Inicial primer apellido		
Inicial printer apendo		

Álgebra, examen parcial 1.

1º DEL GRADO EN INGENIERÍA INFORMÁTICA, CURSO 2025-2026

10 de octubre de 2025

Apellidos y Nombre _____

D.N.I. _____

Instrucciones: Justifique todas las respuestas. Las respuestas no claras o poco justificadas no recibirán crédito. Escriba con letra clara y legible.

Problema 1.

- [2 puntos] Decide razonadamente si para todo $A,B \subset \mathbb{Z}$ y toda $f:\mathbb{Z} \longrightarrow \mathbb{Z}$ se cumple $f(A \cap B) = f(A) \cap f(B)$.
- [1.5 puntos] Dado el conjunto $C = \{1, \{2, \{1\}\}\}$, halla el conjunto de partes de C.

Problema 2. Encuentra f y g con las siguientes propiedades, justificando tu respuesta:

- [1 punto] $f: \mathbb{Z} \longrightarrow \mathbb{N}$ ni invectiva ni sobrevectiva.
- [2 puntos] $g: \mathbb{Z} \longrightarrow \mathbb{N}$ biyectiva.

Problema 3. Se definen las relaciones \mathcal{R}_1 y \mathcal{R}_2 en el conjunto de los números reales no nulos $X = \mathbb{R} \setminus \{0\}$ de forma que para todos $x,y \in X$

$$x\mathcal{R}_1y \Longleftrightarrow x-y \in \mathbb{Z}$$
 y $x\mathcal{R}_2y \Longleftrightarrow x/y \in \mathbb{Z}$.

- [2 puntos] Estudia si son relaciones de equivalencia.
- [1.5 puntos] Halla [1] = Ī (la clase del 1) para aquella o aquellas que sean de equivalencia

Soluciones:

Problema 1.

■ [2 puntos] Decide razonadamente si para todo $A,B \subset \mathbb{Z}$ y toda $f:\mathbb{Z} \longrightarrow \mathbb{Z}$ se cumple $f(A \cap B) = f(A) \cap f(B)$. Solución: Es falso. Por ejemplo, sea $f:\mathbb{Z} \to \mathbb{Z}$, f(n) = 0 para todo $n \in \mathbb{Z}$, $A = \{1\}, B = \{2\}$. Entonces

$$A \cap B = \emptyset$$
, $f(A \cap B) = f(\emptyset) = \emptyset$, $f(A) = f(B) = 0$, $f(A) \cap f(B) = \{0\}$.

■ [1.5 puntos] Dado el conjunto $C = \{1, \{2, \{1\}\}\}\$, halla el conjunto de partes de C.

Solución: Los elementos del conjunto C son 1 y $\{2,\{1\}\}$. Los subconjuntos de C son

$$\emptyset$$
, $\{1\}$, $\{\{2,\{1\}\}\}\}$, $\{1,\{2,\{1\}\}\}\}$.

En definitiva,

$$\mathcal{P}(C) = \Big\{ \varnothing, \quad \{1\}, \quad \{\{2,\{1\}\}\}, \quad \big\{1,\{2,\{1\}\}\big\} \Big\}.$$

Problema 2. Encuentra f y g con las siguientes propiedades, justificando tu respuesta:

■ [1 punto] $f: \mathbb{Z} \longrightarrow \mathbb{N}$ ni inyectiva ni sobrevectiva.

Solución: La función constante f(n)=1 para todo $n \in \mathbb{Z}$, no es inyectiva, porque f(1)=f(2)=1 y $1 \neq 2$, y tampoco es sobreyectiva porque $2 \in \mathbb{N}$ no está en la imagen de f, que es solo el 1.

■ [2 puntos] $g: \mathbb{Z} \longrightarrow \mathbb{N}$ biyectiva.

Solución: Hay varias formas de construir funciones así. Por ejemplo,

$$0 \to 1$$
, $(-1) \to 2$, $1 \to 3$, $(-2) \to 4$, $2 \to 5$, $(-3) \to 6$, $3 \to 7$,...

o más preciso,

$$f(n) = 2n+1$$
, si $n \ge 0$,

mientras que

$$f(n) = -2n$$
, si $n < 0$.

Problema 3. Se definen las relaciones \mathcal{R}_1 y \mathcal{R}_2 en el conjunto de los números reales no nulos $X = \mathbb{R} \setminus \{0\}$ de forma que para todos $x,y \in X$

$$x\mathcal{R}_1y \Longleftrightarrow x-y \in \mathbb{Z}$$
 y $x\mathcal{R}_2y \Longleftrightarrow x/y \in \mathbb{Z}$.

• [2 puntos] Estudia si son relaciones de equivalencia.

Solución:

- \mathcal{R}_1 es una relación de equivalencia:
 - ∘ Reflexiva: $x\mathcal{R}_1x$ para todo $x \in X$ porque $x-x=0 \in \mathbb{Z}$.
 - o Simétrica: Si $x\mathcal{R}_1y$, entonces $x-y=k\in\mathbb{Z}$; pero $y-x=(-k)\in\mathbb{Z}$, así que $y\mathcal{R}_2x$.
 - ∘ Transitiva: Si $\mathcal{R}_1 y$, $y \mathcal{R}_1 z$, se tiene que $x y = k \in \mathbb{Z}$, and $y z = \ell \in \mathbb{Z}$. Pero entonces $x z = (x y) + (y z) = k + \ell \in \mathbb{Z}$, así que $x \mathcal{R}_1 z$.
- \mathcal{R}_2 no es una relación de equivalencia, ya que no cumple la propiedad simétrica: $2\mathcal{R}_21$ porque $2/1=2\in\mathbb{Z}$, pero $1\mathcal{R}_22$, ya que $1/2\notin\mathbb{Z}$.
- [1.5 puntos] Halla $[1] = \overline{1}$ (la clase del 1) para aquella o aquellas que sean de equivalencia

Solución: [1] es el conjunto

$$[1] = \{x \in X : x \in X$$