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Fernando Chamizo https://matematicas.uam.es/~fernando.chamizo/

Las ecuaciones diferenciales dominaban los métodos matemáticos de la f́ısica a finales del siglo XIX y
todav́ıa los dominan hoy, aunque se han introducido nuevos ingredientes entonces insospechados. La f́ısica
cuántica surgió cuando ciertos fenómenos cuánticos se comportaban “a saltos”, escapando de la suavidad que
requieren las derivadas.

1.1. Unidades y constantes

En la vida cotidiana es natural manejar diferentes unidades dependiendo del contexto. Por
ejemplo, a nadie se le ocurriŕıa indicar la edad de un adulto en d́ıas o su peso en toneladas.
También hay variaciones locales, aunque cada vez menos acusadas (por ejemplo, los grados
Fahrenheit prácticamente ya solo se emplean en Estados Unidos).

A pesar de que también en f́ısica el contexto ha multiplicado las unidades, el Sistema
Internacional , abreviado SI, ha alcanzado gran éxito unificando y universalizando. Un sistema
de unidades solo tiene sentido cuando hay magnitudes f́ısicas que medir. Seguro que se te
pasan por la mente el espacio y el tiempo como las más fundamentales y quizá también la
masa. El Sistema Internacional reconoce siete magnitudes básicas con sus unidades. El resto
se construyen a partir de ellas. La siguiente tabla recoge las cuatro que aparecerán en el curso,
las tres antes mencionadas y otra relacionada con los fenómenos electromagnéticos:

Magnitud Unidad Śımbolo Dimensión

espacio metro m L

tiempo segundo s T

masa kilogramo kg M

corriente amperio A I

No necesitamos nuevas unidades para la velocidad o la aceleración porque las fórmulas

v =
ds

dt
y a =

d2s

dt2

con s = s(t) el espacio muestran que la velocidad se mide en m/s y la aceleración en m/s2.
En un contexto vectorial, la velocidad y la aceleración son

v⃗ =
dr⃗

dt
y a⃗ =

d2r⃗

dt2

con r⃗ = r⃗(t), la posición, describiendo una curva en R3, y cada una de sus tres coordenadas
tienen las unidades indicadas en el Sistema Internacional.
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La última columna de la tabla asigna a las magnitudes f́ısicas una dimensión representada
por una letra que abrevia longitud, tiempo, masa e intensidad. En f́ısica está terminantemente
prohibido sumar peras con manzanas y por ello es necesario que en las ecuaciones las di-
mensiones cuadren. Estas dimensiones, indicadas con dim, se expresan como un “monomio”
del tipo LαTβMγ Iδ. Por ejemplo, para la velocidad y la aceleración se tiene dim v = LT−1 y
dim a = LT−2. Otras cantidades importantes en f́ısica son el momento lineal y el momento
angular definidos por

p⃗ = mv⃗ y L⃗ = r⃗ × p⃗ = mr⃗ × v⃗,

por tanto, las dimensiones de cada una de sus coordenadas son LT−1M y L2T−1M, respectiva-
mente.

Ninguna de estas magnitudes f́ısicas derivadas de las fundamentales tiene unidades con
nombre en el SI (fuera de él, a veces se emplea el gal , una unidad de aceleración [12]). Esto
no es una regla general, el SI admite algo más de 20 nombres para unidades formadas por
productos de potencias de las unidades básicas. Repasaremos algunas fórmulas con la excusa
de introducir algunos de estos nombres.

Con seguridad, la fórmula más famosa de la f́ısica es E = mc2 con E la enerǵıa y c es
la velocidad de la luz. La coherencia de las dimensiones exige dimE = L2T−2M. A la unidad
correspondiente se le llama julio (por J. P. Joule) y se indica con J . Es decir, un julio es,
por definición, 1 kgm2 s−2. La fórmula E = mc2, que pertenece a la mecánica relativista, no
será relevante en este curso ni lo es en nuestra experiencia cotidiana. Por cierto, no es tan
importante el valor de la enerǵıa en śı, sino su variación. Más bien, la idea f́ısica que debemos
tener de enerǵıa es que es una constructo matemático de forma que su cambio se puede emplear
en realizar trabajo. La definición de este último tiene que ver con uno de los conceptos básicos
que estudiaste en Cálculo II. El trabajo a lo largo de una trayectoria γ se define como la integral
de ĺınea

W =

∫
γ
F⃗ · dr⃗ con F⃗ la fuerza y r⃗ la posición.

