Matemáticas

Hoja 3: Subespacios vectoriales. Intersección y suma.

1. Para las siguientes parejas V, W, formadas por un espacio vectorial V y un subconjunto $W \subset V$, dí razonadamente si W es o no es subespacio vectorial de V.

```
\begin{split} V &= \mathbb{R}^2 \;,\; W = \left\{ \mathbf{x} \;:\; x_2 = 2x_1 \right\} \;. \\ V &= \mathbb{R}^2 \;,\; W = \left\{ \mathbf{x} \;:\; x_2 = x_1^2 \right\} \;. \\ V &= \mathbb{R}^3 \;,\; W = \left\{ \mathbf{x} \;:\; x_2 = 0 \right\} \;. \\ V &= \mathbb{R}^3 \;,\; W = \left\{ \mathbf{x} \;:\; x_1 x_2 = 0 \right\} \;. \\ V &= \mathbb{R}^2 \;,\; W = \left\{ \mathbf{x} \;:\; x_2 > 0 \right\} \;. \\ V &= \mathrm{M}_n(\mathbb{K}) \;,\; W = \left\{ A \in V \;:\; A \;\; \text{es simétrica} \right\} \;. \\ V &= \mathrm{M}_n(\mathbb{K}) \;,\; W = \left\{ A \in V \;:\; A \;\; \text{es invertible} \right\} \;. \\ V &= \mathrm{M}_{n \times 2}(\mathbb{R}) \;,\; W = \left\{ A \in V \;:\; A \;\; \left( \begin{array}{c} 3 \\ -2 \end{array} \right) = \mathbf{0}_{n \times 1} \right\} \;. \\ V &= \left\{ \text{funciones} \; f : \mathbb{R} \to \mathbb{R} \right\} \;,\; W = \left\{ f \;:\; f \;\; \text{es creciente} \right\} \;. \\ V &= \left\{ \text{funciones} \; f : \mathbb{R} \to \mathbb{R} \right\} \;,\; W = \left\{ f \;:\; f''(x) \;\; \text{existe} \; y \;\; f''(x) \equiv x f(x) \right\} \;. \\ V &= \mathbb{R}[x] \;,\; W &= \left\{ p(x) \;:\; p(x) \;\; \text{es divisible por} \; x - 2 \right\} \;. \\ V &= \mathbb{R}[x] \;,\; W &= \left\{ p(x) \;:\; p(0) = 2 \right\} \;. \end{split}
```

- **2.** (a). Sean V un espacio vectorial sobre \mathbb{K} y $W\subseteq V$ un subconjunto no vacío de V. Demuestra que las tres condiciones siguientes son equivalentes:
 - 1. W es un subespacio vectorial de V.
 - 2. Para cualesquiera $\alpha, \beta \in \mathbb{K}$ y cualesquiera $u, v \in W$, se tiene que $\alpha u + \beta v \in W$.
 - 3. Para cualesquiera $\alpha_1, \ldots, \alpha_s \in \mathbb{K}$ y cualesquiera $v_1, \ldots, v_s \in W$, se tiene que $\alpha_1 v_1 + \cdots + \alpha_s v_s \in W$.
- (b). Si V es un espacio vectorial sobre \mathbb{K} y $\{W_i\}_{i\in I}$ es una colección de subespacios vectoriales de V, demuestra que $W = \bigcap_{i\in I} W_i$ es de nuevo un subespacio vectorial de V (no olvides demostrar que $W \neq \emptyset$).
- 3. Sea W el subespacio de \mathbb{R}^4 generado por (1,2,-5,3) y (2,-1,4,7). Se pide
 - (a) Determina si el vector (0,0,-37,-3) pertenece a W o no.
 - (b) Determina para qué valores de α y β el vector $(\alpha, \beta, -37, -3)$ pertenece a W.
- 4. Queremos decidir, razonadamente, si los siguientes subespacios vectoriales de \mathbb{R}^4 son iguales o no:

$$\left\langle \begin{bmatrix} 0\\1\\2\\-1 \end{bmatrix}, \begin{bmatrix} 1\\-2\\1\\0 \end{bmatrix} \right\rangle \quad \text{y} \quad \left\langle \begin{bmatrix} 1\\-1\\3\\-1 \end{bmatrix}, \begin{bmatrix} -1\\4\\3\\\lambda \end{bmatrix} \right\rangle.$$

Hazlo primero para $\lambda = 2$ y luego para $\lambda = -2$.

