Conjuntos y funciones

1. Los siguientes conjuntos están descritos implícitamente (por comprensión). Descríbelos explícitamente (por extensión):

a) $\{x \in \mathbb{R} : x^2 - 5x + 6 = 0\}$

b) $\{x \in \mathbb{Z} : x^2 - 5x + 6 = 0\}$

c) $\{x \in \mathbb{N} : \exists y \in \mathbb{N} \text{ tal que } y < 5 \text{ y } x = y^2\}$ d) $\{x \in \mathbb{N} : x < 3\}$

 $e) \ \{x \in \mathbb{N} \ : \ \nexists y \in \mathbb{N} \ \text{tal que} \ y + 5 < x\} \qquad \qquad f) \ \{x \in \mathbb{R} \ : \ x^2 + 2 = 0\}.$

2. Sean $S = \{a, b, c, d\}$, $T = \{1, 2, 3\}$ y $U = \{b, 2\}$. ¿Cuáles de las siguientes expresiones son correctas?

 $\{a\} \in S$

(2) $a \in S$

 $(3) \quad \{a,c\} \subset S$

 $(4) \quad \varnothing \in S$

(5) $\{a\} \subset \mathcal{P}(S)$ (6) $\{\{a\}, \{a, b\}\} \in \mathcal{P}(S)$

 $(7) \quad \{a,c,2,3\} \subset S \cup T \quad \ \ (8) \quad \ U \subset S \cup T \qquad (9) \quad \ b \in S \cap U$

 $(10) \quad \{b\} \subset S \cap U \qquad (11) \quad \{1,3\} \in T$

(12) $\{1,3\} \subset T$

 $(13) \quad \{1,3\} \in \mathcal{P}(T) \qquad \qquad (14) \quad \{\varnothing\} \in \mathcal{P}(S) \qquad (15) \quad \varnothing \in \mathcal{P}(S)$

 $(16) \quad \varnothing \subset \mathcal{P}(S)$

 $(17) \quad \{\emptyset\} \subset \mathcal{P}(S).$

3. Sean $S = \{1, 2, 3, 4, 5\}, T = \{3, 4, 5, 7, 8, 9\}, U = \{1, 2, 3, 4, 9\}, V = \{2, 4, 6, 8\}$ subconjuntos del conjunto N (de números naturales). Calcular:

(a) $S \cap U$

(b) $(S \cap T) \cup U$

(c) $(S \cup U) \cap V$ (d) $(S \cup V) \setminus U$ (e) $(U \cup V \cup T) \setminus S$

(f) $(S \cup V) \setminus (T \cap U)$.

4. Demuestra las siguientes igualdades.

(a) $(A \cup B)^c = A^c \cap B^c$ (b) $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$

(c) $(A \cup B) \cap A = A$ (d) $(A \cap B) \cup A = A$

- 5. Calcula el conjunto de partes del conjunto vacío, es decir, calcula $\mathcal{P}(\varnothing)$.
- 6. Probar las siguientes afirmaciones o dar un contraejemplo:

(1) $\mathcal{P}(A \cup B) = \mathcal{P}(A) \cup \mathcal{P}(B)$ (2) $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$

- 7. Indica cuáles son los elementos del conjunto $S \times (V \setminus S)$ para $S \times V$ como en el ejercicio 3.
- 8. Comparar los siguientes conjuntos, siendo $S = \{a, b\}, T = \{a\}, V = \{1, 2\}$ y $U = \{1\}$:

(a) $(S \times V) \setminus (T \times U)$ (b) $(S \setminus T) \times (V \setminus U)$.

9. Decir si es verdadero o falso que para cualesquiera conjuntos A, B y C,

(i) $A \setminus (B \cup C) = (A \setminus B) \cup (A \setminus C)$ (ii) $|A \cup B| = |A \setminus B| + |B \setminus A| + |A \cap B|$

(iii) $A \times (B \triangle C) = (A \times B) \triangle (A \times C)$ (iv) $\mathcal{P}(A \setminus B) = \mathcal{P}(A) \setminus \mathcal{P}(B)$

(v) $A \subset B \iff \mathcal{P}(A) \subset \mathcal{P}(B)$

(vi) $A \setminus B = A \setminus C \Longrightarrow B = C.$

Donde A y B son conjuntos finitos en el apartado ii).

