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EUGENIO HERNÁNDEZ AND DANIEL VERA

Abstract. On [24] some consequences of the Restricted Isometry Property (RIP)
of matrices have been applied to develop a greedy algorithm called “ROMP” (Regu-
larized Orthogonal Matching Pursuit) to recover sparse signals and to approximate
non-sparse ones. These consequences were subsequently applied to other greedy and
thresholding algorithms like “SThresh”, “CoSaMP”, “StOMP” and “SWCGP”. In
this paper, we find another consequence of the RIP property and use it to analyze the
approximation to k-sparse signals with Stagewise Weak versions of Gradient Pursuit
(SWGP), Matching Pursuit (SWMP) and Orthogonal Matching Pursuit (SWOMP)
algorithms described in in [5]. We combine the above mentioned algorithms with
another selection rule similar to the ones that appeared in [8] and [15] showing that
results are obtained with less restrictions in the RIP constant, but we need a smaller
threshold parameter for the coefficients. The results of some experiments are shown.

1. Introduction

One problem in Compressed Sensing (CS) is to reconstruct a k−sparse vector (all
except k elements are zero) x ∈ RN from a lower dimension vector y = Φx, where
Φ ∈ Rm×N is called a CS matrix or measurements ensemble. The aim of CS is
to compress the signal while taking samples at the same time in such a way that a
“good” reconstruction is possible. The next definition (see [6]) is a sufficient condition
for the so called CS matrices to yield exact reconstruction of sparse signals with
the Basis Pursuit (BP) algorithm or ℓ1 minimization with equality constraints (as
firstly proposed by Donoho and collaborators for dictionaries in the signal processing
community). This property will play a central role in the results developed here.

Definition 1.1. Given k ∈ N, a matrix Φ ∈ Cm×N (m > k) is said to satisfy the
Restricted Isometry Property with parameter δk, 0 < δk < 1 (called the Restricted
Isometry Constant), if

(1− δk) ∥x∥2ℓ2(RN ) ≤ ∥Φx∥2ℓ2(Rm) ≤ (1 + δk) ∥x∥2ℓ2(RN ) (1.1)

for all k−sparse vectors x ∈ RN .

It is known that those matrices that satisfy RIP and allow the least number of
measurements m for reconstruction of all sparse signals are some random matrices
(therefore reconstruction is in probability). For example, in [6] and [14], it is shown
that it suffices to take m linearly with the sparsity k and polylogarithmic with the
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ambient dimension N , i.e. m ≥ Ck log(N/k) for Gaussian and Bernoulli matrices,
and m ≥ Ck log6(N) for Fourier matrices (for better bounds see [26]) to reconstruct,
with high probability, a k-sparse vector with the BP algorithm.

It has become standard to use greedy algorithms to iteratively identify the support
Γ♯ := supp (x) of a sparse signal. This is done by computing the inner product of the
residue rn−1 of the approximation at step n− 1 and the columns of the matrix Φ, i.e.
gn = Φ∗rn−1 (Φ∗ denotes de transpose of Φ) , and then select the largest element(s)
(in absolute value) in gn = (gn1 , . . . , g

n
N)

t, where each gni = ⟨ϕi, r
n−1⟩ and ϕi is the i-th

column of Φ. Since Φ verifies the RIP property, then such an inner product gives an
idea on where the support may be because the square of the energies of the k-sparse
vector signal x and the observation vector y = Φx should not differ more than δk.
To see this more clearly, suppose we know the true support of x, Γ♯ = supp (x), and
y = Φx is the observation. Writing ΦΓ (resp. xΓ) to denote the matrix Φ (resp. the
vector x) restricted to the columns (resp. the elements) indexed by Γ ⊂ {1, 2, . . . , N},
and (ΦΓ♯)† = (Φ∗

Γ♯ΦΓ♯)−1Φ∗
Γ♯ for the pseudo inverse of ΦΓ♯ (which exists by (1.1)), we

can recover x from y using (ΦΓ♯)† since y = Φx = ΦΓ♯xΓ♯ and

(ΦΓ♯)†y = (Φ∗
Γ♯ΦΓ♯)−1Φ∗

Γ♯ΦΓ♯xΓ♯ = xΓ♯ . (1.2)

We shall use the notation RΓ to denote the subspace of the ambient space RN with
significant coordinates in Γ ⊂ {1, . . . , N}. Notice the prominent role of Φ∗

Γ♯ : Rm →
RΓ♯

in the above argument. The matrix Φ∗ (the transpose of Φ) will be used in the
algorithms below. Also, r ∈ span (ΦΓ) means that r is a linear combination of the
columns of Φ indexed by Γ.

Section 2 studies conditions to identify the support of a sparse signal sensed with
RIP matrices using different greedy type algorithms. A review of Stagewise Weak ver-
sions of the Gradient Pursuit (SWGP), Matching Pursuit (SWMP), and Orthogonal
Matching Pursuit (SWOMP) algorithms, as first proposed in [5], is done in Subsection
2.1. The main novelty, as pointed out in [5], is that not only one but several elements
are allowed to be selected in each iteration. This is a feature also present in [15], a
paper published in 2012 but circulated since 2006 as a preprint. Weak algorithms
were used in non-linear approximation theory before the development of Compressed
Sensing (see [17], [2] and more recently [12], [27], [28], [29] and the references therein),
but in all of these works only one element was selected at each iteration.

Known properties of RIP matrices are stated in Subsection 2.2, while a new property
of these matrices is proved in Subsection 2.3 (see Lemma 2.2). We give conditions
on Φ and on the weakness parameter α of the selection rule to identify the support
of a sparse signal in Subsection 2.4 (see Theorem 2.3) for all of the Stagewise Weak
algorithms mentioned above.

Another selection rule, called relaxed in this paper, is introduced in Section 3
given rise to new algorithms that we name Relaxed Weak Gradient Pursuit (RWGP),
Relaxed Weak Matching Pursuit (RWMP) and Relaxed Weak Orthogonal Matching
Pursuit (RWOMP). The strategy of selecting several elements in each iteration is also
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used in these algorithms. In the Relaxed selection rule, elements are chosen if their
magnitude is larger than a fraction of the energy of the residue at an iteration. This
procedure has also been used in [8] and [15] (see the second paragraph in Section
3). The name Weak Relaxed has appeared in the non-linear approximation theory
associated to greedy algorithms (see [12], [27]), but with a different meaning that in
this paper. In Theorem 3.1 we give conditions on a matrix Φ satisfying RIP and on
the weakness parameter α of the Relaxed selection rule to identify the support of a
sparse signal.

In Section 4 the convergence of all the above algorithms is studied. The energy of
the residual of the observation at iteration n is compared with the energy at iteration
n−1, i.e, ∥rn∥ℓ2 ≤ Ck∥rn−1∥ℓ2 . For the GP, SWGP and RWGP algorithms we establish
in Theorem 4.1 the above inequality with Ck = (1 − 1−δk

k(1+δk)
)1/2 < 1; this is a more

explicit version than the ones already known for GP and SWGP (see details in Section
4). For the SWMP, SWOMP, RWMP, and RWOMP the result is stated in Theorem

4.7 giving C ′
k = (1− (1−δk)

2

k
)1/2 < 1. Notice that Gradient Pursuit algorithms seem to

have stronger rate of convergence than Matching Pursuit ones, a fact present in the
experiments shown for images in Section 6.

In Section 5 we study the behavior of the selection rules with particular Gaussian
and Bernoulli random matrices not necessarily satisfying RIP. Here we prove that
with high probability the algorithms allow to recover the position of the k entries
of a given k-sparse signal. Finally, some experiments are shown in Section 6 for the
algorithms described in the above sections, and compare results with already existing
algorithms to recover sparse signals and approximate compressible images with a
sparse representation.

2. Support Identification with RIP.

We will review Stagewise Weak versions of the Gradient Pursuit (SWGP), Match-
ing Pursuit (SWMP) and Orthogonal Matching Pursuit (SWOMP) algorithms and
some consequences of the RIP property. Then, we will develop a new consequence of
RIP and find some conditions so the algorithms select elements on the support of a
k−sparse signal x on each iteration.

2.1. SWGP, SWMP and SWOMP algorithms. The Stagewise Weak Gradient
Pursuit (SWGP), Stagewise Weak Matching Pursuit (SWMP) and Stagewise Weak
Orthogonal Matching Pursuit (SWOMP) algorithms select a set of elements (possibly
not new) in each iteration by comparing the maximum of the inner products between
the columns of the measurement ensemble with the residue at the previous iteration.
This stage in the algorithms is the selection rule, where a weakness parameter α is
introduced. The main differences between these algorithms are the direction search
and the way to update the approximation. For some history on MP and OMP see
[30] and references therein. The stagewise weak selection rule is defined in [5].

STAGEWISE WEAK MATCHING PURSUIT (SWMP)
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The MP algorithm was the first of the greedy algorithms to be used in signal processing
(see [23]); as far as we know, the weakness parameter appeared for the first time in
[17] and has been extensively used in non-linear approximation (see [12], [27], [28],
[29] and the references therein).

In the initialisation we set: at iteration n = 0 the residue is r0 = y, the approxi-
mation to the observation is y0 = 0 and the estimation of the signal is x0 = 0. Recall
that ϕi denotes the i-th column of Φ. The loop until some criteria are met follows
the next steps:

• gn = Φ∗rn−1, the “proxy” of the signal.

• In := In(α) :=
{
i : |gni | ≥ α ∥Φ∗rn−1∥ℓ∞(RN )

}
, the stagewise weak selection

rule with 0 < α ≤ 1.
• yn = yn−1 +

∑
i∈In g

n
i ϕi = yn−1 +

∑
i∈In⟨ϕi, r

n−1⟩ϕi, approximation to the
observation.

