizacion. La segunda
observacién, mas avanzada, es que pxr — Et es el producto de Minkowski de dos cuadrivectores
en la cinemdtica relativista, lo que sugiere que nuestras p(x,t) son relativistas, invariantes
Lorentz, sin embargo estamos aplicando la conservacién de la energia no relativista lo que no
es coherente y aboca a perder la oportunidad de que la ecuacion de Schrodinger represente
correctamente particulas con velocidades cercanas a la de la luz. El propio Schrodinger era
consciente de ello, pero se vio forzado a esta incongruencia porque cuando usaba la energia
relativista le salia una ecuaciéon que no tenia sentido fisico. En gran medida este problema lo
resolvié P. Dirac introduciendo una ecuacion matricial en que las ondas de materia pasaban
a ser vectores de cuatro coordenadas con propiedades exdticas bajo cambios de coordenadas
llamados espinores.

Imaginards que si hay una primera cuantizacién es que hay una sequnda cuantizacion (el
nombre se debe a Jordan). Asi es y esta relacionada con ambas observaciones pues utiliza fami-
lias de operadores y fundamenta la teoria cudntica de campos, la teoria de los que disponemos
en la actualidad para combinar la fisica cudntica y la relatividad especial, dando cuenta de las
particulas elementales. Para ilustrar su complejidad, basta decir que uno de los Millennium
Prize Problems [19] esencialmente pregunta si tiene sentido matemético.

2.2. Interpretacion y propiedades

Antes de nada, vamos a cambiar el término antiguo onda de materia por el mas general y
moderno funcion de ondas. En nuestro contexto la funcién de ondas es una funcién ¥ = ¥(z, t)
asociada a una particula que resuelve la ecuaciéon de Schrodinger. En un contexto mas amplio,
una funciéon de ondas puede representar el estado de un sistema cudntico mas complejo, por
ejemplo de un atomo con muchos electrones.

La pregunta mas fundamental es qué representa la funcién de ondas W. Paraddjicamente,
Schrodinger inventé su ecuacién antes de tener clara la respuesta. Debido a la aparicién de un
factor ¢ en el primer miembro, necesariamente ¥ toma valores complejosﬂ Si ¥ representa a
la particula, parece natural suponer que fijado un tiempo ¢t habra “maés particula” en x cuanto
mayor sea |U(z,t)[, lo mismo que hay “més ola” en la zona cercana a su cresta.

2Es poco conocido que Schrédinger intenté algunas cosas extrafas para escapar de los ntimeros complejos
[13] hasta acabar aceptdndolos. Recientemente, [16] ha alcanzado cierta fama (seguramente effmera) afirmando
que la necesidad de los nimeros complejos se puede comprobar experimentalmente y tal experimento se ha
llevado a cabo.
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La idea que triunfé es la regla de Born [1] [10, §13.7], formulada unos dias después del
articulo de Schrodinger [I8], que afirma:

Para cadat fijado, |¥(x,t)|? es proporcional a la probabilidad de detectar la particu-
la en z.

Maés adelante veremos que “detectar” o “medir” es algo que lleva a un problema todavia no
resuelto en la fundamentacién de la fisica cudntica.

Desde el punto de vista matemadtico, lo que estamos diciendo es que si normalizamos W
multiplicindola por una constante para que se cumpla [ |¥(z,¢)|*dz = 1 entonces f(z) =
|U(z,t)|? es la funcién de densidad de la particula que ahora, al menos en cuanto a deteccién
se refiere, pasa a ser un ente probabilista. Eso suena un poco feo (y, de hecho, mas de lo que
parece a este nivel), pero es lo que hay. En palabras de Schrédinger: “No soy amigo de la teoria
de la probabilidad, la he odiado desde el primer momento en que nuestro querido amigo Max
Born la dio a luz” [10, §12.2]. Con esta interpretacién, dim ¥ = L='/2 en una dimensién y
dim ¥ = L=%/2 en tres dimensiones.

Un primer problema técnico es que para que ¥ sea normalizable debemos admitir que sea de
cuadrado integrable. De hecho, cuando es necesario se supone que ¥ o sus derivadas en x tienen
cierto decaimiento a la larga en dicha variable. Esto es cuestionable porque ni siquiera g € L?(R)
implica lim, o g(x) = 0. Repitiendo literalmente una aclaracién del famoso texto bésico de
fisica cudntica [I1] “Un matemadtico competente puede darte contraejemplos patoldgicos, pero
no aparecen en fisica, para nosotros la funcién de ondas y todas sus derivadas tienden a cero
en el infinito”.