Quizá la segunda fórmula más famosa de la f́ısica sea F = ma con F la fuerza, que aqúı
tomaremos como su definición. Se deduce que dimF = LT−2M. La unidad asociada es el newton
(obviamente, en honor a I. Newton, para muchos el mayor f́ısico de todos los tiempos) igual
a 1 kgms−2. En la ĺınea de lo dicho antes, trabajo y enerǵıa tienen las mismas dimensiones.
De la fórmula integral se deduce dimW = L dimF = L · LT−2M que confirma dimW = dimE.

Las dos últimas unidades derivadas que consideraremos están relacionadas con la electrici-
dad. Si has seguido un curso básico de f́ısica te asombrará que la carga (eléctrica) no parezca
como magnitud básica. Por otro lado, está claro que las personas de a pie relacionan la electri-
cidad con el voltaje que en f́ısica recibe el nombre técnico de diferencia de potencial (eléctrico)
y tampoco aparece en la tabla. Estas son magnitudes f́ısicas derivadas debido a las fórmulas

I =
dq

dt
y E = qV

donde I es la corriente (eléctrica) (que toma el SI como magnitud básica), q es la carga
eléctrica y V es la diferencia de potencial. En consonancia con estas fórmulas, dim q = TI
y dimV = dimE/dim q = L2T−3MI−1. La unidad de carga es el culombio (por C.-A. de
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Coulomb), denotado con C e igual a 1 sA y la de diferencia de potencial es el voltio (por A.
Volta) igual a 1 kgm2 s−3A−1 y que, como todos sabemos, se suele indicar con V . Estas dos
fórmulas no serán muy relevantes para nosotros, simplemente nos dan la tranquilidad de que
no necesitamos más unidades fundamentales para definir cargas y diferencias de potencial. La
segunda fórmula se relaciona con una unidad no perteneciente al Sistema Internacional que
es muy común en f́ısica de altas enerǵıas: se llama electronvoltio, denotado mediante eV , a
la enerǵıa que adquiere un electrón bajo una diferencia de potencial de un voltio. Utilizando
la tabla al final de esta sección se deduce la igualdad exacta 1 eV = 1,602176634 · 10−19J .
Para poner esto en perspectiva, la colisión más energética alcanzada en el LHC ha sido de
1,36 · 1013 eV , lo que son poco más de dos millonésimas de julio, algo imperceptible en el
mundo macroscópico.

Lo dicho con respecto a las unidades derivadas de las básicas, se resume en la siguiente
tabla:

Magnitud Unidad Śımbolo Definición

fuerza newton N 1 kgms−2

enerǵıa, trabajo julio J 1 kgm2 s−2

carga eléctrica culombio C 1 sA

diferencia de potencial voltio V 1 kgm2 s−3A−1

Para ajustar las dimensiones algunas fórmulas f́ısicas requieren constantes universales. Ya
hemos visto una en la fórmula E = mc2, que podemos interpretar como equivalencia entre masa
y enerǵıa con un factor c2 para que las dimensiones concuerden. Quizá te resulten familiares
las que aparecen en la ley de gravitación universal de Newton y la ley de Coulomb

F = G
m1m2

d2
y F = K

q1q2
d2

con mj masas, qj cargas y d distancia. Es fácil ver que se debe cumplir dimG = L3T−2M−1 y
dimK = L3T−4MI−2 para que los segundos miembros tengan unidades de fuerza. Debido a las
ecuaciones de Maxwell , que rigen la electrodinámica, K se suele escribir como 1/(4πε0) y se
dice que ε0 es la permitividad del vaćıo, aśı pues dim ε0 = L−3T4M−1I2.

