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1 Introduction

We introduce the operator Z that is often called the Zak transform. Our definition is
a bit different from the one that usually appears in the literature. We will discuss this
difference and will also give a historical account that the reader may find particularly
interesting. In order to do this, however, we need to present our treatment of the
operator Z (and Z̃) which shows that the Fourier transform and its inverse are unitary
as an immediate consequence of the basic properties of Fourier series.

The operator Z maps each f ∈ L2(R) into the function

(Z f )(x,ξ ) = ∑
k∈Z

f (x+ k)e−2πikξ ≡ φ(x,ξ ) , (1)

x,ξ ∈ R. Let us explain the meaning of this equality. Since f ∈ L2(R),

∫ 1
2

− 1
2

∑
k∈Z

| f (x+ k)|2dx =
∫ ∞

−∞
| f (x)|2dx < ∞ .
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Thus,
∑
k∈Z

| f (x+ k)|2 < ∞ (2)

for a.e. x ∈ R. This means that for a.e. x ∈ R the series in (1) is the Fourier series of
a function in L2([− 1

2 ,
1
2 ⟩) (considered to be 1-periodic in ξ ) we denote by φ(x,ξ ).

Moreover, for a.e. x ∈ R∫ 1
2

− 1
2

|φ(x,ξ )|2dξ = ∑
k∈Z

| f (x+ k)|2 .

It follows, therefore, that∫ 1
2

− 1
2

∫ 1
2

− 1
2

|φ(x,ξ )|2dξ dx =
∫ 1

2

− 1
2

∑
k∈Z

| f (x+ k)|2dx = ∥ f∥2
2 . (3)

Z, therefore, maps L2(R) isometrically into a space of functions

φ ∈ L2(T2) = L2([−1
2
,

1
2
⟩× [−1

2
,

1
2
⟩) .

Let us examine the space M of these images φ(x,ξ ) = (Z f )(x,ξ ) of L2(R) under the
transformation Z. We have seen that these images are functions of two real variables.
Equality (3) asserts that the ”norm” of φ involves only the variables (x,ξ )∈T2. The
definition (1) indicates that φ(x,ξ ) should be 1-periodic in ξ . With respect to the
variable x we have the easily established property

φ(x+ j,ξ ) = e2πi jξ φ(x,ξ ) (4)

for each j ∈ Z. The property (4) tells us how φ(x,ξ ), for x ∈ [− 1
2 ,

1
2 ⟩ and ξ ∈ R,

extends to all x ∈ R. This shows that |φ(x,ξ )| is 1-periodic in each of the variables
x,ξ ∈ R.

It is also easy to show that Z maps L2(R) onto L2(T2). Let φ ∈ L2(T2). Then∫ 1
2
− 1

2
|φ(x,ξ )|2dξ < ∞ for a.e. x ∈ [− 1

2 ,
1
2 ⟩. For each such x,φ , as a function of ξ , is

a member of L2(T); thus, for a.e. x ∈ [− 1
2 ,

1
2 ⟩,φ(x,ξ ) has a Fourier series

φ(x,ξ )∼ ∑
k∈Z

ck(x)e−2πikξ

such that ∑k∈Z |ck(x)|2 =
∫ 1

2
− 1

2
|φ(x,ξ )|2dξ < ∞. We then define a function f on R

by letting f (x+ k) = ck(x) for each k ∈ Z and these x ∈ [− 1
2 ,

1
2 ⟩. This a.e. defined

function on R belongs to L2(R) since

∫ ∞

−∞
| f (x)|2dx = ∑

k∈Z

∫ 1
2

− 1
2

|ck(x)|2dx =
∫ 1

2

− 1
2

∫ 1
2

− 1
2

|φ(x,ξ )|2dξ dx < ∞.
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This shows that φ(x,ξ ) = (Z f )(x,ξ ) for (x,ξ ) ∈ T2. We then extend φ(x,ξ ) for all
x,ξ ∈ R by making it 1-periodic in ξ and using (4) when x ∈ [− 1

2 ,
1
2 ⟩ and j ∈ Z.