Un problema mucho mas serio es que la normalizacién no solo es necesaria para un tiempo
fijado sino para todo tiempo. Si ¥ satisface la ecuacion de Schrédinger, entonces kW con k en R
o en C también la satisface, por que es lineal. Eso permite que la normalizacién para cada ¢ sea
posible bajo las premisas anteriores. Ahora bien, si k dependiera de t entonces k(t)¥ dejaria de
cumplir en general la ecuacién. Si, por ejemplo, |¥(z,0)|? es funcién de densidad y |¥(x,1)?
no lo es porque su integral es 1/2 hemos perdido la mitad de la probabilidad y si fuera 2, la
interpretacién probabilista seria imposible. Lo tinico compatible con esta interpretacién es que
la probabilidad se conserve, es decir, en nuestro contexto unidimensional, que haya un milagro
matematico por el que la primera ecuacion de implique

d oo

— U(x, t)|[?dt = 0.
7 _OOI (z,t)]

Veamos como se demuestra tal milagro. Derivando bajo el signo integral, nos enfrentamos a

0 g — 2 grgy — g2V 4 g0
&]\Il] _&(\II\IJ)_\I’ 8t+\118t’

donde, siguiendo la tradicién en fisica, la estrella indica el conjugado (porque la barra se utiliza
para otra cosa). El golpe de gracia es que utilizando (3]),

9 ih 02T 9P d; . o
Tigpe = M (g -9 i(z.t) = (g2 _ g2,
priid 2m< 022 922 ) oz o i@ 2m< oz (91:)
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De aqui,

i [ wnpd =~ [ Shds = (-, — (oot

— x x = 00 00

at )" oz
que es cero bajo nuestras hipotesis de que ¥ y su derivada con respecto de x tienden a cero
cuando © — 00.

Una vez que sabemos que la interpretacién de la funciéon de ondas es consistente, debemos
abordar el problema de si es coherente con la realidad. Si la ecuacién de Schrédinger tiene
sentido fisico, para ondas muy concentradas, que parecieran particulas, deberfamos recuperar
la fisica clasica. El electron en el dtomo de hidrogeno puede que se comporte como una onda
seguin 0 segun , pero las antiguas televisiones con sus tubos de rayos catddicos funcio-
naban cuando se aplicaban leyes clasicas a los electrones considerados como particulas que
impactaban a la pantalla.

Partiendo de que |¥|? es una funcién de densidad para cualquier tiempo, la posicién media
y la fuerza media se definen como

oo oo

@=[ al@ope vy B == [ VP
—00 —0o0

En tres dimensiones pasarian a ser vectores de tres coordenadas (Z) y <1*:" ) con —V' reemplazado

por —VV. El teorema de Ehrenfest (por P. Ehrenfest, un fisico tedrico amigo de Einstein) afirma

que la ecuacién de Schrodinger implica

d*(Z)
dt?
Dicho de una forma colorista: la mecénica clasica (basada en F' = ma) es la mecanica cuantica

(basada en la ecuacién de Schrodinger) en promedio.

Veamos la demostracién del teorema de Ehrenfest en una dimensién. En tres es bastante
similar. Escribiendo como antes |\I»'|2 YW¥* y usando la ecuacién de Schrodinger en la forma

%—\f——zh LH (U )COHH—%+V,

m

= (F).

d o PN ~
fl”? _/ (—ih ' H(O)U* +ih oV H(U)) da.

Integrando por partes dos veces, [ f"g = [*_ fg”, suponiendo el decaimiento adecuado en

el infinito, de ahi,
| awe= [ s,

por tanto,
dé? = —ih! /_Z U (zH(V) — H(aW)) da.
Operando, el paréntesis interior es %— de modo que
d{x) ih

— = —— \Il*—d U*p(¥
dt m J_ m/
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Esta igualdad es bastante sugestiva, porque, de algiin modo, indica que la masa por el promedio
de la velocidad es el promedio del momento. Derivando de nuevo con respecto de ¢, todo
funciona como antes reemplazando el operador Z (multiplicar por z) por p. Es decir,

2$ 00 ~ ~
7ndd;> ::—dhljf U*((pH)(Y) — (Hp)(¥)) d.

—0o0

Es sencillo comprobar que ﬁﬁ - H P coincide con —ih‘//\’, porque p° —p> =0y p(V) = —ihV’,
y eso termina la prueba.

El ultimo tema que vamos a abordar en este apartado es bajo qué condiciones esperamos
resolver la ecuacién de Schrodinger y como podemos hacerlo.

La ecuacion de Schrédinger es una ecuacién de evolucion, dado un perfil inicial ¥(z,0),
intuitivamente, es posible aproximar W¥(x, €) mediante

ih(¥(z,€) — W(z,0)) ~ HY(z,0)

y repitiendo el proceso (método de Euler, diferencias finitas) tendriamos un método numérico
para aproximar U(z,t). Este esquema sugiere que bajo la condicién ¥(z,0) = f(x) y pidiendo
alguna regularidad obtendremos solucién tinica de la ecuacién de Schrédinger. Se prueba que es
asi en cursos de matemadticas. Fisicamente esto tiene sentido porque ¥(z,0) tiene informacién
tanto acerca de la posicién como del momento iniciales, al menos en promedio (recordemos
las férmulas para (x) y su derivada temporal), y eso es todo lo que necesitamos para hallar la
evolucién futura (o pasada) de una particula.

