LEBESGUE-TYPE INEQUALITIES FOR QUASI-GREEDY BASES

EUGENIO HERNÁNDEZ

Abstract

We show that for quasi-greedy bases in real Banach spaces the error of the thresholding greedy algorithm of order N is bounded by the best N-term error of approximation times a constant which depends on the democracy functions and the quasi-greedy constant of the basis.

1. Introduction

Let $\left(\mathbb{B},\|\cdot\|_{\mathbb{B}}\right)$ be a real Banach space with a countable seminormalized basis $\mathcal{B}=$ $\left\{e_{k}: k \in \mathbb{N}\right\}$. Let $\Sigma_{N}, N=1,2,3, \ldots$ be the set of all $y \in \mathbb{B}$ with at most N non-null coefficients in the unique basis representation. For $x \in \mathbb{B}$, the N-term error of approximation with respect to \mathcal{B} is

$$
\sigma_{N}(x)=\sigma_{N}(x ; \mathcal{B}, \mathbb{B}):=\inf _{y \in \Sigma_{N}}\|x-y\|_{\mathbb{B}}, \quad N=1,2,3, \ldots
$$

Given $x=\sum_{k \in \mathbb{N}} a_{k}(x) e_{k} \in \mathbb{B}$, let π denote any bijection of \mathbb{N} such that

$$
\begin{equation*}
\left|a_{\pi(k)}(x)\right| \geq\left|a_{\pi(k+1)}(x)\right| \quad \text { for all } k \in \mathbb{N} \tag{1.1}
\end{equation*}
$$

The thresholding greedy algorithm of order N (TGA) is defined by

$$
G_{N}(x)=G_{N}^{\pi}(x ; \mathcal{B}, \mathbb{B}):=\sum_{k=1}^{N} a_{\pi(k)}(x) e_{\pi(k)}
$$

It is not always true that $G_{N}(x) \rightarrow x($ in $\mathbb{B})$ as $N \rightarrow \infty$. A basis \mathcal{B} is called quasigreedy if $G_{N}(x) \rightarrow x$ (in \mathbb{B}) as $N \rightarrow \infty$ for all $x \in \mathbb{B}$. It turns out that this is equivalent (see Theorem 1 in [9) to the existence of some constant C such that

$$
\begin{equation*}
\sup _{N}\left\|G_{N}(x)\right\|_{\mathbb{B}} \leq C\|x\|_{\mathbb{B}} \quad \text { for all } x \in \mathbb{B} \tag{1.2}
\end{equation*}
$$

It is convenient to define the quasi-greedy constant K to be the least constant such that

$$
\left\|G_{N}(x)\right\|_{\mathbb{B}} \leq K\|x\|_{\mathbb{B}} \quad \text { and } \quad\left\|x-G_{N}(x)\right\|_{\mathbb{B}} \leq K\|x\|_{\mathbb{B}}, \quad x \in \mathbb{B} .
$$

Given a basis \mathcal{B} in a Banach space \mathbb{B} a Lebesgue-type inequality is an inequality of the form

$$
\left\|x-G_{N}(x)\right\|_{\mathbb{B}} \leq C v(N) \sigma_{N}(x), \quad x \in \mathbb{B}
$$

where $v(N)$ is a nondecreasing function of N. For a survey of Lebesgue-type inequalites see [6] and the references given there.

[^0]The purpose of this note is to find Lebesgue-type inequalities for quasi-greedy basis in a Banach space.

For a seminormalized collection $\mathcal{B}=\left\{u_{k}\right\}_{k \in \mathbb{N}}$ in a Banach space \mathbb{B} the following quantities are defined:

$$
h_{r}(N)=\sup _{|\Gamma|=N}\left\|\sum_{k \in \Gamma} u_{k}\right\|, \quad h_{l}(N)=\inf _{|\Gamma|=N}\left\|\sum_{k \in \Gamma} u_{k}\right\|,
$$

and

$$
\begin{equation*}
\mu(N)=\sup _{1 \leq k \leq N} \frac{h_{r}(k)}{h_{l}(k)}, \quad N=1,2,3, \ldots \tag{1.3}
\end{equation*}
$$

These functions are implicit in earlier works on N-term approximation and explicitly defined in [4]. The function $\mu(N)$ is defined in [9]. The functions h_{r} and h_{l} are called right and left democracy functions of \mathcal{B} (see [2] and [3]).

