Inicial primer apellido

Algebra, examen parcial 2.

1º DEL GRADO EN INGENIERÍA INFORMÁTICA, CURSO 2025-2026

7 de noviembre de 2025

Apellidos y Nombre _

D.N.I. _

Enunciados con soluciones

Problema 1. Sean $P(n) = 601n^3 + 4n^2 + n - 2$ y $Q(n) = n^2 - n - 2$ con $n \in \mathbb{Z}$.

■ [2 puntos] Demuestra que al dividir P(n) y Q(n) por 6 se obtiene en ambos casos el mismo resto, cualquiera que sea n.

Solución. Con la notación de las congruencias, debemos probar $P(n) \equiv Q(n) \pmod{6}$, esto es, $R(n) \equiv 0 \pmod{6}$ con R(n) = P(n) - Q(n). Se tiene, reduciendo lo coeficientes módulo 6,

$$R(n) = 601n^3 + 3n^2 + 2n \equiv n^3 + 3n^2 + 2n = n(n+1)(n+2).$$

Un razonamiento elemental es que como n, n+1 y n+2 son tres números consecutivos, alguno será par y alguno será múltiplo de tres, por tanto, el producto es divisible por 6. La alternativa, quizá más usual, es comprobar todas las clases de \mathbb{Z}_6 . Claramente $R(\overline{n}) = \overline{0}$ para $\overline{n} \in \{\overline{0}, \overline{5}, \overline{4}\}$, porque anulan cada uno de los factores. Por otro lado, $R(\overline{1}) = \overline{6} = \overline{0}$, $R(\overline{2}) = \overline{24} = \overline{0}$ y $R(\overline{3}) = \overline{60} = \overline{0}$.

• [1.5 puntos] Caracteriza de forma sencilla todos los valores de n tales que P(n) es divisible por 5.

Solución. Se tiene $P(n) \equiv n^3 - n^2 + n - 2 \pmod{5}$. Sustituyendo todas las clases en \mathbb{Z}_5 , se sigue $P(\overline{0}) = \overline{-2} \neq \overline{0}, \quad P(\overline{1}) = \overline{-1} \neq \overline{0}, \quad P(\overline{2}) = \overline{4} \neq \overline{0}, \quad P(\overline{3}) = P(\overline{-2}) = \overline{-16} \neq \overline{0}, \quad P(\overline{4}) = P(\overline{-1}) = \overline{-5} = \overline{0}.$ Así pues, $P(n) \equiv 0 \pmod{5}$ si y solo si $n \in \overline{4}$, en otras palabras, si y solo si es de la forma 5k+4 con $k \in \mathbb{Z}$.

Problema 2. [3.5 puntos] Calcula todas las soluciones enteras de 31x+23y=80. Existe alguna con $x,y \in \mathbb{N}$?

Solución. Efectuando el algoritmo de Euclides y la tabla, obtenemos una solución de la identidad de Bezout $ax_0+by_0=d$. En nuestro caso, a=31, b=23 y se tiene d=1:

Preservamos el signo porque el número de pasos es par. En definitiva $(x_0,y_0)=(3,-4)$ satisface $31x_0+23y_0=1$. Ahora aplicamos la fórmula para resolver la ecuación diofántica ax+by=c:

$$x=\frac{cx_0+bt}{d}=240+23t,\quad y=\frac{cy_0-at}{d}=-320-31t\qquad \text{con}\quad t\in\mathbb{Z}.$$
 Estas son todas las soluciones enteras de la ecuación.

Para que y>0 se tiene que cumplir $t \le -11$, porque (-31)(-10) < 320, y en ese caso x<0 porque $23 \cdot 11 > 240$. Por consiguiente, es imposible conseguir $x,y \in \mathbb{N}$ y no hay soluciones naturales.

Problema 3. Decidir razonadamente si los siguientes enunciados son verdaderos o falsos:

■ [1 punto] Si $a,b \in \mathbb{N}$ con mcd(a,b) = mcm(a,b), entonces a = b.

Solución. Es verdadero. Supongamos $a \neq b$ y sea $c = \min(a,b)$, el menor de los dos. Como $\operatorname{mcd}(a,b)$ es divisor de ambos, $\operatorname{mcd}(a,b) \leq c$ y como $\operatorname{mcm}(a,b)$ es múltiplo de ambos, debe ser al menos del tamaño del mayor, por tanto, $\operatorname{mcd}(a,b) \leq c < \operatorname{mcm}(a,b)$, lo que contradice la hipótesis mcd(a,b) = mcm(a,b).

■ [1 punto] Para todo p primo y $m,n \in \mathbb{N}$ con $m > n \ge 2$, $|\mathbb{Z}_{p^m}^*| > |\mathbb{Z}_{p^n}^*|$.

Solución. Es verdadero. Sabemos que $|\mathbb{Z}_{\ell}^*| = \varphi(\ell)$ y $\varphi(p^k) = p^k - p^{k-1}$ para p primo. Entonces hay que comprobar $p^m - p^{m-1} > p^n - p^{n-1}$. Esto equivale a $p^m (1-p^{-1}) > p^n (1-p^{-1})$, lo cual es cierto porque m > n.

■ [1 punto] Para todo p primo y $m \in \mathbb{N}$, el número $m^{2p} - m^{p+1} + m^p - m$ es múltiplo de p.

Solución. Es verdadero. El pequeño teorema de Fermat implica $m^p \equiv m \pmod{p}$, sin restricciones sobre m. Por tanto, $m^{2p} \equiv m^2 \pmod{p}$ y $m^{p+1} = m^p \cdot m \equiv m^2 \pmod{p}$. Al combinar estas tres congruencias se sigue que la cantidad del enunciado es congruente con cero módulo p.