Un método que se aplica con éxito en las ecuaciones en derivadas parciales lineales clasicas
es el de separacion de variables. Vamos a ver a qué conduce aqui y cudl es su interpretacion
fisica. Segun este método hay que buscar soluciones del tipo ¥(x,t) = f(t)y(z) y después
superponerlas. Al sustituir en la ecuacién de Schrodinger y dividir por ¥(z,t) se obtiene

ind () _ HY(@)
f) ()
Ahora bien, el primer miembro depende de t y el segundo de z, por tanto, ambos deben ser
iguales a una constante que llamaremos F, enseguida veremos el motivo de esta notacion. El
primer miembro da lugar a una ecuacién diferencial ordinaria de primer orden cuya solucién
salvo multiplicacién por constantes es f(t) = e "Bt/h mientras que v satisface la ecuacidn de
Schréodinger independiente del tiempo

(4) Hy = Evp

llamada si porque H solo acttia sobre la posicién z. Esto funciona en una y tres dimensiones
dando lugar a las ecuaciones:

h? h?
—%W“HV—Q¢ZO y  —5—Ayp+(V—-E}=0.

2m
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Noétese que estas ecuaciones son reales. Con lo que sabemos de la motivacién de la ecuacion
de Schrédinger, E es la energia y es el andlogo cudntico de su conservacion: % +V =F.
Por otro lado, f(t)¥(z) es lo que en fisica se llama una onda estacionaria, la que oscila en el
tiempo con un movimiento arménico y el método de separacién de variables es la realizacion
de la confianza habitual de que toda onda sea superposicién de ondas estacionarias.

La ecuacién (4) afirma que E es un autovalor de H. Por analogfa con el algebra lineal,
parece razonable que en ciertas situaciones los valores de E sean discretos, esto es, que la
energia esté cuantizada. Si este es el caso, existen unas energias F,, permitidas, que se dice que
conforman el espectro discreto, y unas soluciones v,, de tales que la solucién de la ecuacion
de Schrodinger (dependiente del tiempo) es

U(x,t) = Z ane_iE”t/h@Z)n(x)

con a,, coeficientes que se ajustan con la condicién inicial ¥(x,0). En caso de que los valores
de E no fueran discretos, conformando el llamado espectro continuo, para superponer las
soluciones f(t)i,(x) del método de separacién de variables necesitariamos integrar en lugar
de sumar. En algunos problemas se combinan ambas situaciones.

La regularidad exigida en y la que permite que tenga solucién en algin sentido,
es algo sobre lo que hay mucha literatura matemadtica y algin problema abierto. En fisica,
es natural considerar potenciales con singularidades y la regla es que ¥ se supone siempre
continua para respetar la interpretacion ondulatoria y en el caso de una dimensién se requiere
que 9" tenga a lo mds las singularidades permitidas para V', para que asi pueda cancelarlas

en ().

2.3. Ejemplos destacados

El objetivo es considerar una serie de ejemplos comunes simples de naturaleza académica
en los que hay soluciones explicitas de la ecuacién de Schrodinger. La existencia de soluciones
explicitas es muy inusual. Por otro lado, si se admiten soluciones aproximadas, la llamada
aprozimacién WKB [11], que no veremos aqui, es muy 1til en el caso unidimensional. Estd
basada en un desarrollo de Taylor en /i donde el término de orden cero corresponderia al
comportamiento clésico.

Antes de comenzar, conviene recordar lo basico del andlisis de Fourier que deberias de
conocer de cursos anteriores sin meternos en el incémodo rigor de las cuestiones de regularidad
(5], [15] y [7] son muy buenas referencias).

Una funcién f : R — C de periodo uno “buena” admite un desarrollo de Fourier

1
f(.l?) = Z Cp, 627T’ina: donde Cp — / f($) 8—27Tina: dr.
0

nez

La suma se dice que es la serie de Fourier y los ¢, los coeficientes de Fourier Una vez que uno

sabe que f tiene un desarrollo de Fourier, la férmula para los ¢, es facil de deducir porque
1 orine . —2mi .

fo e2minT o =2MMT 3 65 1 sin =m y 0 en otro caso.
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Por otro lado, una funcién f : R — C no periédica, pero con “buen decaimiento en el
infinito” admite una especie de desarrollo de Fourier con integrales:

f(x)=/_oo FF)(E) ™ de donde ]-'(f)(g):/_oo F() =27 .

Lo primero es la formula de inversion y lo segundo define la transformada de Fourier.

Particula libre en una circunferencia. Supongamos V = 0 que es lo mismo que imponer
desde el punta de vista clasico que la particula no estd sometida a ningin cambio. Ademads,
suponemos que estd confinada a una circunferencia de longitud L que no altera la dindmica
(el rozamiento y la fuerza centrifuga son despreciables). Mateméticamente lo que estamos
haciendo es imponer que V¥ sea L-periddica en x. Las soluciones de la ecuacién de Schrodinger
independiente del tiempo heredan esta simetria, asi que debemos resolver
h2 1
(5) —%d) —Ey=0 con Y(x) =¢(x+ L).
Por el curso que seguiste de ecuaciones diferenciales ordinarias deberias saber que las soluciones
de y™ +a,_1y™ Y 4. ..+ a1y +apy = 0 son combinaciones lineales de " donde r recorre las
rafces de " +ap_12" '+ - -+a1x+ag = 0 salvo afadir algunas més cuando hay raices multiples.
En nuestro caso las raices son £7 con r = i~ 1\/—2mE y las soluciones asociadas 1, (z) = Ae"™
y ¥_(z) = Ae™"" excepto para E = 0 en cuyo caso la raiz es doble y ¢ (z) = A + Bz que se
reduce a 1) = A al imponer la periodicidad. Si E' < 0 claramente 1 no es L-periédica, entonces
este caso no ocurre. Si £ > 0 la periodicidad exige rL = 2mwin con n € Z que implica que la
energia estd cuantizada, solo puede tomar los valores
2322
E, = % con n € Z.
A pesar de que el signo de n no influye en la energia, podemos aprovecharlo para parametrizar
¥y y Y escribiendo que
1 2minx /L 27r2h2n2
Yn(r) = —=e / y E, = “l?