We have, in fact, obtained the space M of all those measurable functions φ(x,ξ ),
(x,ξ ) ∈ R2, that are the general φ ∈ L2(T2) when (x,ξ ) is restricted to T2, are
1-periodic in ξ and satisfy (4). Moreover, if we introduce the norm

∥φ∥M ≡ (
∫

T2
|φ(x,ξ )|2dξ dx)

1
2

on M we have obtained

Theorem 1. The linear operator Z maps L2(R) isometrically onto M.

We now introduce the space M̃, a ”companion” space to M. Essentially M̃ is
obtained from M by reversing the roles of the variables x and ξ . More precisely, M̃
consists of all functions φ̃(x,ξ ) on R2 that belong to L2(T2) when (x,ξ ) is restricted
to T2, φ̃ is 1-periodic in x and its value for the general ξ ∈ R is given by equality

φ̃(x,ξ + ℓ) = e−2πiℓxφ̃(x,ξ ) . (5)

The norm of φ̃ ∈ M̃ is, again, obtained from L2(T2):

∥φ̃∥M̃ = (
∫

T2
|φ̃(x,ξ )|2dξ dx)

1
2 .

There is a simple unitary map U from M onto M̃ (these two spaces are, clearly,
Hilbert spaces):

(Uφ)(x,ξ ) = e−2πixξ φ(x,ξ )≡ φ̃(x,ξ ) . (6)

Let us explain why U maps M onto M̃. The general element, φ , of M, we have seen,
is the Zak transform of an f ∈ L2(R) : φ(x,ξ ) = (Z f )(x,ξ ) = ∑k∈Z f (x+k)e−2πikξ .
Thus,

(Uφ)(x,ξ ) = e−2πixξ ∑
k∈Z

f (x+ k)e−2πikξ = ∑
k∈Z

f (x+ k)e−2πi(x+k)ξ . (7)

We see, therefore, that φ̃ = Uφ is 1-periodic in x. Since φ(x,ξ ),(x,ξ ) ∈ T2, is
the general function of L2(T2), it is clear that φ̃(x,ξ ) = e−2πixξ φ(x,ξ ) is, also, the
general function of L2(T2). To see that φ̃ satisfies (5) we can use some of the ideas
that showed Z was onto. Since φ̃ ∈ L2(T2) we see that φ̃(x,ξ ) ∼= ∑ℓ∈Z cℓ(ξ )e2πiℓx

for a.e. ξ ∈ [− 1
2 ,

1
2 ⟩ and, for such a ξ , ∑ℓ∈Z |cℓ(ξ )|2 =

∫ 1
2
− 1

2
|φ̃(x,ξ )|2dx < ∞. Define

g ∈ L2(R) by letting g(ξ + ℓ) = cℓ(ξ ) for ξ ∈ [− 1
2 ,

1
2 ⟩ obtaining

φ̃(x,ξ )∼= ∑
ℓ∈Z

g(ξ + ℓ)e2πiℓx , (8)

where ”∼=” denotes the fact that the series on the right of (8) is the Fourier series of
φ̃(x,ξ ) as a function of x for each of the ξ ∈ [− 1

2 ,
1
2 ⟩ described above. This enables

us to define φ̃(x,ξ ) for all ξ ∈ R by using (8):
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φ̃(x,ξ + j) = ∑
ℓ∈Z

g(ξ + j+ ℓ)e2πiℓx =

= e−2πi jx ∑
ℓ∈Z

g(ξ + j+ ℓ)e2πix( j+ℓ) = e−2πi jxφ̃(x,ξ ) .

This shows (5) and our definition of the space M̃ is complete once we define
∥φ̃∥M̃ to be

(
∫

T2
|φ̃(x,ξ )|2dxdξ )

1
2 .