Una vez fijado un sistema de unidades, el valor de estas y otras constantes viene dictado por
la naturaleza, son experimentales. Poco a poco el Sistema Internacional ha ido evolucionando
para proceder en el sentido contrario y definir sus unidades en términos de algunas constantes
f́ısicas fundamentales (siete, actualmente) a las que se asigna convencionalmente valores exactos
relacionados con números enteros. Aśı, aunque suene a broma, en 1983 se cambió el valor de
la velocidad de la luz a un número entero para definir el metro sin tener que depender de un
patrón almacenado en Paŕıs. De cara a este curso, la constante más importante es la constante
de Planck h que tiene dimensiones de enerǵıa por tiempo que coinciden con las de momento
angular, esto es, dimh = L2T−1M. Su cambio a un valor exacto de forma que 1042h sea entero
es muy reciente, de 2019. A pesar de que h es la constante y notación originales en fórmulas de
la f́ısica cuántica, en los textos actuales aparece más ℏ = h/(2π), llamada constante de Planck
reducida. Una tercera constante exacta es la carga elemental e que indica la carga del electrón
sin signo (la misma que la del protón).
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Los valores de todas las constantes mencionadas, añadiendo la masa del electrón que aparece
en algunos cálculos, se recogen en la siguiente tabla:

Constante Śımbolo Valor Naturaleza

constante de Planck h 6,62607015 · 10−34 J s exacta

velocidad de la luz c 299792458ms−1 exacta

carga elemental e 1,602176634 · 10−19C exacta

masa del electrón me 9,1093837139 · 10−31 kg aproximada

constante gravitatoria G 6,67430 · 10−11 kg−1m3 s−2 aproximada

permitividad del vaćıo ε0 8,8541878128 · 10−12C2 kg−1m−3 s2 aproximada

Todas estas constantes excepto la gravitatoria serán relevantes en el curso.

1.2. F́ısica extraña

A finales del siglo XIX y principios del XX, algunos fenómenos desafiaban la f́ısica conocida.
Para no divagar daremos por conocidas varias fórmulas y la descripción de los problemas será
más bien una interpretación moderna sesgada con los conocimientos actuales sin ajustarse del
todo a la realidad histórica.

La radiación del cuerpo negro. Este fenómeno que se considera siempre en la génesis de
la f́ısica cuántica, es el más dif́ıcil de explicar si no se tiene conocimientos sólidos de mecánica
estad́ıstica, por ello será el que tenga una descripción más vaga (hay más detalles en [6]).

Un cuerpo emite radiación electromagnética con distintas frecuencias (número de oscila-
ciones por segundo) según sube su temperatura. Aśı, sabemos que algunos objetos se ponen
“al rojo vivo”, indicando que emiten luz visible mayoritariamente con la frecuencia correspon-
diente a este color. Para unificar la situación, se supone que el cuerpo tiene la capacidad de
absorber cualquier frecuencia, no refleja ninguna, es lo que se llama un cuerpo negro. Experi-
mentalmente, J. Stefan observó en 1879 que la enerǵıa irradiada por unidad de tiempo y de
área a través de la superficie, digamos P , depende de la temperatura T absoluta (en kelvin,
grados Celsius más 273,16) por la fórmula

P = σT 4 con σ una constante universal.

L. Boltzmann justificó esta relación teóricamente en 1884 y por eso hoy en d́ıa se le llama ley
de Stefan-Boltzmann.

Tras la teoŕıa electromagnética de J. C. Maxwell es lógico pensar que la radiación se produce
porque hay multitud de cargas que oscilan con diferentes frecuencias en el cuerpo negro.

Las técnicas para tratar sistemas con muchas part́ıculas, son las de la mecánica estad́ıstica.
Un argumento empleado habitualmente en esta disciplina es la distribución de Boltzmann
(también relacionada con el trabajo de Maxwell) que consiste en que por cada “grado de
libertad”, la enerǵıa E aparece con probabilidad exp

(
− E

kT

)
([2], cf. [4, §40]) donde T es

la temperatura en kelvin y k = 1,380649 J K−1 es una constante universal, la constante de
Boltzmann. Desde el punto de vista matemático, si suponemos que las enerǵıas forman un
continuo en [0,∞) se tiene que la función de densidad de probabilidad en este intervalo viene
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dada por f(E) = 1
kT exp

(
− E

kT

)
donde el coeficiente se ha escogido para que

∫∞
0 f(E) dE = 1.