• xn
i = xn−1

i + gni = xn−1
i + ⟨ϕi, r

n−1⟩, i ∈ In and xn
j = xn−1

j if j /∈ In, estimation
of the signal.

• rn = rn−1 −
∑

i∈In g
n
i ϕi = rn−1 −

∑
i∈In⟨ϕi, r

n−1⟩ϕi, the residual.

By recursion one can see from the definition of yn and rn that rn = rn−1−(yn−yn−1) =
· · · = y − yn.

STAGEWISE WEAK ORTHOGONAL MATCHING PURSUIT (SWOMP)

SWOMP is similar to SWMP. Once In has been selected in SWMP, the updating of
the approximation with

∑
i∈In g

n
i ϕi might not be the best approximation from the

subspace spanned by the columns {ϕi}i∈In . For SWOMP instead, the update of the
approximation is yn = PΓny where PΓn is the orthogonal projection into the span
of the columns Γn of Φ: yn = ΦΓnΦ†

Γny = ΦΓn(Φ∗
ΓnΦΓn)−1Φ∗

Γny on the indices
Γn =

∪n
k=1 Ik and therefore the residue becomes rn = y − PΓny. The residue is then

orthogonal to all elements previously selected as can be seen from

Φ∗
Γnrn= Φ∗

Γn(y −ΦΓnΦ†
Γny)

= Φ∗
Γny −Φ∗

ΓnΦΓn(Φ∗
ΓnΦΓn)−1Φ∗

Γny = 0.

Thus, at every iteration new elements are selected. The initialisation is as in SWMP
and the recursion loop is:

• gn = Φ∗rn−1, the “proxy” of the signal.

• In := In(α) :=
{
i : |gni | ≥ α ∥Φ∗rn−1∥ℓ∞(RN )

}
, the stagewise weak selection

rule with 0 < α ≤ 1.
• Γn = Γn−1

∪
In, update of selected elements.

• xn := xn|Γn = Φ†
Γny, estimation of the signal.

• yn = ΦΓnΦ†
Γny, approximation to the observation.

• rn = y − yn, the residual.

STAGEWISE WEAK GRADIENT PURSUIT (SWGP)

The Gradient Pursuit (GP) is described in [4] and the Stagewise Weak Gradient
Pursuit (SWGP) was developed in [5] (together with some other variants). We de-
scribe SWGP since GP is obtained from SWGP by setting the weakness parameter
α = 1 in the selection rule.
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At iteration n = 0 we have: x0 = 0, the estimation of the signal; r0 = y, the
residue; Γ0 = ∅, the support. Then, the recursion at step n until some criteria are
met is the following:

• gn = Φ∗rn−1, the “proxy” of the signal.
• In := In(α) := {i : |gni | ≥ α ∥rn−1∥ℓ∞(RN )}, the stagewise weak selection rule
with 0 < α ≤ 1.

• Γn = Γn−1
∪

In, the updated support.
• dn

Γn = Φ∗
Γnrn−1, the updated direction.

• an =
⟨rn−1,ΦΓndn

Γn ⟩

∥ΦΓndn
Γn∥2

ℓ2(Rm)

, the optimised step.

• xn := xn
Γn = xn−1 + andn

Γn , the estimation to the signal.
• yn = yn−1 + anΦΓndn

Γn , the approximation to the observation.
• rn = rn−1 − anΦΓndn

Γn .

Again, one can prove that rn = y − yn.
In [5] it is proved that SWGP converges to the solution at least as good as the

simpler version GP.

2.2. Some Consequences of RIP. This section is based on some implicit results
in [6], see especially Lemma 2.1, that were made explicit in [24]; for the proofs the
reader can also see [8].

Lemma 2.1. Assume that Φ ∈ Rm×N satisfies RIP with δk, |Γ| ≤ k, supp(u) = Γ.
Then

∥ΦΓ∥ℓ2(RΓ)→ℓ2(Rm) = ∥Φ∗
Γ∥ℓ2(Rm)→ℓ2(RΓ) ≤ (1 + δk)

1/2, (2.1)

(1− δk) ∥u∥ℓ2(RΓ) ≤ ∥Φ∗
ΓΦΓu∥ℓ2(RΓ) ≤ (1 + δk) ∥u∥ℓ2(RΓ) , (2.2)

(1 + δk)
−1 ∥u∥ℓ2(RΓ) ≤

∥∥(Φ∗
ΓΦΓ)

−1u
∥∥
ℓ2(RΓ)

≤ (1− δk)
−1 ∥u∥ℓ2(RΓ) , (2.3)

For disjoint sets Γ′,Γ such that |Γ′ ∪Γ| ≤ k, we have

∥Φ∗
Γ′ΦΓu∥ℓ2(RΓ′ ) ≤ δk ∥u∥ℓ2(RΓ) . (2.4)

All of these results have become standard for the greedy algorithms in compressed
sensing.

2.3. One more consequence. We derive here another bound as a consequence of
the RIP property.

Lemma 2.2. Let Φ verify RIP with parameter δk and let |Γ| ≤ k. For all r ∈
span (ΦΓ)

∥Φ∗
Γr∥ℓ2(RΓ) ≥ (1− δk)

1
2 ∥r∥ℓ2(Rm) (2.5)

Proof. For the pseudo-inverse we have∥∥∥Φ†
Γr
∥∥∥
ℓ2(RΓ)

= ∥(Φ∗
ΓΦΓ)

−1Φ∗
Γr∥ℓ2(RΓ)

≤ (1− δk)
−1 ∥Φ∗

Γr∥ℓ2(RΓ) ,
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where we have used (2.3) in the last inequality. We next use this result and the
Schwarz inequality to get

∥Φ∗
Γr∥

2
ℓ2(RΓ) ≥ (1− δk)

∥∥∥Φ†
Γr
∥∥∥
ℓ2(RΓ)

∥Φ∗
Γr∥ℓ2(RΓ)

≥ (1− δk)⟨Φ†
Γr,Φ

∗
Γr⟩ = (1− δk)(Φ

†
Γr)

∗Φ∗
Γr

= (1− δk)r
∗ΦΓ(Φ

∗
ΓΦΓ)

−1Φ∗
Γr

= (1− δk)y
∗
ΓΦ

∗
ΓΦΓ(Φ

∗
ΓΦΓ)

−1Φ∗
ΓΦΓyΓ

= (1− δk)y
∗
ΓΦ

∗
ΓΦΓyΓ = (1− δk) ∥r∥2ℓ2(Rm) ,

using the fact that, since r is in the span of ΦΓ, we may write r = ΦΓyΓ for some yΓ,
and conclude the proof. �

2.4. Support Identification with SWGP, SWMP and SWOMP. We now give
sufficient conditions on the matrix Φ so that the SWGP, SWMP and SWOMP al-
gorithms select elements on the support Γ♯ of the sparse signal x. The SWOMP
algorithm will select new atoms in each iteration due to the orthogonality with pre-
vious residues, therefore convergence to exact reconstruction of k−sparse vectors is
guaranteed in at most k iterations when the condition is met. As previously men-
tioned, the stagewise weak selection rule is

In := In(α) :=
{
i : |gni | ≥ α

∥∥Φ∗rn−1
∥∥
ℓ∞(RN )

}
, (2.6)

for some α ∈ (0, 1]. For the next result we follow the line of reasoning of [30], (see also
[16] and [5]), where the results are given for OMP on quasi-incoherent dictionaries.
Here we use Lemma 2.2.

Theorem 2.3. Let Φ satisfies RIP with δk+1. A sufficient condition for the SWGP,
SWMP and SWOMP algorithms with selection rule In(α) given by (2.6), 0 < α ≤ 1,
to identify elements in the support Γ♯ of the k−sparse signal x is

α >

√
kδk+1

1− δk
. (2.7)

Proof. Since supp(x) = Γ♯, then r0 ∈ span(ΦΓ♯). The algorithms update the ap-
proximations and residuals precisely in the indices contained in In, so that to proceed
by induction we can assume that after n− 1 iterations we have rn−1 ∈ span(ΦΓ♯). We
drop the superindex of r for the proof. The condition In ⊂ Γ♯ is implied by

∥Φ∗
Γ♯cr∥ℓ∞(RΓ♯c

)
< α ∥Φ∗

Γ♯r∥ℓ∞(RΓ♯
)
.

Using the assumption on r, we can write r = ΦΓ♯yΓ♯ for some yΓ♯ . Rearranging to
express the condition as a quotient (called the greedy selection ratio), squaring and
choosing λ as one index in Γ♯c with the largest value, it yields∥∥Φ∗

Γ♯cr
∥∥2

ℓ∞(RΓ♯c
)∥∥Φ∗

Γ♯r
∥∥2

ℓ∞(RΓ♯
)

=
∥Φ∗

λr∥
2
ℓ∞(Rλ)∥∥Φ∗

Γ♯r
∥∥2

ℓ∞(RΓ♯
)

≤
∥Φ∗

λr∥
2
ℓ2(Rλ)

1
k

∥∥Φ∗
Γ♯r

∥∥2

ℓ2(RΓ♯
)

=
k ∥Φ∗

λΦΓ♯yΓ♯∥2ℓ2(Rλ)∥∥Φ∗
Γ♯ΦΓ♯yΓ♯

∥∥2

ℓ2(RΓ♯
)

≤
kδ2k+1

(1− δk)2
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where the first inequality is due to usual norm inequalities and the second by (2.4)
in the numerator and consecutive application of (2.5) and the left-hand side of (1.1)
in the denominator. Comparing the right side of the last inequality with α2 ends the
proof. �

Corollary 2.4. With the conditions of Theorem 2.3, if any of the algorithms has
selected k elements, then it has found the whole support of the k-sparse vector x.

Since SWOMP, as well as OMP, select new elements at each iteration, in at most
k steps they recover the k-sparse signal by (1.2). Thus we have

Corollary 2.5. With the conditions of Theorem 2.3, the SWOMP and OMP algo-
rithms recover every k-sparse vector x in at most k iterations.

