- 1) Muestra que $\int_0^x |t| dt = \frac{1}{2}x|x|$ para todo $x \in \mathbb{R}$.
- 2) Escribe $a_n = \frac{n}{n^2+1^2} + \frac{n}{n^2+2^2} + \cdots + \frac{n}{n^2+n^2}$ como $a_n = \frac{1}{n} \left(f\left(\frac{1}{n}\right) + f\left(\frac{2}{n}\right) + \cdots + f\left(\frac{n}{n}\right) \right)$ para cierta f y utiliza el resultado para hallar el límite de a_n como una integral.
- 3) Empleando el teorema fundamental del cálculo, muestra que la integral $\int_{\pi/2}^{x} \csc t \, dt$ es igual a $\log \sqrt{\frac{1-\cos x}{1+\cos x}}$ para $x \in [\pi/2, \pi)$.
- 4) Halla $\lim_{x\to +\infty} \frac{\log x}{x} \int_2^x \frac{dt}{\log t}$. Indicación: Da por supuesto (o prueba) $\int_2^\infty \frac{dt}{\log t} = \infty$ y aplica la regla de L'Hôpital aislando la integral en el numerador.
 - **5)** Calcula la derivada de $\int_{\operatorname{sen} x}^{\cos x} e^{-t^2} dt$.
- 6) Intenta calcular primitivas de las siguientes funciones directamente, sin aplicar técnicas especiales de integración: $f_1(x) = \tan x$, $f_2(x) = (x \log x)^{-1}$, $f_3(x) = (\cos \sqrt{x})/\sqrt{x}$.
 - 7) Utiliza el método de integración por partes para calcular $\int \text{sen}(\log x) dx$.
 - 8) Halla $\int_{-1}^{0} (x^2 + 1)e^x dx$.
- 9) Calcula una primitiva de $f(x) = (x-1)(2\log(x+1)-1)$. Indicación: Toma como partes cada uno de los factores.
- 10) Halla el área encerrada entre la gráfica de la función $f(x) = \frac{3x+3}{x^2-5x+4}$ y el eje X en el intervalo [2, 3].
 - **11)** Calcula $\int \frac{x^3+1}{x^3+x} dx$.
 - **12)** Calcula $\int \frac{x+7}{x^3+5x^2+3x-9} dx$.
 - 13) Resuelve la integral $\int_{-2}^{7} (2 + \sqrt{2 + x})^{-1} dx$ empleando un cambio de variable.
 - **14)** Calcula $\int (9e^x + e^{-x})^{-1} dx$.
 - 15) Halla el área entre la gráfica de $f(x) = \sqrt{2-x^2}$ y su negativa en el intervalo [0, 1].
 - **16)** Calcula $\int f$ donde $f(x) = e^{2x} / \sqrt{e^x + 1}$.
 - 17) Calcula $\int_0^{\pi/2} \sin^4 x \, dx$ y $\int_0^{\pi/2} \cos^4 x \, dx$ y explica geométricamente por qué son iguales.
 - 18) Encuentra una primitiva de $\cos^5 x \sin^3 x$.
 - **19)** Halla el valor de $\int_0^{3\pi/2} |\sin x|^3 dx$.
- **20)** Considera la parte de la parábola $y = 1 x^2$ en el primer cuadrante. Halla el volumen del sólido que genera cuando gira alrededor del eje X y cuando lo hace alrededor del eje Y.
 - **21)** Calcula el área que limitan las gráficas de $f(x) = \operatorname{sen} x$ y $g(x) = \cos x$ para $x \in [0, \pi]$.

- 22) Obtén la fórmula para el volumen de la esfera de radio R empleando integrales.
- **23)** Halla el área limitada entre la parábola $y = \frac{4}{3}x^2$ y la recta 2x + 3y = 2.
- **24)** Determina el volumen del sólido infinito obtenido al girar la gráfica de la función $f(x) = (x^2 + 5x + 6)^{-1/2}$ alrededor del eje X en x > 0.
 - **25)** Calcula el valor de $\int_0^\infty e^{-\sqrt{x}} dx$ explicando por qué es convergente.
 - **26)** Calcula $\int_{-\infty}^{-2} (x+2)2^x dx$.
 - **27)** Decide si $\int_0^\infty \frac{x+2}{\sqrt{x^4+x+1}} dx$ es convergente.
- **28)** Estudia la convergencia de $\int_0^\infty \frac{1-\cos x}{\sqrt[3]{x^7}} dx$. Indicación: Nota que $(1-\cos x)/x^2$ tiene límite finito no nulo cuando $x\to 0$.