En esta situación, la enerǵıa media es la esperanza E =
∫∞
0 Ef(E) dE = kT , según la fórmula

que conoces de Probabilidad I.
Volviendo al cuerpo negro, una función fundamental es u(ν) con ν la frecuencia. Esta

función se define como la densidad de enerǵıa emitida por unidad de frecuencia. Con argumentos
de termodinámica y mecánica estad́ıstica se pueden probar las fórmulas

P =
c

4

∫ ∞

0
u(ν) dν y u(ν) =

8πν2

c3
Eν

donde Eν es la enerǵıa media de los osciladores correspondientes a la frecuencia ν. Ahora bien,
en la radiación electromágnetica diferentes frecuencias se manifiestan como grados de libertad
distintos, por tanto, se debeŕıa tener Eν = kT , lo que lleva (sustituyendo en la segunda
fórmula) a la ley de Rayleigh-Jeans u(ν) = 8πν2kT/c3 que se ajusta bien a los experimentos
para frecuencias pequeñas y temperaturas moderadas. El problema surge porque al calcular la
densidad de enerǵıa total, debida a la emisión en todas las frecuencias, obtenemos

8πkT

c3

∫ ∞

0
ν2 dν = ∞,

que implica P = ∞ en la ley de Stefan-Boltzmann. Esto se llama catástrofe ultravioleta,
indicando que hay algo en las frecuencias altas (ultravioleta significa frecuencias mayores que las
visibles) que hace que para ellas la teoŕıa no funcione correctamente. De hecho los experimentos
sugieren que a temperatura constante u(ν) → 0 cuando ν crece.

El efecto fotoeléctrico. En 1887 H. Hertz tras sus múltiples experimentos pioneros con
ondas electromagnéticas observó que un metal bajo la acción de radiación ultravioleta emi-
te electrones (en realidad habŕıa que decir electricidad, porque el electrón no se descubrió
hasta 1897). De alguna manera, la radiación electromagnética actúa sobre los electrones des-
prendiéndolos. Si aplicamos entre el cátodo, donde esta el metal, y el ánodo, donde se recogen
los electrones, una diferencia de potencial (esto es como conectarlos a una bateŕıa) observa-
remos que la corriente eléctrica en función de la diferencia de potencial tiene una gráfica del
tipo:

V

I

V0

Esto parece razonable. La corriente I depende de la cantidad de electrones que pasan por
unidad de tiempo. Una diferencia potencial positiva ayuda a que los electrones pasen y una
negativa, en oposición, los frena. A partir de cierto valor I se estabiliza porque se desprenden
todos los electrones posibles y para un valor V0 de diferencia de potencial en oposición no se
desprende ninguno. Gracias a la fórmula E = qV la diferencia de potencial nos da información
sobre la enerǵıa de los electrones mientras que I = dq

dt nos la da acerca del número de electrones.



Sección 1 6

La intensidad de una onda electromagnética, que es como el cuadrado de su amplitud,
está relacionada con la densidad de enerǵıa. Uno esperaŕıa que mayor intensidad diera lugar
a electrones más energéticos, pero no es aśı, solo se generan más electrones. La frecuencia
es la que parece determinante, incluso radiación con poca intensidad arranca electrones si su
frecuencia es alta, por otro lado, por debajo de cierta frecuencia el efecto desaparece, sea cual
sea la intensidad.

Hay algo que no cuadra si imaginamos la radiación como ondas que chocan contra la
materia. Hay una dependencia en la frecuencia cuando parece que lo lógico seŕıa que se mostrase
en la intensidad. Es como si en la playa observases que las olas altas mueven a mucha gente,
pero muy poco a no ser que lleguen varias seguidas.

La estructura atómica. Los experimentos dirigidos por E. Rutherford en 1909 sugeŕıan
que los átomos estaban formados por electrones que orbitan alrededor de un núcleo cargado
positivamente. En el movimiento circular la fuerza centŕıfuga viene dada por mv2/r con r
el radio. Si pensamos en el átomo más simple que solo tiene un electrón y un protón, el de
hidrógeno, esta fuerza sobre el electrón debe estar compensada por la de Coulomb y se obtiene
una relación entre el radio y la velocidad:

(1)
mev

2

r
=

Ke2

r2
⇒ v2 =

Ke2

mer
con K =

1

4πϵ0

que lleva a que la enerǵıa total del electrón, compuesta por su enerǵıa cinética 1
2mev

2 y la

enerǵıa potencial −Ke2

r correspondiente al campo eléctrico, es

E = Ecin + Epot =
1

2
mev

2 − Ke2

r
=

Ke2

2r
− Ke2

r
= −Ke2

2r
.