Remark 2.6. Observe that δk ≤ δk+1 since the set of all k-sparse vectors is contained
in the set of all (k + 1)-sparse vectors. Moreover, to achieve (2.7) the RIP constants

δk+1 and δk must satisfy δk+1 < α(1 − δk)/
√
k. This gives a restriction on k, that is

k < (α(1− δk)/δk+1)
2.

Remark 2.7. The proof of Theorem 2.3 follow the ideas of the proof in [30], regard-
ing deterministic quasi-incoherent dictionaries, which uses the fact that r = PΓ♯r =
ΦΓ♯Φ†

Γ♯r (that is OMP type algorithms) and then bounds with usual norm inequali-
ties. The condition obtained is then called Exact Reconstruction Condition ERCα

for quasi-incoherent dictionaries since the result is on OMP and therefore exact re-
construction is guaranteed in at most k iterations; a similar result is called Stability
Condition in [16] since it is applied to MP and no exact reconstruction of sparse
signals is guaranteed in k iterations in this case. In our case, a straight use of the
consequences of the RIP property lead us to the result.

Remark 2.8. Suppose that δk+1 <
1

1+
√
k
. Since δk ≤ δk+1 we have

δk+1 <
1

1 +
√
k
=

1− 1
1+

√
k√

k
≤ 1− δk√

k
.

Thus, condition (2.7) is satisfied with α = 1 . By Corollary 2.5, if δk+1 < 1
1+

√
k

the

OMP algorithm recovers any k-sparse vector x in at most k iterations. This result has
recently appeared in [20] and [22] (see also [11] and [18] for previous smaller bounds
on δk+1). Moreover, it is proved in [22] that there exits a k-sparse vector x ∈ Rk+1

and a (k + 1)× (k + 1) matrix Φ satisfying RIP with δk+1 =
1√
k
such that OMP does

not recover x in k iterations (proving a conjecture estated in [9]). Thus the bound
δk+1 <

1
1+

√
k
is nearly optimal.

3. Support Identification with a Relaxed Weak Selection Rule

Next, we consider another decision rule to select indices in the true support of a
sparse signal. With the same notation as in section 2 , let

Ĩn := Ĩn(α̃) :=
{
i : |gni | ≥ α̃

∥∥rn−1
∥∥
ℓ2(Rm)

}
, (3.1)
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be the relaxed weak selection rule. Rule (3.1) compares the absolute value of gni =
⟨ϕi, r

n−1⟩ with ∥rn−1∥ℓ2(Rm). It can be proved (see the proof of Theorem 9.10 in [21],

p. 422) that there exists β0 > 0 such that for any x ∈ Rm, supi=1,...,N |⟨ϕi,x⟩| ≥
β0 ∥x∥ℓ2(Rm). Thus, Ĩn(α) is a non empty set if we choose α ≤ β0.

Selection rule (3.1) is similar to the ones considered in [15] and [8]. In [15] the rule
is

Jn(t) :=

{
i : |gni | ≥

t√
m

∥∥rn−1
∥∥
ℓ2(Rm)

}
,

and the algorithm developed is called StOMP. Thus, Ĩn(α̃) is Jn(t) with α̃ = t/
√
m.

In [8] the rule is

Dn(δ) :=

{
i : |gni | ≥

t√
k

∥∥rn−1
∥∥
ℓ2(Rm)

}
,

and the algorithm developed is called DTresh (and its cousin STresh). Thus, Ĩn(α̃) is

Dn(t) with α̃ = t/
√
k. In both of these algorithms the update of the approximation

is done using the same updating as the OMP algorithm.

In rule (3.1) we compare with the energy of the residual ∥rn−1∥ℓ2(Rm) instead of
comparing with the maximum of the correlations of the residue with the “atoms” ofΦ,
i.e. ∥Φ∗rn−1∥ℓ∞(RN ). We choose the term “relaxed” since, as we will see in Theorem
3.1, the condition on δk+1 and δk is weaker than the one required in Theorem 2.3.
Therefore, we decided to call the greedy algorithms with this selection rule Relaxed
WGP, WMP or WOMP algorithms, writing RWGP, RWMP and RWOMP respetively.

We still consider x a k−sparse vector with support on Γ♯.

Theorem 3.1. Let Φ satisfies RIP with δk+1. A sufficient condition for the RWGP,
RWMP and RWOMP algorithms to identify elements on the support Γ♯ of x with the
relaxed weak selection rule Ĩn(α̃) given by (3.1) is that Ĩn(α̃) ̸= ∅ and

α̃ >
δk+1

(1− δk)1/2
. (3.2)

Proof. It is basically the same proof as for Theorem 2.3. Again, we drop the
superindex of r and make the assumption r ∈ span (ΦΓ♯) to proceed by induction.
The condition Ĩn ⊂ Γ♯ is implied by

∥Φ∗
Γ♯cr∥ℓ∞(Γ♯c) < α̃ ∥r∥ℓ2(Rm) .

As before, rearranging to express it as a quotient (called relaxed weak greedy selection
ratio), squaring and choosing λ as one index in Γ♯c with the largest value of Φ∗

Γ♯cr, it



GREEDY TYPE ALGORITHMS FOR RIP MATRICES 9

gives ∥∥Φ∗
Γ♯cr

∥∥2

ℓ∞(RΓ♯c
)

∥r∥2ℓ2(Rm)

=
∥Φ∗

λr∥
2
ℓ∞(Rλ)

∥ΦΓ♯yΓ♯∥2ℓ2(Rm)

=
∥Φ∗

λΦΓ♯yΓ♯∥2ℓ2(Rλ)

∥ΦΓ♯yΓ♯∥2ℓ2(Rm)

≤
∥Φ∗

λΦΓ♯∥2
ℓ2(RΓ♯

)→ℓ2(Rλ)
∥yΓ♯∥2

ℓ2(RΓ♯
)

∥ΦΓ♯yΓ♯∥2ℓ2(Rm)

≤
δ2k+1

(1− δk)
,

where the first and second inequalities are due to usual norm inequalities and the third
by (2.4) in the numerator and the left side of (1.1) in the denominator. Comparing
the left hand side of the last inequality with α̃2 ends the proof. �

Remark 3.2. Suppose r ∈ span (ΦΓ♯) where Φ is a RIP matrix; then

∥Φ∗
Γ♯r∥ℓ∞(RΓ♯

)
≥ 1√

k
∥Φ∗

Γ♯r∥2ℓ2(RΓ♯
)
≥ (1− δk)

1/2

√
k

∥r∥2
ℓ2(RΓ♯

)
,

by the usual norm inequality and Lemma 2.2. Thus taking

α̃ ≤ (1− δk)
1/2

√
k

(3.3)

we always have Ĩn(α̃) ̸= ∅ at each iteration of the algorithms with the Relaxed selection
rule. Notice that (3.2) and (3.3) could hold at the same time for some value of α̃ only
if

δk+1

(1− δk)1/2
≤ (1− δk)

1/2

√
k

,

which gives the following restriction:
√
k ≤ 1−δk

δk+1
.

Remark 3.3. Theorem 3.1 could be considered as an Exact Reconstruction Condi-
tion for the Relaxed Weak OMP (RWOMP) algorithm with RIP matrices and with
parameter δk+1 (see Corollary 2.5) as long as (3.3) is satisfied. The probability of
success depends exclusively on the probability that a random ensemble verifies RIP. It
has been proved that Gaussian, Bernoulli and partial Fourier matrices verify RIP with
very high probability (exponential concentration) as long as the number of measure-
ments m ≥ Ck log(N/k) for the first two ensembles (see [6],[7]) and m ≥ Ck log5(N)
for the random Fourier (see [6], [26]).

4. Convergence. The Sparse Case.

In this section we obtain convergence rates for the SWGP, SWMP and SWOMP
algorithms and their relaxed counterparts for matrices satisfying RIP. The results
here are given in terms of the reduccion of the energy of the residuals rn = y− yn of
the observation y = Φx rather in the energy of the residuals of the approximation,
x− xn, as is done in [25] for CoSaMP and in [8] for DThresh.
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4.1. Convergence of GP, SWGP and RWGP. In [4] the analysis of convergence
of the GP is based on an existence theorem (see Theorem 9.10 in [21]) whenΦ ∈ CN×N1

is a dictionary (this means that Φ contains at least a base for RN and thus N1 ≥
N) that verifies the Exact Reconstruction Condition ERCα(Γ) for quasi-incoherent
dictionaries (see [30]). The analysis in [31] is done for random admissible matrices.
The result in the theorem below is obtained for matrices satisfying RIP. We still
consider x a k−sparse vector with support on Γ♯.

Theorem 4.1. Consider the algorithms GP, SWGP and RWGP and suppose that at
iteration n we have Γs ⊂ Γ♯, s = 1, 2, . . . , n. Let Φ verifies RIP with δk. Then, for
all k-sparse vectors x ∈ RN (supp (x) = Γ♯),

∥rn∥2ℓ2(Rm) ≤ Ck

∥∥rn−1
∥∥2

ℓ2(Rm)
, (4.1)

with Ck = (1 − 1−δk
k(1+δk)

)1/2 < 1. In the case RWGP suppose α̃ ≤ (1−δk)
1/2

√
k

so that

Ĩn(α̃) ̸= ∅.

