- 1) Demuestra que el logaritmo decimal de un número racional positivo es o bien entero o bien irracional. Indicación: Intenta adaptar la prueba habitual de que $\sqrt{2} \notin \mathbb{Q}$.
 - 2) Demuestra que $\sum_{n=1}^{\infty} (-1)^n n^{-1} 2023^{-n!}$ es irracional.
- 3) Explica por qué 0.1234567891011... no es un número decimal periódico (ni puro ni mixto) y concluye que es irracional. Aplica la misma estrategia para probar la irracionalidad de $\sum_{n=1}^{\infty} a_n 10^{-b_n}$ si a_n y b_n son sucesiones de enteros positivos con a_n acotada y $b_{n+1} b_n \to +\infty$.
- 4) Repite la primera parte del ejercicio anterior con 0,235711131719... formado concatenando los primos. Indicación: ¿Por qué el teorema de los números primos asegura que para N grande hay números primos con exactamente N cifras?
- **5)** Sea $N \in \mathbb{Z}_{\geq 4}$ y sea \mathcal{R}_N el conjunto de fracciones irreducibles a/q con $1 \leq q \leq \sqrt{N}$. Prueba que $\bigcup_{a/q \in \mathcal{R}_N} \{x : |x a/q| < (qN)^{-1}\}$ es una unión disjunta.
- **6)** Considera la sucesión $\{a_n\}_{n=1}^{\infty}$ con $a_n = (1 + \frac{3}{4}\sqrt{2})(1 + \sqrt{2})^n + (1 \frac{3}{4}\sqrt{2})(1 \sqrt{2})^n$. Demuestra que $a_n \in \mathbb{Z}^+$ y $|\sqrt{2} 1 a_n/a_{n+1}| < a_{n+1}^{-2}$. Indicación: Para deducir $a_n \in \mathbb{Z}^+$, establece una fórmula de recurrencia para a_n o utiliza que $(1 + \sqrt{2})^n (1 \sqrt{2})^n$ es un múltiplo par de $\sqrt{2}$. Para la desigualdad, muestra que el valor absoluto es $(5\sqrt{2} 7)(\sqrt{2} 1)^n/a_{n+1}$.
 - 7) Prueba que $\sum_{n=1}^{\infty} 2022^{-n^n}$ es trascendente.
- 8) Justifica la convergencia absoluta de la serie $\sum_{n=1}^{\infty} n^{-5} \csc(2\pi n \sqrt[3]{3})$, que se escapa de los criterios que has estudiado en las asignaturas de análisis. Indicación: Prueba primero $|\sec(\pi x)| \ge |x|$ para $|x| \le 1/2$ y utiliza que $2\sqrt[3]{3}$ es algebraico de grado 3.
 - 9) Demuestra que la parte fraccionaria de n!e no está uniformemente distribuida.
- 10) Demuestra que la parte fraccionaria de $\log n$ con $n \in \mathbb{Z}^+$ no está uniformemente distribuida. Indicación: Aproxima cuántas veces la parte fraccionaria de $\log n$ es menor que 1/2 para $n < e^N$.
- 11) El código ASCII asigna a cada entero en [0,256) un carácter alfanumérico (o de control). De este modo, podemos "leer" cada 0 < x < 1 escribiéndolo en base 256. Así, el número $0.282950185472145\cdots = \frac{72}{256} + \frac{111}{256^2} + \frac{108}{256^3} + \frac{97}{256^4} + \dots$ es Hola... porque $72 \to H$, $111 \to o$, $108 \to 1$, $97 \to a$. Demuestra que existe $n \in \mathbb{Z}^+$ tal que la parte fraccionaria de $n\pi$ comienza con el texto completo de "El Quijote".
- 12) Si en el primer examen saco un 8|sen 3|, en el segundo un 8|sen 6|, en el tercero un 8|sen 9| y así sucesivamente, ¿aprobaré si el número de exámenes es suficientemente grande?
 - 13) Expresa con radicales las fracciones continuas $[\overline{2,3}]$ y $[1,1,\overline{1,4}]$.
 - **14)** Halla la fracción continua de $(n + \sqrt{n^2 + 4})/2$ para $n \in \mathbb{Z}^+$.

- **15)** Demuestra $\sqrt{n^2+1} = [n, \overline{2n}]$ y $\sqrt{n^2+n} = [n, \overline{2,2n}]$.
- 16) Calcula la probabilidad de que un número real de (0,1) tengan el cociente parcial a_1 de tres cifras.
- 17) Si p_n/q_n son las convergentes de de un número irracional, prueba que para todo n se cumple $p_n/q_n = a_0 + \sum_{k=1}^n (-1)^{k-1} (q_{k-1}q_k)^{-1}$. Indicación: Intenta reorganizar el sumatorio para obtener una suma telescópica.
- **18)** Demuestra $p_nq_{n-2} p_{n-2}q_n = (-1)^n a_n$ para $n \in \mathbb{Z}_{\geq 2}$. Considera el caso $\alpha = [\overline{3}]$ y deduce de ello que cumple $\sum_{k=1}^{\infty} (q_{2k+1}q_{2k-1})^{-1} = (10-3\alpha)/9$. Indicación: Divide la igualdad con $a_n = 3$ entre q_nq_{n-2} y toma n = 2k + 1.
- 19) Si p_n/q_n son las convergentes de $\sqrt{2}$, demuestra por inducción usando las relaciones de recurrencia para p_n y q_n y la identidad del ejercicio anterior que $(x,y) = (p_n,q_n)$ es solución de $x^2 2y^2 = (-1)^{n+1}$.
- **20)** Comprueba que si $(x,y) \in \mathbb{Z}^+ \times \mathbb{Z}^+$ es solución de $x^2 Dy^2 = -1$ (con $D \in \mathbb{Z}^+$ no cuadrado) entonces $x' = x^2 + Dy^2$, y' = 2xy lo es de $x^2 Dy^2 = 1$. Halla una solución no trivial de la ecuación de Pell $x^2 97y^2 = 1$ sabiendo $\sqrt{97} = [9, \overline{1, 5, 1, 1, 1, 1, 1, 1, 5, 1, 18}]$. Indicación: Usa una calculadora porque salen números grandes. Cambiando 97 por 2011 la menor solución tendría más de 40 cifras.
- **21)** Arquímedes aproximó π por 22/7. Halla la fracción con denominador mínimo que mejora la aproximación de Arquímedes en valor absoluto.
 - **22)** Halla la fracción irreducible $a/q \operatorname{con} q < 1000$ que minimiza $|qe^2 a|$.
- 23) Un año solar dura 365,24223379... días, pero el calendario oficial le asigna 365 días añadiendo 97 nuevos días cada 400 años, correspondientes a los bisiestos (uno cada cuatro años excepto en el año que precede a un siglo no múltiplo de 4). Mejora esta aproximación usando fracciones continuas.
- **24)** Demuestra que si $(x, y) \in \mathbb{Z}^+ \times \mathbb{Z}^+$ es una solución de $x^3 dy^3 = 1$ con $d \ge 5$ que no sea un cubo perfecto entonces x/y es una convergente de $\sqrt[3]{d}$ y utiliza este hecho para hallar una solución no trivial de $x^3 635y^3 = 1$. Indicación: En $\mathbb{R}[x]$ se tiene $x^3 a^3 = (x-a)(x^2 + ax + a^2)$.