Hoja 2

Nota. En los dos primeros ejercicios se da por sabido que K^n , $\mathcal{M}_{m\times n}(K)$ y $\{f: X \longrightarrow K\} \text{ con } K = \mathbb{R}, \mathbb{C} \text{ son espacios vectoriales. Se denotan con } \mathbb{R}[x] \text{ y } \mathbb{C}[x] \text{ los}$ espacios vectoriales de polinomios reales y complejos, respectivamente, y con $\mathbb{R}_n[x]$ y $\mathbb{C}_n[x]$ los de grado a lo más n.

- 1) Indica cuáles de los siguientes conjuntos son espacios vectoriales sobre \mathbb{R} :
- a) $\{\vec{x} \in \mathbb{R}^3 : x_1 + 2x_2 = 0, x_2 + x_3 = 1\}.$
- b) $\{A \in \mathcal{M}_n(\mathbb{R}) : A^2 = A\}.$
- c) $\{A \in \mathcal{M}_n(\mathbb{C}) : A + A^t = O\}.$
- d) $\{f: \mathbb{R} \longrightarrow \mathbb{R} \text{ derivables tales que } f'(x) + (x+2025)f(x) = 0\}.$
- 2) Halla un elemento no nulo de cada uno de los siguientes conjuntos e indica cuáles son espacios vectoriales sobre \mathbb{C} :
 - a) $\{f: \mathbb{R} \longrightarrow \mathbb{C} \text{ con dos derivadas tales que } f'' + f = 0\}.$
 - b) $\{P \in \mathbb{C}[x] : P(x) = P(1+i-x)\}.$
 - c) $\{A \in \mathcal{M}_2(\mathbb{C}) : \overline{C}^t A C = 2I \text{ con } c_{11} = c_{21} = 1, \ c_{12} = -c_{22} = i\}.$ d) $\{A \in \mathcal{M}_2(\mathbb{C}) : CAC = O \text{ con } c_{11} = c_{12} = 1, \ c_{21} = c_{22} = i\}.$
- 3) Explica con detalle por qué $\{A \in \mathcal{M}_n(\mathbb{C}) : A = \overline{A}^t\}$ no es un espacio vectorial sobre \mathbb{C} , pero sí lo es sobre \mathbb{R} .
- 4) Halla una base de $V = \{\vec{x} \in \mathbb{C}^3 : x_1 + x_2 + 2ix_3 = 0\}$ y añade los vectores que sean necesarios para extenderla a una base de \mathbb{C}^3 .
 - 5) Calcula una base de

$$\left\{ \vec{x} \in \mathbb{R}^4 : \begin{array}{l} 2x_1 + x_2 + 2x_3 - 3x_4 = 0 \\ 4x_1 + 2x_2 + 7x_3 - 5x_4 = 0 \end{array} \right\}$$

de forma que sus vectores tengan coordenadas enteras.

- 6) Estudia si existe algún valor de a de forma que los vectores $(1, 1, a, -1)^t$, $(2, a, 1, 1)^t$ y $(4, 4, -1, 5)^t$ de \mathbb{R}^4 sean linealmente dependientes.
- 7) Calcula una base y la dimensión del subespacio de $\mathcal{M}_3(\mathbb{R})$ formado por las matrices simétricas cuya suma de columnas sea 0, el vector nulo. Recuerda que se llaman matrices simétricas a las que cumplen $A = A^t$.
- 8) Halla una base del subespacio (sobre \mathbb{C}) $V=\{P\in\mathbb{C}_3[x]:x+i \text{ divide a } P\}$ y calcula las coordenadas de $x^3+(1+3i)x^2+2(i-1)x-1$ en esa base.
- 9) Comprueba que $f_1(x) = \text{sen}(3x)$ y $f_2(x) = \cos(3x)$ pertenecen al espacio vectorial V sobre $\mathbb R$ formado por las funciones con dos derivadas que resuelven la ecuación del movimiento armónico simple f'' + 9f = 0. Considerando combinaciones lineales de f_1 y f_2 , halla una solución de

$$f'' + 9f = 0$$
 con $f(\frac{\pi}{4}) = 5$, $f'(\frac{\pi}{4}) = 9$.