Proof. To shorten notation we will write dn = dn
Γn . We have

∥rn∥2ℓ2(Rm)

= ⟨rn−1 − anΦΓndn, rn−1 − anΦΓndn⟩
=

∥∥rn−1
∥∥2

ℓ2(Rm)
− an⟨rn−1,ΦΓndn⟩ − an⟨ΦΓndn, rn−1⟩+ ⟨anΦΓndn, anΦΓndn⟩

=
∥∥rn−1

∥∥2

ℓ2(Rm)
− 2

|⟨ΦΓndn
Γn , rn−1⟩|2

∥ΦΓndn∥2ℓ2(Rm)

+
|⟨ΦΓndn, rn−1⟩|2

∥ΦΓndn∥4ℓ2(Rm)

∥ΦΓndn∥2ℓ2(Rm)

=
∥∥rn−1

∥∥2

ℓ2(Rm)
− |⟨rn−1,ΦΓndn⟩|2

∥ΦΓndn∥2ℓ2(Rm)

. (4.2)

Since dn = Φ∗
Γnrn−1, the second term above can be bounded below by

|⟨rn−1,ΦΓndn⟩|2

∥ΦΓndn∥2ℓ2(Rm)

=
|⟨Φ∗

Γnrn−1,dn⟩|2

∥ΦΓndn∥2ℓ2(Rm)

≥
∥Φ∗

Γnrn−1∥4ℓ2(RΓn )

∥ΦΓn∥2ℓ2(RΓn
)→ℓ2(Rm) ∥Φ∗

Γnrn−1∥2ℓ2(RΓn )

≥
∥Φ∗

Γnrn−1∥2ℓ2(RΓn )

1 + δk
. (4.3)

We have ∥∥Φ∗
Γnrn−1

∥∥
ℓ∞(RΓn

)
≥

∥∥Φ∗
Inr

n−1
∥∥
ℓ∞(RIn)

=
∥∥Φ∗rn−1

∥∥
ℓ∞(RN )

, (4.4)

because Γn ⊃ In in the inequality and because the definition of In (in GP and SWGP)
in the equality. Since we are supposing that Γn ⊂ Γ♯, using (4.4) yields∥∥Φ∗

Γnrn−1
∥∥
ℓ2(RΓn

)
≥

∥∥Φ∗
Γnrn−1

∥∥
ℓ∞(RΓn

)
≥

∥∥Φ∗rn−1
∥∥
ℓ∞(RN )

≥
∥∥Φ∗

Γ♯r
n−1

∥∥
ℓ∞(RΓ♯

)
. (4.5)

By (4.5) and usual norm inequality∥∥Φ∗
Γnrn−1

∥∥
ℓ2(RΓn

)
≥

∥∥Φ∗
Γ♯r

n−1
∥∥
ℓ∞(RΓ♯

)
≥ 1

k

∥∥Φ∗
Γ♯r

n−1
∥∥
ℓ2(RΓ♯

)
.
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Since rn ∈ span (ΦΓ♯) (assuming conditions in Theorem 2.3 are met and because
rn = y − yn in GP and SWGP), by Lemma 2.2 we can write∥∥Φ∗

Γnrn−1
∥∥2

ℓ2(RΓn )
≥ 1− δk

k

∥∥rn−1
∥∥2

ℓ2(Rm)
. (4.6)

Substituting (4.6) in (4.3) and (4.2) one gets

∥rn∥2ℓ2(Rm) ≤
(
1− 1− δk

k(1 + δk)

)∥∥rn−1
∥∥2

ℓ2(Rm)
,

which shows the result for GP and SWGP algorithms.
For RWGP the selection rule

Ĩn(α̃) = {i :
∣∣⟨ϕi, r

n−1⟩
∣∣ ≥ α̃

∥∥rn−1
∥∥
ℓ2(Rm)

}

do not allow us to write (4.4). But in this case using Remark 3.2 we can write∥∥Φ∗
Γnrn−1

∥∥2

ℓ2(RΓn
)

≥
∥∥Φ∗

Γnrn−1
∥∥2

ℓ∞(RΓn
)
≥

∥∥∥Φ∗
Ĩnr

n−1
∥∥∥2

ℓ∞(RĨn )

≥ 1− δk
k

∥∥rn−1
∥∥2

ℓ2(Rm)
,

which shows (4.6) for RWGP and therefore the result. �

Remark 4.2. In [4, Theorem 3], it is proved that ∥rn∥2ℓ2(Rm) ≤ c ∥rn−1∥2ℓ2(Rm) with

c = (1− ω
∥Φ∥22

) and ω is a positive real number such that ∥Φx∥2ℓ∞(RN ) > ω ∥x∥2ℓ2(Rm) for

all x ∈ Rm. Our Theorem 4.1 gives a value of Ck depending on the restricted isometry
constant δk and the sparseness k. This value of Ck is less than 1, but very close to 1
when k increases. It is easy to show that it can never hold Ck ≤ 1/2 when k ≥ 2.

Using Theorems 2.3, 3.1 and 4.1 we deduce the following:

Corollary 4.3. Suppose that Φ satisfies RIP with constants δk and δk+1.

i) Suppose
√
kδk+1

1−δk
< 1; then, the GP algorithm satisfies (4.1).

ii) Let 0 < α ≤ 1 and suppose
√
kδk+1

1−δk
< α; then, the SWGP algorithm with selection

rule In(α) satisfies (4.1).

iii) Suppose that δk+1

1−δk
< 1√

k
and that α̃ is chosen such that δk+1

(1−δk)1/2
< α̃ < (1−δk)

1/2
√
k

;

then, the RWGP algorithm with selection rule Ĩn(α̃) satisfies (4.1).

Remark 4.4. Convergence in algorithms of type Gradient Pursuit (GP, WGP y
RWGP) is given in Theorem 4.1 in terms of the convergence of the energy of residual
rn = y − yn. If Φ satisfies RIP, convergence of the residual in terms of estimation
x− xn can be obtained from the last result. For algorithms of type GP it is not hard
to show that yn = Φxn. Then,

∥y − yn∥ℓ2(Rm) = ∥Φx−Φxn∥ℓ2(Rm) = ∥ΦΓ♯(x− xn)∥ℓ2(Rm)

≥ (1− δk)
1/2 ∥x− xn∥ℓ2(RN ) (4.7)

because the left-hand side of RIP as long as Γn ⊂ Γ♯ (which is verified under the
conditions of Theorems 2.3 and 3.1). Analogously, if we also assume Γn−1 ⊂ Γ♯ we
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have ∥∥y − yn−1
∥∥
ℓ2(Rm)

=
∥∥Φx−Φxn−1

∥∥
ℓ2(Rm)

=
∥∥ΦΓ♯(x− xn−1)

∥∥
ℓ2(Rm)

≤ (1 + δk)
1/2

∥∥x− xn−1
∥∥
ℓ2(RN )

(4.8)

because the right-hand side of RIP. From (4.7) and (4.8) we deduce

∥x− xn∥ℓ2(RN ) ≤ Ck(
1 + δk
1− δk

)1/2
∥∥x− xn−1

∥∥
ℓ2(RN )

, (4.9)

where Ck is the constant in Theorem 4.1. Observe that, besides conditions of Corollary
4.3, if we want to assure convergence in ℓ2(RN) of xn to x we need

(
1 + δk
1− δk

)1/2(1− 1− δk
k(1 + δk)

)1/2 < 1,

which requires δk <
1

2k+1
.

If from some iteration we had Γn = Γ♯ = supp (x) reduction of energy of residuals
would be faster than the given in (4.1), as the next result shows.

Theorem 4.5. Consider GP, WGP and RWGP algorithms and suppose that at iter-
ation n0 we have Γn0 = Γ♯ = sop (x). Suppose that α, α̃ > δk+1

(1−δk)1/2
and Φ verifies

RIP with parameter δk+1. Then, for all n ≥ n0,

∥rn∥ℓ2(Rm) ≤ Dk

∥∥rn−1
∥∥
ℓ2(Rm)

(4.10)

with Dk = (1− 1−δk
1+δk

)1/2 = ( 2δk
1+δk

)1/2 < 1.

Proof. Equality (4.2) and inequality (4.3) in the proof of Theorem 4.1 are still
valid in our context. Since Γn0 = Γ♯ we have Γn = Γ♯ for n ≥ n0. The fact that
α, α̃ > δk+1

(1−δk)1/2
allow us to conclude Ĩn0 , Ĩn ⊂ Γ♯.

Hence, we can replace Γn by Γ♯ in (4.3) and since rn−1 ∈ span (ΦΓ♯), by Lemma
2.2 we can write ∥∥Φ∗

Γnrn−1
∥∥2

ℓ2(Rm)
=

∥∥Φ∗
Γ♯r

n−1
∥∥2

ℓ2(Rm)

≥ (1− δk)
∥∥rn−1

∥∥2

ℓ2(Rm)
.

Substituting this inequality in (4.2) and (4.3) we obtain the result for the three algo-
rithms. �

Remark 4.6. Constant Dk of Theorem 4.5 can be made as close to 0 as desired taking
δk small enough. In particular, it is enough to take δk ≤ 1/7 ≈ 0.143 to reduce the
energy of the residuals by half in just one iteration, if conditions of Theorem 4.1 are
satisfied.

Reasoning as in Remark 4.4 we have

∥x− xn∥ℓ2(RN ) ≤ (
1 + δk
1− δk

)1/2(1− 1− δk
1 + δk

)1/2
∥∥x− xn−1

∥∥
ℓ2(RN )

for which it is enough to take δk < 1/3 to assure convergence of xn to x in ℓ2(RN)
once we have Γn0 = Γ♯.
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4.2. Convergence of SWMP and RWMP. The results on convergence in this
section are similar to those obtained in [16] for quasi-incoherent dictionaries.

Theorem 4.7. Consider the algorithms SWMP and RWMP. Suppose that conditions
of Theorems 2.3 (for SWMP) and 3.1 are verified so that Γs ⊂ Γ♯, s = 1, 2, . . .. Then,
for every k-sparse vector x ∈ RN with supp (x) = Γ♯,

∥rn∥2ℓ2(Rm) ≤ C ′
k

∥∥rn−1
∥∥2

ℓ2(Rm)
, (4.11)

with C ′
k = (1− (1−δk)

2

k
)1/2 < 1.

