Lógica elemental

- 1. Sean P, Q y R proposiciones. Construye las tablas de verdad de las siguientes proposiciones:
 - $a) \neg P$.
 - b) $P \vee Q$.
 - c) $P \wedge Q$.
 - $d) \neg (\neg P).$
 - $e) P \vee P.$
 - $f) P \wedge P$.
 - $g) P \Longrightarrow Q.$
 - $h) \neg Q \Longrightarrow \neg P.$
 - $i) P \iff Q.$
 - $j) \ (P \Longrightarrow Q) \land (Q \Longrightarrow P).$
 - $k) \neg P \lor Q.$
 - $l) \neg (P \lor Q).$
 - $m) \neg P \wedge \neg Q$.
 - $n) \neg (P \wedge Q).$
 - \tilde{n}) $\neg P \lor \neg Q$.
 - o) $(P \vee Q) \vee R$.
 - $p) P \vee (Q \vee R).$
 - $q) P \vee (Q \wedge R).$
 - $r) (P \vee Q) \wedge (P \vee R).$
- 2. Demuestra que los pares siguientes (correspondientes al ejercicio anterior) son equivalentes:
 - g) y h)
 - i) y j)
 - 1) y m)
 - n) y ñ)
 - o) y p)
 - **q**) y r)
- 3. Escribir con cuantificadores la negación de las siguientes proposiciones:
 - $\exists x \in A \text{ tal que } P(x).$
 - $\blacksquare \ \forall x \in A \text{ se cumple } P(x).$
 - $\blacksquare \exists x \in A, \exists y \in B \text{ tal que } R(x,y).$
 - $\forall x \in A, \forall y \in B \text{ se cumple } R(x, y).$
 - $\exists x \in A \text{ tal que } \forall y \in B \text{ se cumple } R(x,y).$
 - $\forall y \in B$ se cumple que $\exists x \in A$ tal que R(x,y).