- 10) El subespacio $\{A \in \mathcal{M}_2(\mathbb{C}) : A = \overline{A}^t, \ a_{11} + a_{22} = 0\}$ sobre \mathbb{R} aparece en física al estudiar el espín. Calcula su dimensión.
- 11) Halla bases del núcleo y de la imagen de la aplicación lineal $\mathbb{R}^4 \longrightarrow \mathbb{R}^3$ dada por

$$f(\vec{x}) = A\vec{x}$$
 con $A = \begin{pmatrix} 1 & 3 & -2 & 0 \\ 5 & 12 & -10 & 0 \\ 2 & 4 & -4 & 0 \end{pmatrix}$.

- 12) Decide si el endomorfismo $f: \mathbb{R}_3[x] \longrightarrow \mathbb{R}_3[x]$ definido por la fórmula $f(P) = P + (x^2 + 1)P'' + (5x + x^3)P'''$ es biyectivo. Halla P tal que $f(P) = 3 + x + 3x^2$.
- 13) Halla bases del núcleo y de la imagen de la aplicación lineal $F:\mathbb{R}^4\longrightarrow\mathbb{R}^3$ definida como

$$f(\vec{x}) = \begin{pmatrix} 2x_1 + x_2 + 2x_3 - 3x_4 \\ 4x_1 + 2x_2 + 7x_3 - 5x_4 \\ 6x_1 + 3x_2 + 9x_3 - 8x_4 \end{pmatrix}.$$

Explica por qué no es sobreyectiva y encuentra un vector de \mathbb{R}^3 que no esté en la imagen.

- **14)** Sea el subespacio $V \subset \mathbb{R}[x]$ cuya base es $\mathcal{B} = \{(x+1)^2, x^2+1\}$. Explica por qué la aplicación que envía P(x) a P(-x) es un endomorfismo biyectivo y halla su matriz y la de su inversa en la base \mathcal{B} .
 - 15) Estudia si la aplicación lineal $\mathcal{M}_2(\mathbb{R}) \longrightarrow \mathcal{M}_3(\mathbb{R})$ dada por

$$f(A) = B^t A B$$
 con $B = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 1 \end{pmatrix}$

es inyectiva o sobreyectiva.

16) Considera el endomorfismo de $\mathcal{M}_2(\mathbb{R})$ dado por

$$f(A) = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} A - A \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}.$$

Halla su matriz en alguna base (la que prefieras) y calcula la dimensión de su núcleo e imagen.

17) Halla la matriz del endomorfismo f(X) = TXT donde T es la matriz 2×2 con $t_{11} = 2$, $t_{12} = t_{21} = t_{22} = 1$, en el espacio V generado por la base

$$\mathcal{B}' = \{B_1', B_2', B_3'\} = \left\{ \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix} \right\}.$$

Para ello, ajusta los coeficientes a_{ij} en $f(B'_j) = a_{1j}B'_1 + a_{2j}B'_2 + a_{3j}B'_3$.

18) Dado el endomorfismo de $\mathcal{M}_2(\mathbb{R})$

$$f(A) = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} A + A^t \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$

calcula la dimensión de su imagen y decide a partir de ello si Im(f) coincide con el conjunto de todas las matrices simétricas reales 2×2 .

19) Supongamos que un endomorfismo de \mathbb{R}^2 tiene matriz

$$\begin{pmatrix} 1 & -1 \\ 0 & 2 \end{pmatrix} \quad \text{en la base } \{\vec{u}_1, \vec{u}_2\} \text{ donde } \vec{u}_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \text{ y } \vec{u}_2 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}.$$

Calcula su matriz en la base canónica.

20) Estudia si se obtiene una base de \mathbb{R}^4 o no al añadir los vectores $(1,1,1,1)^t$ y $(1,-2,3,1)^t$ a los de una base del subespacio

$$V = \{ \vec{x} \in \mathbb{R}^4 : 2x_1 + x_2 - 2x_3 - 8x_4 = x_1 + x_2 - 5x_4 = 0 \}.$$