Ahora bien, bajo ciertas hipótesis que daremos por ciertas, la fórmula de Larmor en electro-
dinámica [5] afirma que una part́ıcula de carga q y aceleración a sufre una pérdida de enerǵıa
por emisión de radiación electromagnética con una tasa de variación en el tiempo 2

3c
−3q2a2. En

nuestro caso, la aceleración es la centŕıpeta v2/r, la que obliga al vector velocidad a torcerse
para seguir el movimiento circular compensando la fuerza centŕıfuga, entonces

− d

dt

(
− Ke2

2r

)
=

2Ke2(v2/r)2

3c3
.

Esto implica que r es decreciente, de modo que el electrón tiende a precipitarse hacia el núcleo.
Si suponemos que la variación de r en el tiempo, al menos inicialmente, es mucho menor que v,
seguirá una espiral que da muchas vueltas y nuestra hipótesis de partida de un movimiento
circular será aproximadamente cierta. Sustituyendo v2, operando y simplificando se obtiene la
ecuación diferencial sencilla

ṙr2 +K = 0 con K =
4K2e4

3m2
ec

3

donde, como es habitual en f́ısica, los puntos sobre las variables indican derivadas con respecto
del tiempo. Resolviendo la ecuación diferencial por separación de variables, se obtiene que
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r = r(t) se anula para t = tc con

tc =
R3

0

3K
=

m2
ec

3R3
0

4K2e4
donde R0 = r(0).

El radio estimado de un átomo de hidrógeno es R0 ≈ 5 · 10−11 y con los valores numéricos
que conocemos, la fórmula sugiere que en un tiempo tc ≈ 1,3 · 10−11s el átomo de hidrógeno
debeŕıa colapsar a un punto. En general, se deduce que es imposible la existencia de materia
estable, en contra de nuestra experiencia más obvia, en particular, de que estés siguiendo este
curso.

Por otro lado, se hab́ıa observado que el hidrógeno y otros gases, sometidos a altas tem-
peraturas emit́ıa radiación electromagnética (luz, en el caso visible), con unas frecuencias ca-
racteŕısticas que dan lugar a las ĺıneas espectrales muy útiles en astronomı́a. Los experimentos
de J. J. Balmer y J. Rydberg sugeŕıan que para los elementos alcalinos (que tienen un solo
electrón en su última capa) las frecuencias ν satisfaćıan relaciones del tipo

ν

c
= R

( 1

(n1 + a)2
− 1

(n2 + b)2

)
con n1 y n2 enteros, a y b constantes que depend́ıan del elemento y R una constante universal.
Por consiguiente, parece que, por alguna razón misteriosa, solo ciertas radiaciones electro-
magnéticas relacionadas con enteros están permitidas y, por tanto, la aplicación de la fórmula
de Larmor que conlleva una variación suave de r es incorrecta.

1.3. Tres soluciones cuánticas

Históricamente, los problemas citados en la sección anterior se trataron con argumentos
que en parte apelaban a la f́ısica clásica y en parte la negaban. El punto común era que, por
razones que escapaban a una teoŕıa general, algunas cantidades dejaban de ser continuas y
pasaban a ser discretas a través de múltiplos enteros de la constante de Planck.

La radiación del cuerpo negro. La radiación electromagnética es t́ıpicamente más energé-
tica cuanto mayor es su frecuencia ν, en el sentido de que parece tener mayor acción sobre la
materia según lo reseñado en el efecto fotoeléctrico. Aśı una exposición prolongada a los rayos X
usados en las radiograf́ıas (con ν ≈ 3 · 1019 s−1) puede dañar nuestros tejidos, mientras que la
luz visible (con ν ≈ 5 · 1014 s−1) es inocua. En 1900, M. Planck [9], [10] supuso la radiación
dividida en pequeños corpúsculos de enerǵıa hν con h un parámetro pequeño. En principio
esto es solo un artificio teórico, análogo al utilizado originalmente por Boltzmann para deducir
su distribución [2], y uno esperaŕıa obtener el resultado f́ısico tomando h → 0.

