Hoja 0

- 1) Sea $C=\{n\in\mathbb{N}:n>1\}$. Dado $n\in C$ explica por qué $\nexists\,a,b\in C:ab=n$ expresa que n es un número primo.
 - 2) Explica por qué $f(z) = (z \overline{z})^2$ define una función $f: \mathbb{C} \longrightarrow \mathbb{R}$.
 - 3) Indica si las siguientes ecuaciones tienen soluciones en \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} y \mathbb{C} :

$$\frac{2x-1}{3x+1} = \frac{9}{11}$$
, $\frac{x}{6} = 1 - \frac{1}{x-1}$, $x^3 - x^2 + x = 1$.

4) Efectúa las siguientes operaciones con números complejos simplificando el resultado al máximo:

$$(2-i)(8-i)(3+2i),$$
 $(1+i)^5,$ $\frac{4+7i}{3+2i}.$

- 5) Escribe $\{x \in \mathbb{R} : |x-1| < 2\} \cup \{x \in \mathbb{R} : |4-x| \le 3\}$ como un intervalo en \mathbb{R} .
- **6)** Sea C la matriz columna correspondiente al vector de \mathbb{R}^4 con todas sus coordenadas uno y sea $F=C^t$, es decir, el mismo vector considerado como matriz fila. Calcula FC y CF.
- 7) En la física del espín utilizada en MRI (la técnica de las máquinas que hacen las resonancias), tres matrices muy importantes son

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Comprueba que $\sigma_n^2 = I$ y que $\sigma_n \sigma_m$ coincide con trasponer y conjugar $\sigma_m \sigma_n$ para $n, m \in \{1, 2, 3\}$.

- 8) Con la notación del ejercicio anterior, comprueba que $\sigma_n \sigma_m \sigma_m \sigma_n = 2i\sigma_\ell$ siempre que (n, m, ℓ) sea una permutación circular de (1, 2, 3), es decir, $(n, m, \ell) \in \{(1, 2, 3), (2, 3, 1), (3, 1, 2)\}.$
 - 9) Encuentra dos matrices no diagonales cuyo producto sea una matriz diagonal.
 - 10) Considera el conjunto de matrices

$$C = \left\{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} : a, b \in \mathbb{R} \right\}.$$

Verifica que sus elementos conmutan, es decir, que $\forall X, Y \in \mathcal{C}$ se cumple XY = YX.