Grado en Ingeniería Informática Curso 2025–26

Congruencias

- 1. Demuestra que $n(n^2-1)(n^2-2)(n^2+3)/7$ es entero para todo $n \in \mathbb{Z}$.
- 2. En un reloj de manillas (de 12 horas), ¿qué hora es 11¹¹ horas después de las 11?
- 3. Caracteriza los $n \in \mathbb{Z}$ tales que $n^3 + 2n + 3$ es divisible por 5.
- 4. Dado $n \in \mathbb{N}$ sea c_0 la cifra de las unidades, c_1 la de las decenas, c_2 la de las centenas, etc. Explica por qué n y $c_0 c_1 + c_2 c_3 + \dots$ dejan el mismo resto al ser divididos por 11.
- 5. Demuestra que si un múltiplo de 27 tiene 6 cifras, al intercambiar las tres primeras y las tres últimas, sigue siendo múltiplo de 27. Indicación: $1000 \equiv 1 \pmod{27}$.
- 6. Sea $p \in \mathbb{N}$ un número primo y $k \in \mathbb{N}$ tal que $k \leq p-1$. Demuestra que p divide al número combinatorio $\binom{p}{k} := \frac{p!}{k!(p-k)!}$ y concluye $a^p + b^p \equiv (a+b)^p \pmod{p}$ para todo $a, b \in \mathbb{Z}$. Busca un contraejemplo a esta congruencia para algún p que no sea primo.
- 7. Demuestra que 2025 divide a $1^{101} + 2^{101} + \dots + 2023^{101} + 2024^{101} + 2025^{101}$. Indicación: ¿Con qué es congruente $k^{101} + (2025 k)^{101}$ módulo 2025?
- 8. Comprueba que todos los elementos de \mathbb{Z}_{24}^* coinciden con su propio inverso.
- 9. Determina los inversos de $\overline{13}$ y de $\overline{-15}$ en \mathbb{Z}_{23} . Determinalos también en \mathbb{Z}_{31} .
- 10. Para m=7 y m=10 determina \mathbb{Z}_m^* e indica cuál es el inverso de cada uno de sus elementos.
- 11. Si p > 2 es primo, halla una fórmula para el inverso de $\overline{2}$ en \mathbb{Z}_p .
- 12. Halla todas las soluciones de las ecuaciones siguientes o indica por qué no existe solución.
 - a) $\overline{13x} = \overline{2}$ en \mathbb{Z}_{23} , b) $\overline{16x} = \overline{7}$ en \mathbb{Z}_{100} , c) $6x \equiv -10 \pmod{26}$, d) $15x \equiv 10 \pmod{20}$.
- 13. Para m=101y 9630 determina el cardinal de $\mathbb{Z}_m^*.$
- 14. ¿Qué día de la semana es 3^{2025} días después del lunes?
- 15. Calcula 15^{2098} (mód 14).
- 16. Calcula el resto de dividir 6^{234} entre 13.
- 17. Determina si $15002^{8003} + 11^8$ es divisible por 15.
- 18. Demuestra que el entero $5^{31} 5$ es múltiplo de 7.
- 19. Demuestra que el entero $13^{232} 15$ es múltiplo de 11.
- 20. Demuestra que 14 divide a $3^{611} 5^{25}$.