Según la distribución de Boltzmann, la enerǵıa nhν correspondiente a n corpúsculos se
obtiene con probabilidad proporcional a exp

(
− nhν

kT

)
. Por tanto, la enerǵıa media es

Eν =

∑∞
n=0 nhν exp

(
− nhν

kT

)∑∞
n=0 exp

(
− nhν

kT

) .
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Utilizando las bien conocidas identidades matemáticas, que debeŕıas saber probar fácilmente,

∞∑
n=0

rn =
1

1− r
y

∞∑
n=0

nrn =
r

(1− r)2
para cualquier |r| < 1,

se deduce la expresión

(2) Eν =
hν

exp
(
hν
kT

)
− 1

.

Con lo que nos hemos créıdo de la relación con la densidad de enerǵıa de radiación por unidad
de frecuencia, esta viene dada por la fórmula de Planck

u(ν) =
8πhν3c−3

exp
(
hν
kT

)
− 1

.

Cuando h → 0 se obtiene u(ν) = 8πν2kT/c3, la ley de Rayleigh-Jeans que nos daba problemas.
Sin embargo, tomar como h una constante positiva induce un decaimiento exponencial para
frecuencias altas que nos salva de la catástrofe ultravioleta. La solución de compromiso es
pensar que h es una constante no nula muy pequeña, esto es, que los corpúsculos de enerǵıa
son f́ısicamente reales.

Veamos que la fórmula de Planck permite deducir la ley de Stefan-Boltzmann. Según lo
que sabemos,

P =
c

4

∫ ∞

0
u(ν) dν =

2πh

c2

∫ ∞

0

ν3 dν

exp
(
hν
kT

)
− 1

.

Ahora basta utilizar la evaluación de la integral definida∫ ∞

0

x3 dx

ex − 1
=

π4

15

tras un cambio de variable para obtener

P = σT 4 con σ =
2π5k4

15c2h3
.

Un apunte final, es que, si uno trata de ser riguroso con la historia, Planck no procedió de la
manera descrita y realizó varias versiones de su argumento [7], [6]. Por otro lado, seguramente
el desarrollo ulterior de la f́ısica cuántica ha hecho exagerar a los cient́ıficos y divulgadores
actuales el presunto énfasis de Planck en los paquetes de enerǵıa discretos.

El efecto fotoeléctrico. A pesar de que [3] es considerado “el art́ıculo sobre el efecto fo-
toélectrico” de los cuatro famosos de A. Einstein en su annus mirabilis [11], la verdad es que
está más dedicado a la radiación del cuerpo negro. Además, la notación del apartado que se
ocupa del efecto fotoeléctrico es poco reconocible para un lector actual. Por otro lado, la in-
troducción del art́ıculo resulta muy cercana, un verdadero pistoletazo de salida de la f́ısica
cuántica que no desentonaŕıa en un texto actual. Alĺı se lee:
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La teoŕıa ondulatoria de la luz con sus funciones espaciales continuas ha mostrado
ser un excelente modelo de los fenómenos puramente ópticos [. . . ], a pesar de la
perfecta concordancia de la teoŕıa de Maxwell con los experimentos, el uso de
funciones espaciales continuas para describir la luz puede llevar a contradicciones
con experimentos, especialmente cuando se aplica a la generación y transformación
de la luz.

En particular, la radiación del cuerpo negro, la fotoluminescencia, la generación
de rayos catódicos mediante luz ultravioleta y otros fenómenos asociados con la
generación y transformación de la luz parece modelarse mejor suponiendo que la
enerǵıa de la luz se distribuye discontinuamente en el espacio. De acuerdo con
este esquema, la enerǵıa de una onda de luz emitida desde una fuente puntual no
se distribuye continuamente sobre volúmenes cada vez mayores, sino que consiste
en un número finito de cuantos de enerǵıa que están localizados espacialmente en
puntos del espacio, se mueven sin dividirse y son absorbidos o generados como un
todo.