VL

dan “todas” las soluciones ¢ y E de con Y normalizada, entendiendo que para n # 0 en
realidad {0y, 1_,} es una base del espacio de soluciones para una misma energia E, = E_,,.
Entonces la solucién de la ecuacién de Schrodinger dependiente del tiempo es

. 1 . )
\I’(CC, t) _ Z an¢n(l‘)€_ZEnt/h _ Z ane27rmx/L—zEnt/h'
nez \/E nez

Tomando ¢t = 0 y con el cambio x — Lz, tenemos que ¥ (Lz,0) es 1-peridédica y la férmula de
los coeficientes de Fourier implica

1 L
an = \/Z/ U(Lx,0)e 2™ dy = / U(z,0), () dx.
0 0

Si recuerdas la identidad de Parseval, nota que con ella se obtiene una prueba directa de la
conservacién de la probabilidad: si ¥(z,0) estd normalizada, entonces ¥(x,t) también lo esta
para cualquier t.
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Particula libre en la recta real. De nuevo consideramos que la particula no esta sometida
a ningun campo, V = 0, pero ahora el espacio es toda la recta real en lugar de la circunferencia,
con lo que perdemos la condicién ¢ (x) = ¢(x + L) en . Esta condicién solo afectaba a que
n/L debia ser un entero entre L y todo deberia ser similar salvo cambiar n/L por un niimero
arbitrario &, no entero en general. Lo que conduce a v¢(x) = e2miET v E¢ = 2n°h2E2 /m.
Después habria que cambiar la suma por una integral porque tenemos una cantidad continua
de energias. Con todo esto la solucién seria

272 h2
m

o0 o
(6) W(a,t) = / A(€)pe(w)e Pt/ dg = / A(g) e iBetlde con B = = ——¢”.
—0o0 —0o0
Asi se procede en muchos textos, por ejemplo [11), §2.4], pero a un matematico no experimen-
tado le puede causar cierto resquemor que ahora las ¢ no son normalizables y que hayamos
descartado sin mas explicacién las soluciones E < 0 que corresponderian a £ imaginario puro
y ¢ con crecimiento exponencial en +00 0 —o0.

Para justificar @, notemos primero que e27€*~iEet/h gatisface la ecuacién de Schrédinger
(aunque no sea normalizable). Por la linealidad de la integral entonces ¥(x,t) también la cum-
ple y por la férmula inversién con A igual a la transformada de Fourier de ¥(x,0) obtenemos
una solucién de la ecuacién bajo la condicién inicial elegida. La unicidad nos dice que no hay
que considerar ningin caso mas, @ es correcta con la eleccién indicada de A.

El paquete de ondas gaussiano. Ahora analizaremos con mas detalle un caso particular
del ejemplo anterior para ilustrar un fenémeno cuantico. La filosofia expresada anteriormente
es que algo nos parece una particula cuando es una onda concentrada y que momento y energia
nos parece p y E si tiene mucho de la onda e!®*=E)/h Con esta idea, para a > 0 consideramos
en el instante t = 0 el paquete de ondas gaussiano

2 —2/

9 .
£ e a ezpa:/h.

El coeficiente con la rafz cuarta es solo para normalizar. Tomando ¥(z,0) = f(z) estamos
considerando la funcién de ondas en el instante inicial de una particula de anchura comparable
a a y mo inicial esencialmente p. Segin @, la evolucién viene dada por

272 h2
m

Wat) = [ FOEQEE G on B= 2l

Utilizando la bien conocida transformada de Fourier de la gaussiana [5]

9]

2 2 9o

e & :/ e o 27rz€xdx7
—0o0

tras un cambio de variable se obtiene F(f)(£). Aburriéndose con més cambios de variable (en
realidad, hay atajos posibles) se llega a la férmula explicita, aunque bien fea,

m(acfpt/m)2
x t 47rm e ma2+2iht .
ma2 + 22ht
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Por tanto, la funcién de densidad es

5(t) 5 (mf 2
2 = _ t) a =
¥ (@l a2 con 9(t) 1+ 4h2a=4m=22

Si ma?/t es mucho mayor que A entonces §(t) ~ 2 y suponiendo a pequefio (para que se parezca
a una particula) el decaimiento de la exponencial nos dice que esencialmente veremos que se
mueve con x = pt/m = vt, de acuerdo con la primera ley de Newton. Al ser i tan pequeno
esta es la situacién tipica en el mundo macroscopico para tiempos razonables. Sin embargo
para t arbitrariamente grande o para m y a mas propios del mundo subatémico se consigue
que ma?/t sea menor que f y §(t) = 0, con lo que la probabilidad se vuelve més uniforme. En
otras palabras, perdemos la certeza de dénde esta la particula.