Proof. We have for SWMP as well as for RWMP algorithms that

∥rn∥2ℓ2(Rm) = ⟨rn−1 −ΦInΦ
∗
Inr

n−1, rn−1 −ΦInΦ
∗
Inr

n−1⟩

=
∥∥rn−1

∥∥2

ℓ2(Rm)
− ⟨rn−1,ΦInΦ

∗
Inr

n−1⟩

−⟨ΦInΦ
∗
Inr

n−1, rn−1⟩+
∥∥ΦInΦ

∗
Inr

n−1
∥∥2

ℓ2(Rm)

=
∥∥rn−1

∥∥2

ℓ2(Rm)
− 2

∥∥Φ∗
Inr

n−1
∥∥2

ℓ2(RIn )
+
∥∥ΦInΦ

∗
Inr

n−1
∥∥2

ℓ2(Rm)
.(4.12)

By (2.1) we have
∥∥ΦInΦ

∗
Inr

n−1
∥∥2

ℓ2(Rm)
≤ (1 + δk)

∥∥Φ∗
Inr

n−1
∥∥2

ℓ2(RIn)
since In ⊂ Γ♯ and∣∣Γ♯

∣∣ = k. Hence, from (4.12) we have

∥rn∥2ℓ2(Rm) ≤
∥∥rn−1

∥∥2

ℓ2(Rm)
− 2

∥∥Φ∗
Inr

n−1
∥∥2

ℓ2(RIn)
+ (1 + δk)

∥∥Φ∗
Inr

n−1
∥∥2

ℓ2(RIn)

=
∥∥rn−1

∥∥2

ℓ2(Rm)
− (1− δk)

∥∥Φ∗
Inr

n−1
∥∥2

ℓ2(RIn)
. (4.13)

For SWMP as well as RWMP we have∥∥Φ∗
Inr

n−1
∥∥2

ℓ2(RIn )
≥ 1− δk

k

∥∥rn−1
∥∥2

ℓ2(Rm)
. (4.14)

For SWMP the proof is as in (4.6) from Theorem 4.1 and it is not hard to prove it
also for RWMP.

Substituting (4.14) in (4.13) we have

∥rn∥2ℓ2(Rm) ≤ (1− (1− δk)
2

k
)
∥∥rn−1

∥∥2

ℓ2(Rm)

which is the desired result. �

Corollary 4.8. Suppose Φ satisfies RIP with constants δk and δk+1.

a) Let 0 < α ≤ 1 and suppose that
√
kδk+1

1−δk
< α; then, SWMP with selection rule

In(α) satisfies (4.11).

b) Suppose that δk+1

1−δk
< 1√

k
and α̃ is chosen so that

δk+1

(1− δk)1/2
< α̃ <

(1− δk)
2

√
k

;

then, RWMP with selection rule Ĩn(α̃) satisfies (4.11).

Remark 4.9. Constant C ′
k of Theorem 4.7 is a numer less than 1, so there is always

a decreasing in the residual energy. However, it is close to 1 when k increases. It is
easy to show that we can never have C ′

k ≤ 1/2 when k ≥ 2.



14 EUGENIO HERNÁNDEZ AND DANIEL VERA

Remark 4.10. As in Remark 4.4 the decreasing of the residual energy given in (4.11)
for SWMP y RWMP can be translated to convergence of the estimation. Thus,

∥x− xn∥ℓ2(RN ) ≤ (
1 + δk
1− δk

)1/2C ′
k

∥∥x− xn−1
∥∥
ℓ2(RN )

.

For (1+δk
1−δk

)1/2(1− (1−δk)
2

k
)1/2 to be less than 1 we must have

1− (1− δk)
2

k
<

1− δk
1 + δk

⇔ 2δk
1 + δk

<
(1− δk)

2

k
.

Since (1+ δk)(1− δk)
2 = (1− δk)(1− δ2k) = 1− δk− δ2k + δ3k last inequality is equivalent

to
2kδk < 1− δk − δ2k + δ3k ⇔ δ3k − δ2k − (1 + 2k)δk + 1 > 0.

If δk <
1

2k+2
, we have

1 > δk + (2k + 1)δk > δ2k + (2k + 1)δk > δ2k + (2k + 1)δk − δ3k,

from which

δk <
1

2k + 2
is enough to have convergence of approximations in WMP y RWMP.

4.3. Convergencia de WOMP y RWOMP. In WOMP as well as in RWOMP
the residual rn is the vector that carries out the distance from y to the subspace
Vn = {ΦΓnx : x ∈ Rn with supp(x) ⊂ Γn}. Since Γn−1 ⊂ Γn, it is clear that

∥rn∥ℓ2(Rm) ≤
∥∥rn−1

∥∥
ℓ2(Rm)

is always accomplished. A strict inequality can be obtained observing that the residual
in WOMP or RWOMP, temporarily denoted rnOMP , has an energy no larger than that
for WGP, RWGP, WMP or RWMP, temporarily denoted rnGP and rnMP , since yn

GP as
well as yn

MP are elements from Vn.
Therefore, if conditions of Theorems 2.3 are verified (for WGP) or 3.1 (for RWGP)

we can apply Theorem 4.1 to get

∥rnOMP∥ℓ2(Rm) ≤ ∥rnGP∥ℓ2(Rm) ≤ Ck

∥∥rn−1
GP

∥∥
ℓ2(Rm)

≤ Cn
k

∥∥r0GP

∥∥
ℓ2(Rm)

≤ Cn
k ∥y∥ℓ2(Rm) , (4.15)

with Ck < 1, the constant of Theorem 4.1.
Analogously, but using Theorem 4.7 we have

∥rnOMP∥ℓ2(Rm) ≤ C
′n
k ∥y∥ℓ2(Rm) , (4.16)

with C ′
k < 1 the constant of Theorem 4.7. Among the constants Ck and C ′

k the
relation is Ck < C ′

k since

Ck < C ′
k ⇔ 1− δk

k(1 + δk)
>

(1− δk)
2

k
⇔ 1

1 + δk
> 1− δk

⇔ 1 > 1− δ2k,

and the last inequality is true because 0 < δk < 1. Therefore, (4.15) gives faster
convergence than (4.16) and it proves that GP algorithms converge faster than MP
algorithms.
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Since rnOMP is a vector perpendicular to Vn, the constant in (4.15) could be improved,
at least in principle. Since

rnOMP = y − yn = y −ΦΓnΦ†
Γny,

where Φ†
Γn is the pseudo-inverse of ΦΓn , we have to study

∥rnOMP∥
2
ℓ2(Rm) = ∥y∥2ℓ2(Rm) − ⟨y,ΦΓnΦ†

Γny⟩ − ⟨ΦΓnΦ†
Γny,y⟩

+
∥∥∥ΦΓnΦ†

Γny
∥∥∥2

ℓ2(Rm)
. (4.17)

We are not yet able to find a bound for (4.17) of the form

∥rnOMP∥ℓ2(Rm) ≤ Bn
k ∥y∥ℓ2(Rm) (4.18)

with BK < Ck. In the case that conditions of Theorems 2.3 and 3.1 are satisfied

(for example, if δk+1 < α1−δk√
k

for WOMP and δk+1

(1−δk)1/2
< α̃ < (1−δk)

1/2
√
k

for RWOMP)

inequalities (4.15) and (4.16) are trivial if n ≥ k since algorithms of type OMP identify
the support of a k-sparse signal x in as much k iterations, and then rn = 0.

Therefore, it is only interesting to find bounds of the form (4.18) from expression
(4.17) if it is satisfied with values of δk+1 and δk less restrictive than those in Theorems
2.3 and 3.1, for which algorithms do not identify the support of x.

5. Behavior of the selection rules for some random matrices

The reader can find in [13] a way to construct matrices that satisfy RIP deter-
ministically. These matrices are of order m × N with m = p2 (p a prime number)
and N = pr+1, 0 < r < p, and satisfy RIP with k < p

r
+ 1 and δk = (k − 1)r/p.

Therefore, m = p2 > (k − 1)2r2 > (k − 1)2; which gives a value of m much larger
than the necessary to recover a k-sparse signal with the ℓ1 minimization which is
m ≥ Ck log(N/k).

It is known (see [3]) that there exist random matrices that satisfy RIP with param-
eter δk for any m ≥ Ck log(N/k) with probability greater than 1 − 2e−c′m. Among
those are the matrices that satisfy an inequality known as concentration of mea-
sure, namely,

P
{∣∣∣∥Φ(ω)x∥ℓ2(Rm) − ∥x∥ℓ2(RN )

∣∣∣ ≥ ε ∥x∥2ℓ2(RN )

}
≤ 2emc0(ε), 0 < ε < 1, (5.1)

where the probability is taken over all random matrices Φ(ω) of order m × N and
c0(ε) > 0 is a constant that depends only on ε.

An example of such matrices are those Φ = (ϕi,j) such that ϕi,j is an independent
Gaussian random variable N(0, 1/

√
m), that is, with mean 0 and standard deviation

1/
√
m. In this case we have c0(ε) =

ε2

4
− ε3

6
(see [10]).

Another example are the matrices whose entries are independent Bernoulli random
variables with values {−1/

√
m, 1/

√
m}, with probability 1/2 each. In this case we

also have c0(ε) =
ε2

4
− ε3

6
(see [1]).