Los cuantos (corpúsculos) de enerǵıa, que Einstein consideró son lo que más adelante se
llamaŕıan fotones, las part́ıculas sin masa que componen las radiaciones electromagnéticas, en
particular, la luz. Cada uno de ellos tiene una enerǵıa dada por

E = hν con ν la frecuencia.

A esta relación se le llama fórmula de Planck o fórmula de Planck-Einstein para evitar confu-
siones con la de la adiación del cuerpo negro. Planck dividió en corpúsculos múltiplos enteros
de hν la enerǵıa en la interacción entre ondas electromagnéticas y materia mientras que Eins-
tein consideró que las propias ondas no son tales ondas sino que están compuestas de fotones.

Con esta idea, cada electrón en el efecto fotoeléctrico puede alcanzar una enerǵıa hν. En
realidad habrá que gastar parte de esta enerǵıa W para desprenderlo del metal. De este modo,
la ecuación fundamental que da la enerǵıa cinética de cada electrón es

1

2
mev

2 = hν −W.

Esta fórmula explica cualitativamente el fenómeno, pero W depende de la estructura del metal
considerado y no lo conocemos, además, es de esperar que electrones de diferentes capas del
átomo del metal necesitan diferentes enerǵıas. Para evitar ese problema, disminuyamos poco a
poco la frecuencia hasta llegar a una frecuencia umbral ν0 en la que no hay efecto fotoeléctrico.
Se debe cumplir que W , en realidad el W mı́nimo para todos los electrones del metal, es
hν0 = W . Si ahora aumentamos la frecuencia y vemos la diferencia de potencial en oposición V0

necesaria para parar los electrones, debeŕıamos tener (recordando E = qV )

V0 =
h

e
(ν − ν0).

Esta relación lineal concuerda con los resultados experimentales obtenidos por R. Millikan
en 1914 que contribuyeron a que se le otorgara el premio Nobel. Paradójicamente, su mo-
tivación era demostrar que Einstein estaba equivocado. La fórmula anterior permitió medir
experimentalmente la constante de Planck con cierta precisión [8] tomándola como la pendien-
te de la gráfica de V0 en función de ν multiplicada por e.



Sección 1 10

La estructura atómica. N. Bohr [1] explicó el átomo de hidrógeno en 1913 suponiendo
que el electrón describe un movimiento circular uniforme alrededor del núcleo (más adelante,
A. Sommerfeld consideró órbitas eĺıpticas) donde la acción a lo largo de cada órbita es un
múltiplo entero de la constante de Planck h. Este es un caso de la llamada condición de
cuantización de Bohr-Sommerfeld :∮

p dq = nh con n ∈ N.

La integral es lo que define la acción. Sin entrar en detalles, en nuestro caso p es el momento
lineal mev y q es el espacio, de modo que

∮
p dq = mev · 2πr. En definitiva, la condición de

cuantización es simplemente el requerimiento de que

mevr = ℏn con n ∈ N.

Equivale a imponer que el módulo del momento angular del electrón en su órbita circular sea un
múltiplo entero de ℏ. Esta condición es un “apaño” sin explicación con la f́ısica de su tiempo,
pero con los antecedentes de la fórmula de Planck y del efecto fotoeléctrico. Al combinar (1)
con la condición de cuantización,

(3) r =
ℏ2n2

Kmee2
y

1

2
mev

2 =
meK

2e4

2ℏ2n2
.

La primera fórmula implica que las distancias al núcleo toman un conjunto discreto de valores.
La que corresponde a n = 1 se llama radio de Bohr y numéricamente es

rB =
ℏ2

Kmee2
≈ 5,29 · 10−11m

que concuerda con el tamaño estimado de un átomo de hidrógeno. La segunda fórmula es la
enerǵıa cinética del electrón e indica la enerǵıa de enlace, lo que nos costaŕıa desligar el electrón
del núcleo, por ello es natural asignar al sistema su negativo que denotaremos con En. Con
lo visto sobre el efecto fotoeléctrico, al pasar de un n2 a un n1 < n2 se emite enerǵıa que
corresponde a una frecuencia

ν =
En2 − En1

h
= Rc

( 1

n2
1

− 1

n2
2

)
con R =

meK
2e4

4πcℏ3
.