Las siguientes figuras ilustran diferentes aspectos del fenémeno mostrando la densidad
de |¥(z,t)|? para un paquete gaussiano correspondiente a la masa de un protén m, con
p/my, = 1ms~!. En la primera figura si a tiene un tamafio pequeio, pero no subatémico
(un milimetro), la onda concentrada evolucionard como una particula de velocidad uno. Sin
embargo, si concentramos mucho el paquete gaussiano, por un fenémeno que estudiaremos
mas adelante, la onda se difunde radpidamente, como muestra la segunda figura. Finalmente,
la tercera ilustra que tal difusiéon ocurre siempre que esperemos lo suficiente.

1 1 1.0002e+09

08 08

1.00015e+09

06 06

1.0001e+09

0.4 04

1.00005e+09
0.2 0.2

0 0 1e+09
0 0.2 0.4 06 08 1 0 02 04 06 08 1 1e+09 1.00005e+09 1.0001e+09 1.00015e+09 1.0002e+09

a=1073,t¢€[0,1] a=2-10"7,t€[0,1] a=1073, t € [10°,10° + 10°]

El pozo de potencial infinito. La situacién fisica ahora es que tenemos una particula
cudntica confinada al intervalo I = [0, L]. Es decir, estd en un caja con paredes impenetrables
enz =yx=L,loquelleva a que ¥(z,t) = 0 para = ¢ I. En fisica la situacién se suele indicar
diciendo que el potencial es V =0en Iy V =o0cen R —I.

A A
V =0 V=0
0 sio<z<IL,
V(z)=qoo siz>1L,
oo siz<O.
V=0
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. Por qué se escribe de esta forma tan rara? Si una particula tiene energia total Ejy, la conserva-
cion de la energia afirma Ey = %va +V ytodalazona {r € R : V(z) > Ep} le estaria vedada
porque %va > (. Por tanto, imponer V' = 0o en una zona asegura que ninguna particula clasi-
ca tendra energia suficiente para llegar alli. Si prefieres algo mas concreto matematicamente,
suponemos que las funciones de onda admisibles en el instante se anulan para x € R— I porque
formalmente para que el término V1 de la ecuacion se cancele con el resto, cuando V = oo la
Unica posibilidad es tener un oo - 0.

La ecuacion de Schrédinger independiente del tiempo vuelve a ser como , pero ahora el
confinamientos al intervalo induce unas nuevas condiciones de frontera:

h2

—%w” —E¢Y =0 en I con(0)=1(L)=0.

Repitiendo lo visto en el caso de la circunferencia, las soluciones son A + Bx para E =0y
combinaciones lineales de €™ y e~ ™ con r = h~'\/=2mFE para E # 0. Al imponer ¥(0) =
(L) = 0 vemos que no hay solucién no idénticamente nula cuando E = 0. En el resto de los
casos, P(z) = Ae"” + Be™"" y se debe cumplir

A+B=0, Ae™l 4+ Bem = 0.

Para que este sistema homogéneo en A y B tenga solucion no trivial, el determinante debe ser
nulo, lo que implica e** = 1 y obliga a r = inn/L con n € Z — {0} que conduce a la energia
72h*n?/(2mL?) y como A = —B la ) ser4 sen 7% salvo multiplicar por una constante. El signo
de n solo cambia el signo de tal constante y, por tanto, para no repetir debemos restringirnos

a n > 0. En resumidas cuentas, las soluciones normalizadas y sus energias son

5 21,2,,2
wn(x)zwzsin$ y E”:ngZ con neZ'.

Comparando con el caso de la particula en la circunferencia, nétese que ahora la energia minima
no es cero. En cierto modo es imposible que una particula cudntica en una caja se esté quieta.
Quiza hayas oido decir que es imposible alcanzar el cero absoluto (la temperatura de cero
kelvin). Es el mismo fenémeno cudntico. Una vez més, el tamano mintdsculo de # impide que
en el mundo macroscépico detectemos la cuantizacion de la energia o su valor minimo.

En fisica cuantica las soluciones de minima energia tienen a menudo una especial importan-
cia. Se dice que corresponden al estado fundamental. Recuérdese que ya aparecid este nombre
al hablar del atomo de Bohr.