Observe that we have also shown that M̃ is the image of an isometric Zak-like
transform Z̃:

(Z̃g)(x,ξ ) = ∑
ℓ∈Z

g(ξ + ℓ)e2πiℓx ≡ φ̃(x,ξ ) (9)

for g ∈ L2(R).
It is also natural to ask what is the relation between the functions f and g that

satisfy
UZ f = Z̃g. (10)

We can determine this relation easily once we determine the inverse operators Z−1

and Z̃−1. In fact, we have

(a) i f φ(x,ξ ) ∈ M, then (Z−1φ)(x) =
∫ 1

2

− 1
2

φ(x,ξ )dξ ;

(b) i f φ̃(x,ξ ) ∈ M̃, then (Z̃−1φ̃)(ξ ) =
∫ 1

2

− 1
2

φ̃(x,ξ )dx . (11)

To see this, recall that if φ ∈ M, Theorem 1 tells us that φ(x,ξ ) = ∑k∈Z f (x+
ξ )e−2πikξ for a unique f ∈ L2(R) and, as we have seen in (2), the sequence
{ f (x+k)},k ∈ Z, is, for a.e. x ∈ Z, the sequence of Fourier coefficients of the L2(T)

function φ(x,ξ ) that is 1-periodic in ξ for each such x. Hence,
∫ 1

2
− 1

2
φ(x,ξ )dξ =

f (x), the zero coefficient of the function ξ → φ(x,ξ ). This establishes (a) and the
same argument, adapted to M̃, gives us (b).

The relation between f and g is then easily seen to be: g = f̂ and f = ǧ:

Theorem 2. (a) Z̃−1UZ f = f̂ ≡ F f , the Fourier transform of f ;
(b) Z−1U∗Z̃g = ǧ ≡ F−1g, the inverse Fourier transform of g.

Proof. Assume f ∈ L1(R)∩L2(R). From (7) we have φ̃(x,ξ ) = (Uφ)(x,ξ ) =
∑k∈Z f (x+k)e−2πi(x+k)ξ . Thus, applying Z̃−1 to the first and third expression in this
equality we obtain (by (11a)):

(Z̃−1UZ f )(ξ ) =
∫ 1

2

− 1
2

∑
k∈Z

f (x+ k)e−2πi(x+k)ξ dx =
∫ ∞

−∞
f (x)e−2πixξ dx = f̂ (ξ ) .
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This shows that Z̃−1UZ maps the space L1(R)∩ L2(R) onto the space of Fourier
transforms of these functions. Since L1(R)∩L2(R) is dense in L2(R), Z̃−1UZ is the
unique extension of the map f → f̂ to a unitary operator, F , on L2(R). Of course,
F is the Fourier transform on L2(R).

We also have that the inverse Fourier transform, F−1, satisfies F−1 = Z−1U∗Z̃.
⊓⊔

This rather simple derivation of these important properties of the Fourier trans-
form (in particular, that F is unitary) has surprised some of our colleagues. That the
Zak transform can be used to obtain these properties, however, is not new. Let us
discuss the relevant history of this matter. Zak introduced the transform we denoted
by Z̃ in 1967 [7]. This operator, however, was also introduced by Gelfand [1] sev-
enteen years earlier; he included in this article an argument very similar to the one
we gave above that showed the unitary property of the Fourier transform. Gelfand,
actually, gives credit to A. Weil for this proof in a book [6] that came out essentially
at the same time (this book is a ”reprint” of an earlier one). In fact some authors call
the operator Z̃ the ”Weil-Brezin” mapping; however, this occurs quite a bit later.

