12) Decide si el endomorfismo $f: \mathbb{R}_3[x] \longrightarrow \mathbb{R}_3[x]$ definido por la fórmula $f(P) = P + (x^2 + 1)P'' + (5x + x^3)P'''$ es biyectivo. Halla P tal que $f(P) = 3 + x + 3x^2$.

Tomamos $\mathcal{B} = \{1, x, x^2, x^3\}$, que es la base más sencilla de $\mathbb{R}_3[x]$. Evaluamos f en cada uno de sus elementos y hallamos las coordenadas del resultado, que con la base \mathcal{B} se reducen a los coeficientes escritos de menor a mayor grado:

$$f(1) = 1$$
 coordenadas: 1, 0, 0, 0
 $f(x) = x$ coordenadas: 0, 1, 0, 0
 $f(x^2) = 2 + 3x^2$ coordenadas: 2, 0, 3, 0
 $f(x^3) = 36x + 13x^3$ coordenadas: 0, 36, 0, 13

Colocando las coordenadas ordenadamente en columna, obtenemos que la matriz del endomorfismo es

$$A = \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 36 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 13 \end{pmatrix}.$$

Ya está en forma escalonada. Como $\operatorname{rg}(A) = 4$ se sigue $\dim \operatorname{Im}(f) = 4$ y $\dim \operatorname{Ker}(f) = \dim \mathbb{R}_3[x] - 4 = 0$. Por tanto, $\operatorname{Im}(f) = \mathbb{R}_3[x]$ (ya que es subespacio y las dimensiones coinciden) y $\operatorname{Ker}(f) = \{0\}$. Así pues, es sobreyectiva y inyectiva, equivalentemente, es biyectiva.

El polinomio $3 + x + 3x^2$ tiene como coordenadas (escritas en columna) $\vec{b} = (3,1,3,0)^t$. Para hallar una preimagen resolvemos $A\vec{x} = \vec{b}$. Este sistema es casi trivial y tiene como solución $\vec{x} = (1,1,1,0)^t$. El polinomio buscado es el que tiene estas coordenadas en la base \mathcal{B} , esto es, $1 + x + x^2$.