La solucién de la ecuacién de Schrodinger dependiente del tiempo es

[e.e]

. 2 & i TN
U(z,t) = Z Aty (z) e Ent/h = N3 Z ane” Pt/ sen <

Para hallar los a,, en funcién de ¥(z,0) podemos expresar el seno en términos de exponenciales

n=1 n=1

complejas y aplicar las formulas de Fourier o que fOL sen (LZ“”) sen (“Tz) dx = 0 paran,m € Z*

distintos, mientras que es L/2 si son iguales. La férmula resultante es

L
an :/0 ‘I’(l’vo)%(fﬂ) d:c,

similar al caso de la circunferencia salvo que el conjugado es ahora innecesario.
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El pozo de potencial finito. Ahora para Vjy, L > 0 fijados consideramos el potencial dis-
continuo:

Vy si —L<z<IL, V=0 _L L x
V(z) =40 six> L,
0 six < —L. Vo

Antes de comenzar, analicemos qué ocurriria para una particula clasica de energia total
E. Recordando la conservacién de la energia, necesariamente £ > —Vj. Si E < 0 la particula
no puede salir del pozo, la parte |x| > L estd vedada porque implicaria %va = F < 0. Para
—Vo < F < 0 la particula se queda eternamente rebotando contra las paredes con velocidad
v = £4/2(E + Vy)/m. Por otro lado, si E > 0 la particula no queda atrapada por el pozo,
tiene energia suficiente para escapar de €l dirigiéndose al infinito con velocidad constante. Por
tanto, es de esperar que para E > 0 tengamos en el lado cudntico una deformacién del caso
de la particula libre en R con su espectro continuo, mientras que el caso —Vy < E < 0 sea
mas parecido al pozo de potencial infinito con sus energias cuantizadas. Para no alargarnos,
consideraremos solo este caso que es el Uinico que da lugar a soluciones normalizables, situacién
que supondremos.

Se puede probar que siempre que un potencial sea una funcién par, cada solucién de H V=1
se puede escribir como combinacién lineal (o suma) de una solucién par y otra impar. Por ello
es gratis limitarnos a las soluciones que cumplan ¢ (x) = ¢(—z) o ¥ (x) = —¢(—z). De nuevo,
para no extendernos demasiado, solo consideraremos la primera posibilidad. La segunda es
muy similar, solo conlleva pequenos cambios.

En definitiva, con estas restricciones, debemos hallar ¢ y E tales que

h2
_%@Z)” —(W+E)W=0 en|z| <L, Vo< E <0, ¢y continuas,
bajo
2
—;Tn%/)” —FEyp =0 en |z| > L, U(z) = Y(=x), [g [¥[* < oo

Nétese que como V tiene discontinuidades de salto en z = L, admitimos que 1" tenga a lo
m4és discontinuidades de salto alli y eso implica la continuidad de ¢ y 9.
Ya sabemos que la primera de las ecuaciones tiene solucién general

Ae™ +Be ™ con r=ht\/2m(E+ V).

La paridad fuerza A = B y se obtiene un coseno salvo multiplicar por constantes. La soluciéon
general de la segunda es

Ae’ + Be % con s=h"'vV-—2mE.

en x > L debe ser A = 0 para evitar el crecimiento exponencial que impediria normalizar y en
x < L se tiene B = 0 por la misma razén. La paridad implica entonces que las soluciones son
proporcionales a e~ 51!,
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En resumen,

A i <L
() = {BC(i(IZm) o=l < L, con r = h_1\/2m(E +W), s= Bl —2mE.
e

si|x| > L

Para respetar la continuidad de v y v, los dos trozos deben pegar bien. Esta exigencia equivale
a que el siguiente sistema homogéneo en A y B tenga solucién no trivial:

Acos(rL) = Be*L, —rAsen(rL) = —sBe L.
La anulacién del determinante lleva a la condiciéon necesaria y suficiente
s =rtan(rL).

Por otro lado, 7 y s no son independientes porque 72 4 s? = 2mVyh~2. Tenemos, entonces, dos
ecuaciones no lineales con dos incognitas y dados Vy y L podriamos pedir a un ordenador que
aproximara las soluciones y asi obtener las correspondientes ¢ y F. Es mucho mejor entender
geométricamente qué estd ocurriendo. Para ello definimos Ry = Lh~'v/2mVj y reescribimos
las ecuaciones para r y s como

(rL)? + (sL)* = R3, sL = rLtan(rL).

Esto es lo mismo que decir que (rL,sL) estd en la interseccién en el primer cuadrante de la
circunferencia 2% + y? = R% con la gréfica de y = z tan x.

R[1—0—--.,____“L

N\

1, 3 5 7 9 1
o i 2 i 3m r 4 £ it e

Debido a los ceros y las asintotas de tan x hay un corte por cada banda de anchura m, asi que
hay aproximadamente Ry/m energias y soluciones, de hecho son exactamente la parte entera
de Ro/m més uno.

Si Vj crece (el pozo se hace profundo), fisicamente deberfa tender a un pozo de potencial
infinito cambiando E por E + Vj, para llevar el fondo del pozo a nivel zero. Comprobemos esta
afirmacion. Si Vj se hace grande, Ry también y las primeras intersecciones estaran muy arriba
y, por tanto, cerca de las asintotas, es decir,

m2h2n2

W con n € Z+ impar.

™
rL%7 con n € Z' impar = E, + Vp ~
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La fraccion de la derecha corresponde a las energias del pozo de potencial infinito cambiando
L por 2L, lo cual es légico porque ahora la anchura es doble. La condicién de que sea impar se
debe a que solo hemos considerado la simetria ¢ (z) = ¢ (—z). El estudio de 9(z) = —¢(—x)
lleva a los niveles de energia restantes.