- 10. ¿Cuáles de las siguientes funciones son inyectivas?, ¿cuáles suprayectivas?, ¿hay alguna biyectiva? Empieza asegurándote de que efectivamente son funciones.
 - (i) $f: \mathbb{N} \to \mathbb{N}$ f(m) = m+2 (ii) $g: \mathbb{N} \to \mathbb{N}$ g(n) = n(n+1)
 - (iii) $f: \mathbb{R} \to \mathbb{R}$ $f(x) = \sqrt{x^2 + 1}$ (iv) $f: \mathbb{Q} \to \mathbb{Q}$ $f(x) = x^2 + 4x$
 - $(v) g: \mathbb{N} \to \mathbb{Q} g(n) = n/(n+1) \quad (vi) g: \mathbb{Z} \to \mathbb{N} g(n) = n^2.$
- 11. Se consideran las siguientes funciones:
 - i) $f: \mathbb{R} \longrightarrow \mathbb{R}$, $f(x) = x^3 + 1$.
 - ii) $f: \mathbb{Z} \longrightarrow \mathbb{Z}, \quad f(n) = 2n + 4,$
 - iii) $f: \mathbb{O} \longrightarrow \mathbb{O}$, f(x) = 2x + 4.

Halla la imagen: Im(f) y $f^{-1}(\{0\})$ en cada uno de los casos.

- 12. Sea $a \in \mathbb{R}$ no nulo. Comprobar que $f : \mathbb{R} \setminus \{a\} \longrightarrow \mathbb{R} \setminus \{a\}$, dada por $f(x) = \frac{ax}{x-a}$ es biyectiva y calcular su inversa.
- 13. Decidir si las siguientes funciones $f, g: \mathbb{Z} \longrightarrow \mathbb{Z}$ son inyectivas, suprayectivas o biyectivas

$$f(n) = \left\{ \begin{array}{ll} n+1 & \text{si } n \text{ es par,} \\ 2n & \text{si } n \text{ es impar} \end{array} \right. \quad \text{y} \quad g(n) = \left\{ \begin{array}{ll} n/2 & \text{si } n \text{ es par,} \\ n+1 & \text{si } n \text{ es impar.} \end{array} \right.$$

14. Sea $f: \mathbb{R} \to \mathbb{R}$ dada por

$$f(x) = \begin{cases} x^3 & \text{si } x < 0, \\ x - 27 & \text{si } x \ge 0. \end{cases}$$

Comprobar si f es inyectiva y/o sobreyectiva. Calcular $f \circ f$.

- 15. Da ejemplos de funciones $f: \mathbb{N} \to \mathbb{N}$ de cada uno de los siguientes tipos:
 - a) Inyectiva pero no suprayectiva.
 - b) Suprayectiva pero no inyectiva.
 - c) Biyectiva.
 - d) Ni inyectiva ni suprayectiva.
- 16. Si $f: \mathcal{U} \longrightarrow \mathcal{U}$ y $A, B \subset \mathcal{U}$, decir si son verdaderas o falsas las fórmulas

$$i) f(A) \cap f(B) = f(A \cap B)$$

$$i) \ f(A) \cap f(B) = f(A \cap B)$$
 $ii) \ f^{-1}(A) \cap f^{-1}(B) = f^{-1}(A \cap B)$

iii)
$$f^{-1}(f(A)) = A$$

$$iii) f^{-1}(f(A)) = A$$
 $iv) f^{-1}(A^c) = (f^{-1}(A))^c$.

- 17. Sea $f: \mathbb{R} \longrightarrow \mathbb{R}$ la función $f(x) = x^3 3x$. Calcular las siguientes imágenes e imágenes inversas de intervalos: f((0,2)), f([-1,3)), $f^{-1}((0,\infty))$ y $f^{-1}((-\infty,-2])$.
- 18. Si $f:A\longrightarrow B$ y $g:B\longrightarrow C$ son biyectivas, demostrar que $g\circ f$ también lo es y que

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}.$$

- 19. Indica cuántas funciones biyectivas se pueden definir del conjunto $\{a, b, c\}$ en sí mismo.
- 20. Sea A finito con |A| = n. Indica cuántas funciones biyectivas se pueden definir de A en A.