In this section we will study the behavior of the selection rules and algorithms given
in 2.1 and 3 with respect to the random matrices Φ as just described above. The aim
is to prove directly that this kind of matrices select elements of the support of a k-
sparse signal with high probability, following the reasoning given in [31] for Orhogonal
Matching Pursuit (OMP).
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We start with a result on random processes (see [31] and the references cited in this
article), whose proof is given for completeness:

Lemma 5.1. a) Let z be a vector with dimension m whose components are Gauss-
ian r.v. N(0, 1/

√
m) i.i.d. Independently a vector u unitary in ℓ2(Rm) is

chosen. We have, for 0 < ε ≤ 1,

P {|⟨u, z⟩| ≥ ε} ≤ e−
ε2

2
m. (5.2)

b) Let w a vector of dimension m whose entries are symmetric Bernoulli r.v.
{−1/

√
m, 1/

√
m} i.i.d. Independently a vector u unitary in ℓ2(Rm) is chosen.

We have, for 0 < ε ≤ 1,

(5.3)

P {|⟨u,w⟩| ≥ ε} ≤ 2e−
ε2

2
m.

Proof. The inner product ⟨u, z⟩ =
∑m

i=1 uizi is a Gaussian r.v. (the sum of
Gaussian r.v. is a Gaussian r.v.) with mean E {⟨u, z⟩} =

∑m
i=1 uiE {zi} = 0 and

standard deviation

(E
{
|⟨u, z⟩|2

}
)1/2 = (

m∑
i=1

u2
iE

{
z2i
}
+

m∑
i=1

∑
j ̸=i

uiujE {zizj})1/2 =
1√
m
,

since the r.v. zi are independents and that u, unitary, is independent from z. Hence,
since |⟨u, z⟩| is symmetric

P {|⟨u, z⟩| ≥ ε} = 2P {⟨u, z⟩ ≥ ε} = 2

√
m√
2π

∫ ∞

ε

e−
1
2
mx2

dx =

√
2

π

∫ ∞

ε
√
m

e−
y2

2 dy (5.4)

making the change of variable
√
mx = y. Let

I =

∫ ∞

ε
√
m

e−
y2

2 dy.

We have

I2 =

(∫ ∞

ε
√
m

e−
y2

2 dy

)(∫ ∞

ε
√
m

e−
x2

2 dx

)
=

∫ ∞

ε
√
m

(∫ ∞

ε
√
m

e−
y2+x2

2 dy

)
dx

≤
∫
Rε,m

∫
e−

y2+x2

2 dxdy,

where

Rε,m = {(x, y) = w ∈ R2 : x, y ≥ 0, ∥w∥2 ≥ ε
√
2m}.

Passing to polar coordinates

I2 ≤
∫ π/2

0

∫ ∞

ε
√
2m

e−
r2

2 rdrdθ =
π

2

[
−e−

r2

2

]∞
ε
√
2m

=
π

2
e−

ε2m
2 .

Therefore, I ≤
√

π
2
e−

ε2m
2 , which substituting in (5.4) yields (5.2).
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b) In this case the Hoeffding inequality can be applied (see Theorem 4 in [19]) to
get

P {|⟨u,w⟩ ≥ ε|} = 2P

{
m∑
i=1

uiwi ≥ ε

}
= 2P

{
m∑
i=1

uiwi − E

{
m∑
i=1

uiwi

}
≥ ε

}
= 2e−2ε2/

∑m
i=1(ui/

√
m−(−ui/

√
m))2 = 2e−

ε2m
2 ,

since E {
∑m

i=1 uiwi} =
∑m

i=1 uiE {wi} = 0 because u is independent from the r.v. wi

and ∥u∥2 = 1. �

In this section we will consider random matrices Φ(ω) ∈ Rm×N that satisfy next
conditions, similar to those conditions for admissible matrices in [31]:

(M1) The columns of Φ(ω) are statistically independents.

(M2) For each column ϕj(ω), j = 1, . . . , N , of Φ(ω) we have E
{
∥ϕj(ω)∥2ℓ2(Rm)

}
= 1.

(M3) Let u ∈ Rm a vector with ∥u∥ℓ2(Rm) ≤ 1. If ϕ(ω) is a column of Φ(ω) indepen-
dent from u,

P {|⟨ϕ(ω),u⟩| ≥ ε} ≤ q1e
−c1ε2m,

with q1, c1 constants, q1 ≥ 1.
(M4) For every set Γ ⊂ {1, . . . , N} with |Γ| ≤ k < N and for every r ∈ span (ΦΓ(ω))

we have

P
{
∥Φ∗

Γ(ω)r∥ℓ2(RΓ) ≥
1

2
∥r∥ℓ2(Rm)

}
≥ 1− q2D

ke−c2m,

with q2, D and c2 constants, q2, D > 1.

These properties are satisfied by the Gaussian and Bernoulli random matrices as
described at the beginning of this section. Property (M3) es the content of Lemma
5.1 (observe that if ∥u∥2 ≤ 1 Lemma 5.1 is also verified since if we substitute u for
a unitary vector in its direction then the probability increases) and condition (M4) is
proved in Lemma 5.1 in [3], where a proof is given from a concentration of measure
inequality as that in (5.1).

5.1. Probabilistic support identification for relaxed algorithms. In this sec-
tion we show that matrices satisfying (M1), (M2), (M3) and (M4) allow to identify
indices in the support of a k-sparse signal with high probability. The result follows
the arguments in [31], with necessary modifications to fit the relaxed selection rule
Ĩ(α̃) given in (3.1).

Theorem 5.2. Let Φ(ω) ∈ Rm×N be a random matrix satisfyiing (M1), (M2), (M3)
and (M4). Let x ∈ RN with supp (x) = Γ♯ y

∣∣Γ♯
∣∣ ≤ k < N . Sea y = Φx. Suppose

that α̃ ≤ 1/2
√
k and given l, 1 ≤ l < N ,

m ≥ max{ 1

c1α̃2
ln q3l(N − k),

2k

c2
lnD}, (5.5)

with q3 = q1 + q2. Algorithms RWMP, RWOMP y RWGP, with selection rule Ĩn(α̃)
given by(3.1), identify elements from Γ♯ in the first l iterations with probability greater
or equal to

1− q3l(N − k)e−c1α̃2m.
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Proof. For any of the given algorithms with selection rule Ĩn(α̃), let En be the set
of matrices that identify elements from Γ♯ = sop (x) at iteration n, n = 1, 2, 3, . . ..

We start bounding P {E1}, that is, the probability that a matrix identify elements
from Γ♯ in the first iteration. For a random matrix Φ(ω) to belong to E1 it is enough
that the next two conditions are satisfied:

(A1) That Ĩ1(α̃) ̸= ∅.
(B1) For u0 = r0/ ∥r0∥ℓ2(Rm) (we remind that r0 = y) it should be true that∥∥Φ∗

Γ♯c(ω)r
0
∥∥
ℓ∞(RΓ♯c

)

∥r0∥ℓ2(Rm)

= ∥Φ∗
Γ♯c(ω)u0∥ℓ∞(RΓ♯c

)
= max

j∈Γ♯c
|⟨u0, ϕj(ω)⟩| < α̃.

With abuse of notation, we call A1 and B1 the sets of matrices that satisfy (A1) and
(B1) respectively. We have

P {E1} ≥ P {A1 ∩B1} = P {A1|B1}P {B1} . (5.6)

To estimate P {B1} we write

P {B1} = P
{
max
j∈Γ♯c

|⟨u0, ϕj(ω)⟩| < α̃

}
= P

{
∩j∈Γ♯c{|⟨u0, ϕj(ω)⟩| < α̃}

}
=

∏
j∈Γ♯c

P {|⟨u0, ϕj(ω)⟩| < α̃}

due to the independence of the columns ϕj from Φ(ω) expressed in (M1). Since
u0 = y/ ∥y∥2 is unitary and y = Φx = ΦΓ♯xΓ♯ only depends on the columns ϕj with
j ∈ Γ♯, u0 is independent from the columns ϕj with j ∈ Γ♯c, and we can use (M3) to
get

P {B1} ≥
∏
j∈Γ♯c

(1− q1e
−c1α̃2m) = (1− q1e

−c1α̃2m)N−k ≥ 1− q1(N − k)e−c1α̃2m, (5.7)

since (1− x)n ≥ 1− nx if n ≥ 1 and x ≤ 1.
On the other hand, conditioned to B1 we have that Φ ∈ A1 ⇔ ∥ΦΓ♯y∥∞ ≥ α̃ ∥y∥2.

Since α̃ ≤ 1
2
√
k
,

P {A1|B1} = P
{
∥Φ∗

Γ♯(ω)y∥ℓ∞(RΓ♯
)
≥ α̃ ∥y∥ℓ2(Rm)

}
≥ P

{
∥Φ∗

Γ♯(ω)y∥ℓ2(RΓ♯
)
≥ α̃

√
k ∥y∥ℓ2(Rm)

}
≥ P

{
∥Φ∗

Γ♯(ω)y∥ℓ2(RΓ♯
)
≥ 1

2
∥y∥ℓ2(Rm)

}
.

Using now (M4) we deduce (observe that y = Φx, therefore y ∈ span (ΦΓ♯)):

P {A1|B1} ≥ 1− q2D
ke−c2m ≥ 1− q2e

−c2m/2 (5.8)

taking −c2m+ k lnD ≤ −c2m/2, that is, m ≥ 2k
c2
lnD.

Substituting (5.7) and (5.8) in (5.6) we get

P {E1} ≥ (1− q1(Nk)e
−c1α̃2m)(1− q2e

−c2m/2)

≥ 1− q1(N − k)e−c1α̃2m − q2e
−c2m/2

≥ 1− q3(N − k)e−c1α̃2m, (5.9)
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since α̃ < 1/2, with q3 = q1 + q2.
We have proved the result for l = 1. Suppose the result is true until iteration l− 1,

this is,

P
{
∩l−1

n=1En

}
≥ 1− q3(l − 1)(N − k)e−c1α̃2m. (5.10)

Until iteration l we have

P
{
∩l

n=1En

}
= P

{
El| ∩l−1

n=1 En

}
P
{
∩l−1
n=1En

}
. (5.11)

For a random matrix Φ(ω) to belong to El it is enough that next two conditions are
satisfied:

(Al) That Ĩl(α̃) ̸= ∅.
(Bl) For ul−1 = rl−1/

∥∥rl−1
∥∥
2
it should be true that∥∥Φ∗

Γ♯c(ω)r
l−1

∥∥
ℓ∞(RΓ♯c

)

∥rl−1∥ℓ2(Rm)

= ∥Φ∗
Γ♯c(ω)ul−1∥ℓ∞(RΓ♯c

)
= max

j∈Γ♯c
|⟨ul−1, ϕj(ω)⟩| < α̃.