Las graficas de las soluciones correspondientes a las tres energias mas pequenas son del tipo

I\ N A
\/ I

Sabemos que en |z| > L hay un decaimiento exponencial. Para valores macroscépicos la pe-
quenez de h implica que s es inmensamente grande y el practicamente nulo, de modo que
nos parece que la particula estd confinada a [— L, L]. Sin embargo, cudnticamente hay una mini-
ma, probabilidad de detectarla fuera. Esta posibilidad cudntica de que una particula “atraviese
paredes” sin tener energia suficiente para hacerlo desde el punto de vista clasico se llama efecto
tunel [11] [14, §3.5] y se ilustra mejor considerando un modelo en el que una particula que
viene desde la izquierda, representada por un paquete de ondas, estd sometida al potencial
—V. Al llegar a la pared x = —L gran parte del paquete de ondas se refleja hacia la izquierda,
pero una pequena parte de él atraviesa el pozo y viaja hacia la derecha. Lejos de ser una mera
curiosidad, es la base del microscopio de efecto tinel, desarrollado en 1981, que permite *
atomos individuales.

E. Mach ha pasado a la posteridad por su influencia sobre Einstein y porque su nombre se
asocia a velocidades superiores a la del sonido. Menos conocido es que fue uno de los tltimos
fisicos que negd la teoria atémica. Segin se cuenta, cuando le hablaban de atomos replicaba

“; T los has visto?”. Hoy, més de cien afios después de su muerte, podemos decir que si gracias
a fenémenos cuanticos.

‘Ver”

Ejercicios de la seccion 2

EJErcicio 1. Explica por qué v, = w/k indica la velocidad de avance de las crestas de la onda
u(z,t) = Asen(kx — wt).

EJERcICIO 2. Muestra que si F' es conservativo, esto es, F' = —VV entonces el trabajo fv F-di
depende de los extremos de vy pero no de la trayectoria que describe.

EJercicio 3. Comprueba que las dimensiones son coherentes en la ecuacion de Schrodinger.

EJERCICIO 4. Para L > 0, supongamos una funcién de ondas que en un instante tg es de
la forma ¥(z,ty) = Amax(0,1 — |z|/L). Calcula la probabilidad de que en dicho instante se
detecte en (—oo, —£] U [5, 00) la particula que representa.

EJERCICIO 5. Comprueba que W(z, t) = e2 %42~ 1Eet/h copn E¢ = 2m2h%€% /m satisface la ecuacién
de Schrodinger con V' = 0 para cualquier £ = 0.
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EJERCICIO 6. Consideremos U(xz,t) = Ae @ +iht/m) con o > 0. Halla A para que esté
normalizada y calcula el potencial V' para que satisfaga la ecuacion de Schrodinger. Nota:
Dicho potencial, convenientemente escalado, tiene un papel muy destacado en fisica cudntica
y aparecera mas tarde en el curso.

EJERCICIO 7. Demuestra el teorema de Ehrenfest en el caso tridimensional.

EJERCICIO 8. Si Uy(z,t) y Ya(x,t) son dos soluciones normalizadas de la misma ecuacién de
Schrodinger en una dimensién, demuestra que [, ¥i(xz,t)¥s(z,t) dz no depende del tiempo.

EJERCICIO 9. Expresa TH — HZT en términos de p.

EJErcicio 10. Demuestra que si ¥ resuelve la ecuacién de Schrodinger en una dimension
entonces %|\I/|2 = —%8%(3(\1/*\1/96)) donde (z) indica la parte imaginaria de z y ¥, es la
derivada parcial de V.

EJERCICIO 11. Aplica el ejercicio anterior a una solucién estacionaria W(z,t) = e~ *F4/Myj(z) y
deduce que si el potencial se anula en ciertos intervalos I, se tiene ¢(x) = Ajeipx/ h+Bje_ipx/ h
para x € I; con ]Aj]2 — ]Bj|2 independiente de j. Escribe una férmula para p y comprueba que
tiene dimensiones de momento.

EJERCICIO 12. La ecuacién de Schrodinger es en parte relativista y en parte no. Vas a compro-
bar que las transformaciones de Galileo no preservan las soluciones, pero si la probabilidad.
En términos matematicos, demuestra que dada una solucién ¥ de la ecuacion unidimensional,
la funcién ¥'(x,t) = e_i(m””%m“%)/h\l/(x + vt,t) con v constante (con dimensiones de veloci-
dad), satisface la ecuacién de Schrodinger cambiando V' (z) por V (z + vt). Nota: Obviamente
se cumple |¥|? = |¥’|2, en ese sentido la probabilidad se conserva.

EJERCICIO 13. Para una funcién de ondas radial, ¥ (z,y, z,t) = g(v/22 + y% + 22,t) que sa-
tisface la ecuacion de Schrodinger halla qué ecuacién debe cumplir g. Indicacién: Todo lo que
debes hacer es recordar o hallar como es el operador laplaciano en coordenadas esféricas.

