PROGRAMA

Tema 0. Lógica elemental.

- Proposiciones. Tablas de verdad. Predicados. Cuantificadores.
- Métodos de demostración.

Bloque I. Teoría de Conjuntos

Tema 1. Conjuntos y funciones.

- Formas de especificar un conjunto.
- Igualdad de conjuntos. Relación de inclusión.
- Operaciones con conjuntos (unión, intersección, complementario y partes de un conjunto).
- Producto cartesiano de dos conjuntos.
- Funciones. Imagen y dominio. Funciones inyectivas, sobreyectivas, biyectivas.
- Composición de funciones. Inversa de una función.

Tema 2. Relaciones de equivalencia.

- Relaciones.
- Definición y ejemplos de relaciones de equivalencia.
- Particiones de un conjunto.
- Clases de equivalencia. Conjunto cociente.

Bloque II. Teoría de Números elemental

Tema 3. Aritmética de enteros.

- Números enteros. Divisibilidad. Teorema de la división.
- Máximo común divisor y mínimo común múltiplo.
- Algoritmo de Euclides e Identidad de Bézout.
- Ecuación diofántica lineal.
- \blacksquare Números primos. Teorema de Euclides. Teorema Fundamental de la Aritmética.

Tema 4. Congruencias.

- \blacksquare Congruencias módulo n.
- Ecuación diofántica lineal en congruencias.
- \blacksquare Pequeño Teorema de Fermat.
- \bullet Función φ de Euler. Teorema de Euler.

Bloque III. Álgebra lineal

Tema 5. Matrices y determinantes.

- Operaciones básicas con matrices.
- Escalonamiento de matrices: Método de Gauss-Jordan.
- Determinantes: Definición y propiedades.

Tema 6. Sistemas de ecuaciones lineales.

- Expresión matricial de sistemas de ecuaciones lineales.
- Discusión y resolución de sistemas de ecuaciones lineales. Teorema de Rouché-Frobenius.
- Regla de Cramer.

Tema 7. Espacios vectoriales.

- \blacksquare \mathbb{R}^n como espacio vectorial
. Vectores. Subespacios vectoriales.
- Dependencia e independencia lineal. Bases, dimensión y coordenadas.
- Suma e intersección de subespacios. Fórmula de Grassmann.
- Aplicaciones lineales.

Tema 8. Diagonalización.

- Valores propios. Vectores propios.
- lacktriangle Producto escalar. Descomposición de \mathbb{R}^n como suma directa de espacios propios de una matriz simétrica real.
- Diagonalización de matrices reales simétricas.