Esto concuerda, en el caso del hidrógeno, con los experimentos de Balmer y Rydberg y da una
expresión teórica para la constante R que explica su valor experimental.

Pasar de cualquier n2 > 1 a n1 = 1 libera enerǵıa, en otras palabras, E1 es mı́nimo. El
caso n = 1 en la condición de cuantización se dice que corresponde al estado fundamental del
átomo. El nombre es adecuado, pues, por razones que escapan al curso, los estados del átomo
de hidrógeno correspondientes a n > 1 decaen muy rápidamente al fundamental en condiciones
normales. Desde el punto de vista clásico, parece natural que se tienda a la mı́nima enerǵıa,
aunque justamente Bohr creó su modelo para violar las leyes clásicas que precipitaban el
electrón al núcleo.
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Ejercicios de la sección 1

Ejercicio 1. La constante α = e2/(2ϵ0hc) se llama constante de estructura fina y desempeña
un papel fundamental en f́ısica cuántica cuando se consideran efectos relativistas. Muestra que
es adimensional y calcula α−1 − 137 con dos decimales. Un f́ısico renombrado creyó en 1929
que α−1 ∈ N y todav́ıa hoy hay alguna numeroloǵıa marginal sobre α.

Ejercicio 2. Comprueba que Rch con R = meK
2e4/(4πcℏ3) y K = 1

4πϵ0
tiene unidades de

enerǵıa.

Ejercicio 3. Comprueba que en la ecuación ṙr2 + K = 0 con K = 4K2e4

3m2
ec

3 y K = 1
4πϵ0

las

dimensiones son coherentes.

Ejercicio 4. Resuelve la ecuación diferencial del ejercicio anterior, muestra que bajo r(0) =
R0 > 0 se sigue r(tc) = 0 para tc = 1

3K
−1R3

0 y calcula el valor numérico aproximado de tc
cuando R0 = 5 · 10−11. Según lo visto en la teoŕıa, tc aproxima el tiempo que tardaŕıa en
colapsar un átomo de hidrógeno según la electrodinámica clásica.

Ejercicio 5. Demuestra
∑∞

n=0 nr
n = r(1−r)−2 para |r| < 1 y escribe con detalle la deducción

de (2).

Ejercicio 6. Es bien conocido que
∑∞

n=1 n
−4 = π4/90. Por ejemplo, se deduce de la identidad

Parseval aplicada al desarrollo de Fourier de x2 − π2/3 en [−π, π]. Dando esto por supuesto,

demuestra
∫∞
0

x3 dx
ex−1 = π4

15 . Indicación: Expresa (ex − 1)−1 como la suma de una progresión
geométrica.

Ejercicio 7. Escribe los detalles en la deducción de la ley de Stefan-Boltzmann con un cambio
de variable.

Ejercicio 8. Comprueba que (3) se sigue al combinar la condición de cuantización con (1).

Ejercicio 9. Vamos a reproducir un cálculo que hizo Stefan para estimar la temperatura de
la superficie del Sol. La enerǵıa por unidad de tiempo y superficie que nos llega a la Tierra
desde el Sol es PT = 1367 J m−2 s−1. Explica por qué P en la superficie del Sol debeŕıa ser
P = 4πd2

4πR2PT donde d es la distancia de la Tierra al Sol y R es el radio del Sol. Busca estos dos
valores, sustituye en la ley de Stefan-Boltzmann y deduce la temperatura de la superficie del
Sol.

Ejercicio 10. La superficie de la Tierra es calentada por el Sol y para estar en equilibrio
térmico todo debeŕıa funcionar como si fuera su temperatura la que genera el calor que la
circunda. Con la notación del problema anterior, trata de justificar por qué es natural suponer
que la enerǵıa por unidad de área y de tiempo es πr2

4πr2
PT con r el radio de la Tierra. Suponien-

do en primera aproximación que se comporta como un cuerpo negro, deduce la temperatura
(media) en kelvin de su superficie con la ley de Stefan-Boltzmann. Indicación: Nota que PT solo
llega a la mitad de la Tierra en que es de d́ıa.
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