- 1) Busca una función aritmética multiplicativa tal que su serie de Dirichlet no converja para ningún valor de $s \in \mathbb{C}$ y otra que converja para todo $s \in \mathbb{C}$.
 - **2)** Prueba $\sum_{n=1}^{\infty} |\mu(n)|/n^s = \zeta(s)/\zeta(2s)$ para $\Re(s) > 1$.
- 3) Se define la función de Liouville como la función completamente multiplicativa λ tal que $\lambda(p) = -1$. Expresa $D_{\lambda}(s)$ en términos de la función ζ y usa el resultado para hallar qué función aritmética f verifica $\lambda = \mu * f$.
- 4) Sea f una función completamente multiplicativa $f: \mathbb{Z}^+ \longrightarrow \{0, 1, -1\}$ y sea c = 1 * f. Demuestra que $c(p^{\alpha}) \ge 1$ si α es par y $c(p^{\alpha}) \ge 0$ si α es impar.
- 5) Escribe $\sum_{n=1}^{\infty} \sigma(n)/n^s$ en términos de la función ζ donde $\sigma(n)$ es la suma de los divisores de n.
- 6) Con lo que sabes de matemática discreta o de las asignaturas de análisis prueba que se tiene el desarrollo de Taylor $1^2+2^2z+3^2z^2+4^2z^3+\cdots=(z+1)(1-z)^{-3}$ si |z|<1 y utilízalo para obtener la igualdad $\sum_{n=1}^{\infty} \left(\tau(n)\right)^2/n^s=\zeta^4(s)/\zeta(2s)$.
- 7) Fijado $m \in \mathbb{Z}_{\geq 2}$, sea f la función aritmética tal que f(n) = 1 si $\gcd(n, m) = 1$ y f(n) = 0 en otro caso. Demuestra la igualdad $D_g(s) = \prod_{p|m} (1 p^{-s})$ para $g = f * \mu$.
- 8) Originalmente Möbius enunció su fórmula de inversión de un modo más analítico afirmando que para funciones reales $f:[1,\infty)\longrightarrow\mathbb{R}$ se cumple $f(x)=\sum_{n\leq x}\mu(n)F(x/n)$ con $F(x)=\sum_{n\leq x}f(x/n)$, donde $n\in\mathbb{Z}^+$. Demuestra esta variante. Indicación: Recuerda que $\sum_{d|n}\mu(d)$ se anula para n>1.
 - 9) Sea $f(n) = |\mu(n)|/\varphi(n)$. Expresa $n^{-1} \sum_{d|n} f(d)$ en términos de la función φ .
- 10) Prueba que $\sum_{d|n} \tau(d^2) = (\tau(n))^2$. Indicación: Muestra primero que ambas funciones son multiplicativas.
 - 11) Calcula la suma de $\varphi(d)/d$ sobre los divisores de un millón.
- 12) Prueba $\sum_{d^2|n} \mu(d) = |\mu(n)|$. Indicación: Explica primero por qué es multiplicativa la función $f(n) = \mu(\sqrt{n})$ para n cuadrado perfecto y f(n) = 0 en otro caso.
- 13) Demuestra que $\mu(n)$ es igual a la suma de Ramanujan $S(n) = \sum_{k \in R_n} e^{2\pi i k/n}$ donde $R_n = \{1 \le k \le n : \gcd(k,n) = 1\}$. Indicación: Muestra primero que S es multiplicativa apelando al teorema chino del resto. Después usa que $S(p^{\alpha})$ es la suma de las raíces p^{α} -ésimas de la unidad menos la suma de las $p^{\alpha-1}$ -ésimas.
 - 14) Halla una fórmula explícita para $\sum_{d|n} d|\mu(d)|$ en términos de la factorización de n.
- 15) Dados $a, n \in \mathbb{Z}^+$ coprimos demuestra que n divide a $\sum_{d|n} a^d \mu(n/d)$. Indicación: Estudia primero el caso $n = p^{\alpha}$. Aunque la función no es multiplicativa, justifica que puedes proceder

por inducción en el número de potencias primas en la factorización de n gracias a que para $n=mp^{\alpha}$ con $p\nmid m$ la suma es $\sum_{d_1\mid m}\sum_{d_2\mid p^{\alpha}}a^{d_1d_2}\mu(m/d_1)\mu(p^{\alpha}/d_2)$.

- **16)** Demuestra que si |z| < 1 se tiene $\sum_{n=1}^{\infty} \mu(n) z^n (1-z^n)^{-1} = z$. Indicación: Usa el desarrollo de Taylor de $z^n (1-z^n)^{-1}$.
- 17) Demuestra que si |z| < 1 se tiene $\sum_{n=1}^{\infty} \varphi(n) z^n (1-z^n)^{-1} = z(1-z)^{-2}$. Indicación: Sigue la indicación anterior.
 - 18) Calcula una fórmula asintótica para $\sum_{n=1}^{N} \varphi(n)$.
- 19) Calcula el límte de $N^{-2} \sum_{n=1}^{N} \sigma(n)$ cuando $N \to \infty$ donde σ es como en un problema anterior.
- **20)** Prueba que $\sum_{n=1}^{\infty} n^{-s} \lambda(n) \log n$ tiende a $-\pi^2/6$ cuando $s \to 1^+$ donde λ es la función de Liouville definida en otro problema. Indicación: Calcula la derivada de D_{λ} usando su expresión en términos de la función ζ .
- **21)** Escribe $\int_1^\infty x^{-1-s} (\operatorname{Frac}(x) 1/2) \, dx$ en términos de la función ζ y sabiendo que esta integral converge cuando $s \to 0$, deduce $\zeta(0^+) = -1/2$.
- **22)** Sea $\ell = \lim_{s\to 1} (\zeta(s) (s-1)^{-1})$. Demuestra que $\ell = 1 + \int_1^{\infty} (x^{-2} \lfloor x \rfloor x^{-1}) dx$. Escribe la integral como $\lim_{N\to\infty} \int_1^N y$ calcula explícitamente la integral para deducir que ℓ es igual a la constante de Euler-Mascheroni.
- **23)** Sea $L(s) = \sum_{n=1}^{\infty} (-1)^{n-1} n^{-s}$. Prueba $L(s) = (1 2^{1-s}) \zeta(s)$ para $\Re(s) > 1$ y deduce a partir de ello $\zeta(\sigma)(\sigma-1) \to 1$ para $\sigma \to 1^+$ sin usar la representación integral de ζ .
- **24)** Dando por supuesto el teorema de los números primos halla una fórmula asintótica para la suma de los N primeros primos. Indicación: Seguramente sepas calcular explícitamente la integral de $x \log x$.
- **25)** Se sabe que $R(n) = \#\{(a,b) \in \mathbb{Z}_{\geq 0} \times \mathbb{Z}^+ : a^2 + b^2 = n\}$ es igual a la suma de $(-1)^{(d-1)/2}$ sobre los divisores impares d de n. Dando esto por supuesto, demuestra que $D_R(s) = \zeta(s)L(s,\chi)$ donde χ es el único carácter $\chi \neq \chi_0$ módulo 4.
- **26)** Dado $q \in \mathbb{Z}_{\geq 2}$, si f es una función aritmética tal que f(n) = 0 cuando n y q no son coprimos, demuestra la igualdad $\sum_{\chi} \left| \sum_{n=1}^{q} f(n) \chi(n) \right|^2 = \varphi(q) \sum_{n=1}^{q} |f(n)|^2$ donde χ recorre los caracteres módulo q. Indica cómo habría que modificar el segundo miembro si no se impone ninguna condición sobre f.