EJjercicio 14. Consideremos la ecuacién de Schrodinger independiente del tiempo en tres
dimensiones con un potencial V(z,y,2) = Vi(x) + Va(y) + V3(2). Si vy, j = 1,2,3, son solu-
ciones normalizadas para el caso unidimensional con potenciales V; y energias E;, prueba que
U(x,y,z) = P1(x)h2(y)1h3(2) es solucién normalizada del problema tridimensional para cierta
energia F. Exprésala en términos de las Ej.

EJERCICIO 15. Sea ¥(x) = Aze=9""" con A,a € RY solucién de la ecuacién de Schrodinger
independiente del tiempo para un potencial V con V(0) = 0. Halla A € RT para que esté
normalizada y calcula V' y E. ;jQué dimensiones tienen a y A7

EJERCICIO 16. Explica por qué si ¢ = ¢(z) es una solucién normalizada de la ecuacién de
Schréodinger independiente del tiempo f_oooo Y*p(¢) = 0. Indicacién: Una forma de proceder,
aunque no la mds rapida, es recordar la relacién entre p y TH — HT de un ejercicio anterior.

EJERCICIO 17. En el caso de la particula libre en la circunferencia, demuestra la conservacién de
la probabilidad (si ¥(z,0) estd normalizada, entonces W(x,t) también lo estd para cualquier t)
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utilizando la identidad de Parseval para series de Fourier. Nota: Tal identidad afirma que si f
es 1-periédica fol |f|? es la suma de los cuadrados de sus coeficientes de Fourier.

EJERCICIO 18. Si un potencial es par, V(z) = V(—=x), demuestra que cada solucién de la
ecuacion de Schrodinger independiente del tiempo para cierta energia es suma de una soluciéon
par y otra impar (quizd una de las dos idénticamente nula).

EJercicio 19. Consideremos la ecuacién de Schriodinger independiente del tiempo en una
dimensién con un potencial que cumple V(z) > Vj para cierta constante V. Demuestra que
no hay soluciones normalizables con E < Vj. Indicacién: Comprueba la identidad "¢ =
(") — (¢)? o P"p* = (Y*') — |o'|? si trabajas con niimeros complejos.

EJERCICIO 20. En el pozo de potencial infinito con L = 1/5, Dada la condicién inicial ¥(z,0) =
Asen3(5rz) halla A para que esté normalizada y obtén una férmula explicita para U(z,t).
;Cudl es la probabilidad de detectar la particula en z > 1/10 en el instante ¢t = 207~ 1A~ 1m?

EJERCICIO 21. Sea ¥(x,t) solucién de la ecuacién de Schrédinger para el pozo de potencial
infinito y sea T' = 4mL?/(wh). Comprueba que T tiene dimensiones de tiempo y demuestra que
U(z,0) = U(z,T) y U(z,T/4) = 520 (2,0) — HEW(L — 2,0). Nota: Estas y otras repeticiones
de las condiciones iniciales en algunos sistemas se llaman resurgimiento cudntico o, a veces,
efecto Talbot cudntico por el pionero de la fotografia H. F. Talbot que observé un analogo
optico.

EJeERciIcio 22. Calcula las soluciones de la la ecuacion de Schrodinger independiente del tiempo
para el pozo de potencial ctbico infinito en tres dimensiones. Es decir, para V(z,y,z) = 0 si
x,y,z € [0,L] y V(z,y,2) = oo en otro caso. Halla el nimero de soluciones linealmente
independientes para los seis valores mas pequenos de la energia. Indicacién: Puedes dar por
supuesto que el método de separacién de variables es aplicable aqui.

EJERrcIcio 23. Considera el pozo de potencial finito con L = 1. jA partir de qué valor de Vj
hay solo una solucién par con energia —Vy < E < 0? Calcula el limite de E/VZ cuando Vy — 0
y explica la paradoja de que E/V| sea adimensional y el resultado por V{ no lo sea.

EJERCICIO 24. En fisica muchas veces se usan potenciales con deltas de Dirac. Mas alld de
la definicién matemética que quizd conozcas, intuitivamente la delta de Dirac 6 = 0(x) se
entiende como la derivada de H donde H(z) =0enz < 0y H(x) =1 en z > 0, de modo
que f ;0 = 1 para cualquier intervalo 0 € I. Con esta informacién, determina las soluciones
normalizables de la ecuacion de Schrodinger independiente del tiempo para V = ad con a < 0.
. Qué dimensiones tiene a? Indicacién: En cierto modo, d(x) = 0 para x # 0 y 6(0) = oo, por
tanto, V' =0 en R — {0}. Después hay que ajustar las cosas en el origen para que 1" sea como
la derivada de una funcién escalén. Salvo normalizaciones, solo hay una solucién.

EJjercicio 25. Considera el potencial V(z) = Vi(z) + VoL é(x — L/2) donde V; corresponde al
pozo de potencial infinito y ¢ es la delta de Dirac. Comprueba que la solucién de H 1 = E con
E minima es de la forma ¢ (z) = Asen(xv2m£E/h) en |0, %] y ¥(z) = Bsen((L —z)vV2mE/h)
en [£ L]. Demuestra que E es la menor solucién positiva de la ecuacién

2
AV2E LvmE
——F + tan =0
LVyv/m 2
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