- 5. Demuestra que si V es un subespacio vectorial de \mathbb{R}^3 entonces se da una de las siguientes posibilidades:
 - (a) $V = \{0\},\$
 - (b) V es una recta que pasa por el origen,
 - (c) V es un plano que pasa por el origen,
 - (d) $V = \mathbb{R}^3$.

- **6.** Fijamos un entero positivo n y un cuerpo \mathbb{K} . Sea $\mathbb{M}_1 \subset \mathbb{M}_{n \times n}(\mathbb{K})$ el conjunto de las matrices **simétricas** (las que cumplen $A^t = A$) y $\mathbb{M}_2 \subset \mathbb{M}_{n \times n}(\mathbb{K})$ el de las **antisimétricas** (las que cumplen $A^t + A = 0$).
- a) Demuestra que M_1 y M_2 son subespacios vectoriales de M.
- b) Para $\mathbb{K} = \mathbb{Q}, \mathbb{R}, \mathbb{C}$, demuestra que $\mathbb{M}_{n \times n}(\mathbb{K}) = \mathbb{M}_1 \oplus \mathbb{M}_2$. (Puede ayudar hacerlo primero para n = 2 y luego para n = 3).
- c) Para $\mathbb{K} = \mathbb{Q}, \mathbb{R}, \mathbb{C}$, halla $d_1 = \dim \mathbb{M}_1$, $d_2 = \dim \mathbb{M}_2$, y comprueba que $d_1 + d_2 = \dim \mathbb{M}_{n \times n}(\mathbb{K})$.
- d) Para $\mathbb{K} = \mathbb{F}_2$, el cuerpo de dos elementos, comprueba que ahora la suma $\mathbb{M}_1 + \mathbb{M}_2$ no es directa ni es igual a $\mathbb{M}_{n \times n}(\mathbb{F}_2)$. ¿Cuáles son las causas?
- 7. Consideramos el espacio vectorial $V = \mathbb{R}[x]_{\leq 3}$ de los polinomios reales de grado a lo más 3.
 - (a) ¿Cuál es la dimensión de V?
 - (b) Halla un complementario, generado por monomios x^k , del siguiente subespacio vectorial de V:

$$W = \langle x^3 + x^2 + x - 1 , -x^3 + x^2 , 2x^3 + 2x^2 - 2 , 3x^3 + x^2 + 3x - 2 \rangle.$$

8. Sea λ un núnero real. Considera la siguiente suma de subespacios de \mathbb{R}^4 :

$$\left\langle \left[\begin{array}{c} 1\\0\\1\\-2 \end{array} \right], \left[\begin{array}{c} 0\\1\\3\\-\lambda \end{array} \right] \right\rangle + \left\langle \left[\begin{array}{c} 1\\1\\1\\\lambda \end{array} \right], \left[\begin{array}{c} 0\\1\\\lambda\\\lambda \end{array} \right] \right\rangle.$$

¿Para qué valores de λ es una suma directa? ¿Para cuáles no lo es?

9. Consideremos en \mathbb{R}^4 los subespacios vectoriales $W_1 = \langle \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \rangle$ y $W_2 = \langle \mathbf{v}_4, \mathbf{v}_5 \rangle$, con

$$\mathbf{v}_1 = (1, -2, -1, 3), \ \mathbf{v}_2 = (0, 2, 1, -1), \ \mathbf{v}_3 = (-2, 6, 3, -7), \ \mathbf{v}_4 = (1, -2, -2, 0), \ \mathbf{v}_5 = (2, 0, -1, 1).$$

- a) Halla una base de cada uno de los siguientes espacios: W_1 , W_2 , $W_1 + W_2$ y $W_1 \cap W_2$.
- b) Comprueba que se verifica la fórmula de Grassmann.
- c) Mismas cuestiones cambiando \mathbf{v}_5 por (2,0,-1,0).
- 10. Para cada $a \in \mathbb{R}$ consideramos los siguientes subespacios vectoriales de \mathbb{R}^4 :

$$V(a) = \left\langle \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\2\\5\\2 \end{bmatrix}, \begin{bmatrix} -a\\2\\4-a\\5 \end{bmatrix} \right\rangle , \quad W(a) = \left\langle \begin{bmatrix} -1\\2\\a\\0 \end{bmatrix}, \begin{bmatrix} 2\\2\\6\\2 \end{bmatrix}, \begin{bmatrix} 0\\2\\4\\5 \end{bmatrix} \right\rangle.$$

Halla, en función del parámetro a, la dimensión de V(a) + W(a), una base de $V(a) \cap W(a)$ y un complementario de $V(a) \cap W(a)$ en \mathbb{R}^4 .