With abuse of notation, we call Al and Bl the sets of matrices that satisfy (Al) and
(Bl) respectively. We have

P
{
El| ∩l−1

n=1 En

}
≥ P

{
Al|Bl ∩ (∩l−1

n=1En)
}
P
{
Bl| ∩l−1

n=1 En

}
. (5.12)

With the same reasoning that leads to (5.7) we get

P
{
Bl| ∩l−1

n=1 En

}
≥ 1− q1(N − k)e−c1α̃2m (5.13)

since we are conditioned to the fact that the algorithm has selected indices from Γ♯

until iteration l − 1, we have that rl−1 only depends on the columns ϕj with j ∈ Γ♯,
therefore ul−1 is a unitary vector independent from the columns ϕj with j ∈ Γ♯c.

Conditioned to Bl, Φ ∈ Al ⇔
∥∥ΦΓ♯(ω)rl−1

∥∥
∞ ≥ α̃

∥∥rl−1
∥∥
2
. Since α̃ ≤ 1

2
√
k
, we have

P
{
Al|Bl ∩ (∩l−1

n=1En)
}

= P
{
{
∥∥Φ∗

Γ♯(ω)r
l−1

∥∥
ℓ∞(RΓ♯

)
≥ α̃

∥∥rl−1
∥∥
ℓ2(Rm)

}| ∩l−1
n=1 En

}
≥ P

{
{∥Φ∗

Γ♯(ω)y∥ℓ2(RΓ♯
)
≥ α̃

√
k
∥∥rl−1

∥∥
ℓ2(Rm)

}| ∩l−1
n=1 En

}
≥ P

{∥∥Φ∗
Γ♯(ω)r

l−1
∥∥
ℓ2(RΓ♯

)
≥ 1

2

∥∥rl−1
∥∥
ℓ2(Rm)

| ∩l−1
n=1 En

}
.

It is now possible to use (M4) since rl−1 ∈ span (ΦΓ♯) (which is not hard to prove)
and since we are computing the probability conditioned to the fact that the algorithm
has selected indices from Γ♯. Hence, with the same reasoning that leads to (5.8) we
get

P
{
Al|Bl ∩ (∩l−1

n=1En)
}
≥ 1− q2e

−c2m/2. (5.14)

From (5.13) and (5.14) we deduce

P
{
El| ∩l−1

n=1 En

}
≥ 1− q3(N − k)e−c1α̃2m (5.15)

reasoning as in the chain of inequalities that leads to (5.9). Substitute (5.15) and
(5.10) in (5.11) to get

P
{
∩l

n=1En

}
≥ (1− q3(N − k)e−c1α̃2m/2)(1− q3(l − 1)(N − k)e−c1α̃2m)

≥ 1− q3(N − k)e−c1α̃2m/2 − q3(l − 1)(N − k)e−c1α̃2m

= 1− q3l(N − k)e−c1α̃2m, (5.16)
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which is the desired estimation. Condition (5.5) assures that this probability is greater
than zero. �

Remark 5.3. Taking α̃ = 1
2
√
k
, condition (5.5) is written

m ≥ max{4k
c1

ln q3l(N − k),
2k

c2
lnD}.

Hence, if we take m ≥ Ck ln l(N − k), with C large enough, inequality (5.5) is guar-
anteed.

For RWOMP with parameter α̃ each iteration adds one element at least, as long as
Ĩn(α̃) ̸= ∅. In this situation, RWOMP identifies every index within Γ♯ in as much k
iteration. Besides, the OMP type algorithms recover any k-sparse vector x once the
support is known. Since k(N − k) ≤ N2/4 if k < N , we have the following corollary.

Corollary 5.4. Suppose the same hypothesis that in Theorem 5.2 substituting (5.5)
by

m ≥ max{ 1

c1α̃2
ln q3

N2

4
,
2k

c2
lnD}. (5.17)

Then, RWOMP algorithm recovers the k-sparse vector x in the first k iterations with
probability greater or equal to

1− q3
N2

4
e−c1α̃2m.

Remark 5.5. Suppose we want to obtain the result in Theorem 5.2 with a probability
greater than or equal to 1− β for a number β ∈ (0, 1). It would be enough to take

1− q3l(N − k)e−c1α̃2m ≥ 1− β.

This is accomplished if

βec1α̃
2m ≥ q3l(N − k),

for which it is enough to take

m ≥ max{ 2

c1α̃2
ln

q3l(N − k)

β
,
2k

c2
lnD}. (5.18)

To be sure that

ln
q3l(N − k)

β
> 1

for all q3 ≥ 1, l < N and k < N , it suffices to take β ∈ (0, 1/e).
An analogous comment can be done for Corollary 5.4, and in this case (5.17) should

be substituted by

m ≥ max{ 1

c1α̃2
ln

q3N
2

4β
,
2k

c2
lnD} (5.19)

for RWOMP to recover a k-sparse signal x within the first k iterations with probability
greater than or equal to 1− β.
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5.2. Probabilistic support identification with selection rule I(α). In this sec-
tion we will study the behavior of matrices satisfying (M1), (M2), (M3) and (M4)
with respect to the algorithms with selection rule

In(α) = {i :
∣∣⟨ϕi, r

n−1⟩
∣∣ ≥ α

∥∥Φ∗rn−1
∥∥
ℓ∞(RN )

}, (5.20)

0 < α ≤ 1. An advantage of In(α) with respect to the selection rule Ĩn(α̃) given in
(3.1) is that In(α) ̸= ∅ for all α ∈ (0, 1) and for all n = 1, 2, . . ..

There is a disadvantage, however. If we want to prove that In(α) ⊂ Γ♯ = supp (x)
we need ∥∥Φ∗

Γ♯cr
n−1

∥∥
∞

∥Φ∗rn−1∥∞
< α

to be satisfied. If we wrote un−1 = rn−1/ ∥Φ∗rn−1∥∞ as in the proof of Theorem 5.2
we would not have ∥un−1∥2 ≤ 1, and could not use (M3). Property (M4) saves this
situation as shown in the next result.

Theorem 5.6. Choose Φ(ω) ∈ Rm×N a random matrix satisfying (M1), (M2), (M3)
y (M4). Let x ∈ RN with supp (x) = Γ♯ and

∣∣Γ♯
∣∣ ≤ k < N . Let y = Φx. Suppose

that

m ≥ max{ 4k

c1α2
ln q3l(N − k),

2k

c2
lnD}, (5.21)

with q3 = q1 + q2. Algorithms WMP, WOMP and WGP, with selection rule In(α)
given in 5.20, identify elements from Γ♯ in the first l iterations with probability greater
than or equal to

1− q3l(N − k)e−c1
α2

4k
m.

Proof. For any of the given algorithms with selection rule In(α), let En be the set
of matrices that identify elements from Γ♯ = supp (x) at iteration n, n = 1, 2, . . ..

We start bounding P {E1}, that is, the probability that a matrix identify elements
from Γ♯ in the first iteration. For a random matrix Φ(ω) belong to E1 it is enough
that ∥∥Φ∗

Γ♯c(ω)r
0
∥∥
ℓ∞(RΓ♯c

)∥∥Φ∗
Γ♯(ω)r0

∥∥
ℓ∞(RN )

< α, (r0 = y), (5.22)

is verified. Let u0 = y/2
∥∥Φ∗

Γ♯y
∥∥; we have∥∥Φ∗

Γ♯c(ω)y
∥∥
∞∥∥Φ∗

Γ♯(ω)y
∥∥
∞

≤
√
k
∥∥Φ∗

Γ♯c(ω)y
∥∥
∞∥∥Φ∗

Γ♯(ω)y
∥∥
2

= 2
√
k ∥Φ∗

Γ♯c(ω)u0∥∞

= 2
√
k sup

j∈Γ♯c

|⟨ϕj(ω),u0⟩| . (5.23)

Let A1 be the set of matrices satisfying (M1), (M2), (M3) and (M4) such that

sup
j∈Γ♯c

|⟨ϕj(ω),u0⟩| <
α

2
√
k
. (5.24)

From (5.23) we deduce that if Φ(ω) ∈ A1, then Φ(ω) satisfy (5.22) and we have
Φ(ω) ∈ E1. Therefore,

P {E1} ≥ P {A1} . (5.25)
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Let B1 be the set of matrices Φ(ω) satisfying (M1), (M2), (M3) and (M4) such that

∥Φ∗
Γ♯(ω)y∥2 ≥

1

2
∥y∥2 . (5.26)

From (5.25) we deduce

P {E1} ≥ P {A1} ≥ P {A1 ∩B1} = P {A1|B1}P {B1} . (5.27)

Since y = Φx = ΦΓ♯xΓ♯ ∈ span (ΦΓ♯) from (M4) we deduce

P {B1} ≥ 1− q2D
ke−c2m ≥ 1− q2e

−c2m/2 (5.28)

taking −c2m + k lnD ≤ −c2m/2, this is, m ≥ 2k
c2
lnD. Conditioned to B1 the vector

u0 = y/2
∥∥Φ∗

Γ♯y
∥∥
2
satisfy

∥u0∥2 =
1

2

∥y∥2∥∥Φ∗
Γ♯y

∥∥
2

≤ 1.