The two transforms we introduced, Z and Z̃, we believe, are rather natural and
explain, perhaps, more clearly, the relationship between the Fourier transform (and
its inverse) and the operators we introduced. The relations that were derived by
the authors we quoted appear to us to involve a ”Deus ex machina” in which the

integral
∫ 1

2
− 1

2
dx is applied to the expression ∑k∈Z f (x + k)e−2πi(x+k)ξ (see (7)) to

obtain the Fourier transform. Our Theorem 2 does explain why this is done; the
works we cite do not motivate the use of this integral for this purpose. If h ∈ L2(T)
and ∑n∈Z ĥ(n)e2πinξ is the Fourier series of h we show how the well known equality∫ 1

2
− 1

2
|h(ξ )|2dξ = ∑n∈Z |ĥ(n)|2 easily implies the Plancherel property of the Fourier

transform F . Our motivation for using the expression e−2πikξ (instead of e2πikξ ) in
the definition of Z (see (1)) is that it leads us to the Fourier transform identities, see
Theorem 2, more directly.

The spaces M and M̃ are really quite interesting and, as we will show in another
paper, are very much worth studying.

The operators Z, Z̃,U and their inverses play an important role in various different
settings. In the next section we shall present some observations that explain why this
is the case.

2 More uses of the Zak transforms and their extensions.

We first make some simple observations that follow immediately from the equalities
in Theorem 2. Suppose f is, say, a Schwartz function (though we do not need so
much smoothness and rapid vanishing at ∞); this allows us to formulate the result in
Theorem 2 as a pointwise result valid for all (x,ξ ) ∈ R2:
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∑
k∈Z

f (x+ k)e−2πi(x+k)ξ = ∑
k∈Z

f̂ (ξ + k)e2πikx . (12)

If we set x = 0 = ξ we obtain the Poisson summation formula

∑
k∈Z

f (k) = ∑
k∈Z

f̂ (k) . (13)

Suppose we only set x = 0. We then have the equality

∑
k∈Z

f (k)e−2πikξ = ∑
k∈Z

f̂ (ξ + k) . (14)

If we make the additional band-limited assumption that Supp f̂ ⊂ [− 1
2 ,

1
2 ⟩ we then

obtain
f̂ (ξ ) = ∑

k∈Z
f (k)e−2πikξ

for ξ ∈ [− 1
2 ,

1
2 ⟩. Let us multiply each side of this equality by e2πixξ and integrate

both sides with respect to ξ . We obtain

f (x) =
∫ ∞

−∞
f̂ (ξ )e2πixξ dξ = ∑

k∈Z
f (k)

∫ ∞

−∞
χ[− 1

2 ,
1
2 ⟩
(ξ )e2πiξ (x−k)dξ

(we inserted χ[− 1
2 ,

1
2 ⟩

since Supp f̂ ⊂ [− 1
2 ,

1
2 ⟩). Since χ̌[− 1

2 ,
1
2 ⟩
(x) = sinc(x) ≡ sinπx

πx ,
we have

f (x) = ∑
k∈Z

f (k)sinc(x− k) . (15)

It is easy to check that the convergence of this series is absolute and in the norm of
all the Lp(R) spaces, 25 p5∞. The reader will recognize this result as the Shannon
Sampling Theorem. It tells us that if f is band limited, with f̂ (ξ ) = 0 if |ξ |> 1

2 , then
it is completely determined by its values on the integers (that is, by ”sampling” f
on the set Z). There is a considerable literature devoted to extending this sampling
result. The Zak transforms play an important role for obtaining these extensions; we
intend to explain these results in future publications. We presented these facts as an
illustration of the many uses of these operators in various areas of analysis.

It is clear that the two Zak transforms can be introduced in the setting of
L2(Rn),n = 1, and the results we derived in §1 can be extended in this more gen-
eral case. These operators can also be considered to act on other Lp(Rn) spaces,
1 5 p 5 2. In fact, the Zak transforms can be extended to much more general set-
tings in which the groups Zn and T are replaced by a locally compact abelian (LCA)
group G and its dual Ĝ. The space L2(Rn) corresponds to a separable Hilbert space
H on which acts a unitary representation of G (see [3] and [4]). In these two articles
just cited we study ”Principal Shift Invariant Subspaces” of L2(Rn), ”Gabor Spaces”
and their extensions in the LCA group setting. The extensions of the Zak transforms
to these situations are also most useful in this context. Some of these extensions are
also obtained by Gröchenig [2].
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