Therefore, to bound

P {A1|B1} = P

{
sup
j∈Γ♯c

|⟨ϕj(ω),u0⟩| <
α

2
√
k
|B1

}
we use (M3) to get

P {A1|B1} = P
{
∩j∈Γ♯c{|⟨ϕj(ω),u0⟩| <

α

2
√
k
}|B1

}
=

∏
j∈Γ♯c

P
{
|⟨ϕj(ω),u0⟩| <

α

2
√
k
|B1

}
≥ (1− q1e

−c1
α2

4k
m)N−k

due to the independence of the columns ϕj ofΦ(ω) expressed in (M1) and because u0 =
y/2

∥∥Φ∗
Γ♯y

∥∥
2
only depends on the columns ϕj with j ∈ Γ♯, and therefore independent

of the columns ϕj with j ∈ Γ♯c.
Since (1− x)n ≥ 1− nx if n ≥ 1, x ≤ 1, we can write

P {A1|B1} ≥ 1− q1(N − k)e−c1
α2

4k
m. (5.29)

Substituting (5.29) and (5.28) in (5.27) we get

P {E1} ≥ (1− q1(N − k)e−c1
α2

4k
m)(1− q2e

−c1
m
2 )

≥ 1− q1(N − k)e−c1
α2

4k
m − q2e

−c1
m
2

≥ 1− q3(N − k)e−c1
α2

4k
m (5.30)

with q3 = q1 + q2, since
α2

4k
≤ 1/4 < 1/2. This proves the result for l = 1.

Suppose that the result is true until iteration l − 1, this is

P
{
∩l−1

n=1En

}
≥ 1− q3(l − 1)(N − k)e−c1

α2

4k
m. (5.31)

Until iteration l we have

P
{
∩l

n=1En

}
= P

{
El| ∩l−1

n=1 En

}
P
{
∩l−1
n=1En

}
. (5.32)
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Write ul−1 = rl−1/2
∥∥Φ∗

Γ♯r
l−1

∥∥
2
. Let Al be the set of matrices satisfying (M1), (M2),

(M3) and (M4) such that

sup
j∈Γ♯c

|⟨ϕj(ω),ul−1⟩| <
α

2
√
k
. (5.33)

If Φ ∈ Al we have∥∥Φ∗
Γ♯c(ω)r

l−1
∥∥
∞∥∥Φ∗

Γ♯(ω)rl−1
∥∥
∞

≤
√
k
∥∥Φ∗

Γ♯c(ω)r
l−1

∥∥
∞∥∥Φ∗

Γ♯(ω)rl−1
∥∥
2

= 2
√
k ∥Φ∗

Γ♯c(ω)ul−1∥∞

= 2
√
k sup

j∈Γ♯c

|ϕj(ω),ul−1| < α,

and this is enough to assure that In(α) ⊂ Γ♯, this is, Φ ∈ El. Therefore,

P
{
El| ∩l−1

n=1 En

}
≥ P

{
Al| ∩l−1

n=1 En

}
. (5.34)

Let Bl be the set of matrices Φ(ω) satisfying (M1), (M2), (M3) and (M4) such that∥∥Φ∗
Γ♯(ω)r

n−1
∥∥
2
≥ 1

2

∥∥rn−1
∥∥
2
. (5.35)

From (5.34) we deduce

P
{
El| ∩l−1

n=1 En

}
≥ P

{
Al ∩Bl| ∩l−1

n=1 En

}
= P

{
Al|Bl ∩ (∩l−1

n=1En)
}
P
{
Bl| ∩l−1

n=1 En

}
.

(5.36)
Conditioned to Bl,

∥ul−1∥2 =
1

2

∥∥rl−1
∥∥
2∥∥Φ∗

Γ♯rl−1
∥∥
2

≤ 1

due to (5.35). By (M1) the columns ϕj of Φ(ω) are independents among them. Be-
sides, conditioned to ∩l−1

n=1En, the vector rn−1 only depends on the columns ϕj with
j ∈ Γ♯ since In(α) ⊂ Γ♯, n = 1, 2, . . . , l − 1. Hence, ul−1 is independent from the
columns ϕj with j ∈ Γ♯c and we can use (M3). Then,

P
{
Al|Bl ∩ (∩l−1

n=1En)
}

= P

{
sup
j∈Γ♯c

|⟨ϕj(ω),ul−1⟩| <
α

2
√
k
|Bl ∩ (∩l−1

n=1En)

}

=
∏
j∈Γ♯c

P
{
|⟨ϕj(ω),ul−1⟩| <

α

2
√
k
|Bl ∩ (∩l−1

n=1En)

}
≥ (1− q1e

−c1
α2

4k
m)N−k ≥ 1− q1(N − k)e−c1

α2

4k
m. (5.37)

Conditioned to ∩l−1
n=1En, it is not hard to prove that the vector rn−1 ∈ span (ΦΓ♯). We

can use (M4) to get

P
{
Bl| ∩l−1

n=1 En

}
≥ 1− q1D

ke−c2m ≥ 1− q1e
−c2m/2 (5.38)

taking −c2m+ k lnD ≤ −c2
m
2
, this is, m ≥ 2k

c2
lnD.

Substituting (5.36) y (5.38) en (5.35) and proceed as in the calculations that lead
to (5.30) to get

P
{
El| ∩l−1

n=1 En

}
≥ 1− q3(N − k)e−c1

α2

4k
m, (5.39)
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with q3 = q1 + q2. Substitute (5.39) and (5.31) in (5.32) to get

P
{
∩l

n=1En

}
≥ (1− q3(N − k)e−c1

α2

4k
m)(1− q3(l − 1)(N − k)e−c1

α2

4k
m)

≥ 1− q3(N − k)e−c1
α2

4k
m − q3(l − 1)(N − k)e−c1

α2

4k
m

= 1− q3l(N − k)e−c1
α2

4k
m,

which is what we wanted to prove. For the last probability be greater than 0 we must
take

m ≥ 4k

c1α2
ln q3l(N − k).

�

We can now state similar comments to those at the end of the proof of Theorem
5.2. We emphasize next corollary, that in the case α = 1 gives Theorem 6 of [31].

Corollary 5.7. Choose the same conditions as in Theorem 5.6, substituting (5.21) by

m ≥ C
k

α2
ln(q3N

2/4) (5.40)

with C large enough. Then, WOMP algorithm recovers the k-sparse vector x in the
first k iterations with probability greater than or equal to

1− q3
N2

4
e−c1

α2

4k
m.

6. Some Experiments.

In this section we present experiments on the sparse recovery and non sparse ap-
proximation problems for the orthogonal and gradient algorithms with the selection
rule Ĩ = Ĩ(α) given by (3.1) and compare them against the results obtained with the
more classical selection rule I = I(α) given by (2.6). In every set of experiments one
Gaussian matrix was created of order m×N . For some signals the results are shown
as percentage of elements recovered and for others we use the signal-to-noise ratio
of the energy of the original signal x ∈ RN and the energy of the difference between
the signal and the approximation a, given by

SNR = 10 log10(
∥x∥2

∥x− a∥2
).

Figure 1 shows the percentage of elements recovered with the RWOMP algorithm
with parameter α = 0.125. The Gaussian matrices generated have N = 256 and m =
10ℓ, ℓ = 1, 2, . . . , 25. The sparsity levels have been chosen to be k = 4, 12, 20, 28, 36,
(each graph corresponds to one of them). For each pair (m, k), 200 experiments were
run for different signals. The results can be compared with those obtained on Figure
1 of [31] for OMP (α = 1). The parameters N, k and m take the same value, but 1000
experiments for each set were performed in [31]. The results for RWOMP are better
that those for OMP in [31] for k = 20, 28, 36.

Next, for computational purposes, we introduce a minor modification of the RWOMP
algorithm, called k-RWOMP algorithm. At each iteration in RWOMP we keep the
k-largest elements of the orthogonal approximation xn. Figure 2 shows the results of
applying the k-RWOMP with the same parameters of the experiments described for



GREEDY TYPE ALGORITHMS FOR RIP MATRICES 25

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Percentage of success (N=256) RWOMP

P
er

ce
nt

ag
e 

re
co

ve
re

d

Number of measurements m

k=4
k=12
k=20
k=28
k=36

Figure 1. Recovery of sparse signals with RWOMP, α = 0.125. For
each set (m, k), 200 experiments were generated with one Gaussian
matrix of order m× 256. Up to k iterations are allowed.

Figure 1. As can be seen, in Figure 2 exact recovery is achieved with smaller values
of m.

The next set of experiments is done on images. We take an image of 64× 64 pixels,
which is part of Lena. Two decompositions of the wavelet transform were performed
using Daubechies 5 wavelets. The compressed sensing was done only on the detail
coefficients. The sparsity k is calculated as the integer part of 5% of L, where L is the
number of vertical, horizontal or diagonal coefficients at each decomposition level. The
number of measurements at each level is the integer part of k log2(L/k) for vertical,
horizontal and diagonal coefficients. The k-RWOMP and k-RWGP algorithms (those
with selection rule Ĩ(α) as defined in (3.1)) were run with α̃ = 0.125 and α̃ = 0.15,
respectively. The WGP algorithm (with selection rule I(α) as defined in (2.6)) was
run with α = 0.8. The relevant data is given in Figure 3. When the sparsity goes
to 10% of L it takes several minutes for the CoSaMP algorithm to stop, whereas for
the rest of algorithms it takes almost the same time. For each algorithm, the running
times and the SNR’s differ for different α’s and, moreover, they may even differ with
the same α’s due to the randomness of Φ. Also visually there is an improvement
for the k-Relaxed Weak algorithms for which there are less artifacts in the smoother
regions of the image. Judging by the SNR, k-RWGP gives the best approximation.
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Figure 2. Recovery of sparse signals with k−RWOMP, with the same
parameters as in Figure 1. The results are better than in Figure 1 for
RWOMP. Up to k iterations are allowed.
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