Our main result is the following:
Theorem 1.1. Let $\mathcal{B}=\left\{e_{k}\right\}_{k=1}^{\infty}$ be a quasi-greedy basis in a real Banach space \mathbb{B}, and let K be the quasi-greedy constant of \mathcal{B}. Then for all $N=1,2,3, \ldots$ and all $x \in \mathbb{B}$,

$$
\left\|x-G_{N}(x)\right\|_{\mathbb{B}} \lesssim 8 K^{5}\left(\sum_{k=1}^{N} \mu(k) \frac{1}{k}\right) \sigma_{N}(x) .
$$

Before proving Theorem 1.1 we make some remarks about the function

$$
v(N):=\sum_{k=1}^{N} \mu(k) \frac{1}{k} .
$$

Obviously, μ is increasing so that $v(N) \lesssim \mu(N) \log N$. In some cases this inequality is an equivalence. For example if $\mu(N) \approx C$ (that is \mathcal{B} is democratic) then $v(N) \approx \log N$. In other cases the inequality can be improved. It can be proved that if \mathcal{B} is quasigreedy, μ is doubling, that is there exists a constant $D \geq 1$ such that $\mu(2 k) \leq$ $D \mu(k), k \in \mathbb{N}$ (see the Appendix). Under this condition it is not difficult to prove that

$$
v(N) \approx \sum_{k=1}^{\log _{2} N} \mu\left(2^{k}\right) .
$$

Moreover, if we assume that μ has a positive dilation index, that is $\mu \in \mathbb{W}_{+}$in the terminology of [3, by Lemma 2.1 in [3] we have

$$
v(N) \lesssim \mu\left(2^{\log _{2} N}\right)=\mu(N)
$$

so that in this situation we do not need the $\log N$ factor.
We prove Theorem 1.1 in Section 2. Section 3 contains some comments and open questions.

2. Proof of Theorem 1.1

We need the following result from [1]: let $\mathcal{B}=\left\{e_{k}\right\}_{k=1}^{\infty}$ be a quasi-greedy bases with constant K in a real Banach space. For any finite set $\Gamma \subset \mathbb{N}$ and any real numbers $\left\{a_{k}\right\}_{k \in \Gamma}$ we have

$$
\begin{equation*}
\frac{1}{4 K^{2}}\left(\min _{\Gamma}\left|a_{k}\right|\right)\left\|\sum_{k \in \Gamma} e_{k}\right\|_{\mathbb{B}} \leq\left\|\sum_{k \in \Gamma} a_{k} e_{k}\right\|_{\mathbb{B}} \leq(2 K)\left(\max _{\Gamma}\left|a_{k}\right|\right)\left\|\sum_{k \in \Gamma} e_{k}\right\|_{\mathbb{B}} \tag{2.1}
\end{equation*}
$$

(see Lemma 2.1 and Lemma 2.2 in [1]).
Lemma 2.1. Let \mathcal{B} and \mathbb{B} as in Theorem 1.1. Suppose that there exists $C_{1}>0$ such that for all $\Gamma \subset \mathbb{N}$ finite

$$
\begin{equation*}
\left\|\sum_{k \in \Gamma} e_{k}\right\|_{\mathbb{B}} \leq C_{1} \eta(|\Gamma|) \tag{2.2}
\end{equation*}
$$

for some η increasing and doubling (for example, $\eta(N)=h_{r}(N)$ and $C_{1}=1$). Then there exists $C=C_{\eta}$ such that for any $x=\sum_{k \in \mathbb{N}} a_{k}(x) e_{k} \in \mathbb{B}$

$$
\begin{equation*}
\|x\|_{\mathbb{B}} \leq 2 K C_{\eta} \sum_{k=1}^{\infty} a_{k}^{*}(x) \eta(k) \frac{1}{k} \tag{2.3}
\end{equation*}
$$

where $\left\{a_{k}^{*}(x)\right\}$ is a decreasing rearrangement of $\left\{\left|a_{k}(x)\right|\right\}$ as in (1.1).
Proof. Let π be a bijection of \mathbb{N} that gives $\left\{a_{k}^{*}(x)\right\}$, that is $\left\{a_{k}^{*}(x)\right\}=\left|a_{\pi_{k}}(x)\right|$. Since \mathcal{B} is quasi-greedy

$$
\lim _{N \rightarrow \infty} \sum_{k=1}^{N} a_{\pi_{k}}(x) e_{\pi_{k}} \rightarrow x(\text { convergence in } \mathbb{B})
$$

Thus

$$
\begin{aligned}
\|x\|_{\mathbb{B}} & =\left\|\sum_{k=1}^{\infty} a_{\pi(k)}(x) e_{\pi(k)}\right\|_{\mathbb{B}}=\left\|\sum_{j=0}^{\infty} \sum_{2^{j} \leq k<2^{j+1}} a_{\pi(k)}(x) e_{\pi(k)}\right\|_{\mathbb{B}} \\
& \leq \sum_{j=0}^{\infty}\left\|\sum_{2^{j} \leq k<2^{j+1}} a_{\pi(k)}(x) e_{\pi(k)}\right\|_{\mathbb{B}} .
\end{aligned}
$$

We now use first the right hand side inequality of (2.1) and then condition (2.2) to deduce

$$
\begin{aligned}
\|x\|_{\mathbb{B}} & =\sum_{j=0}^{\infty}(2 K)\left|a_{\pi\left(2^{j}\right)}(x)\right|\left\|_{2^{j} \leq k<2^{j+1}} e_{\pi(k)}\right\|_{\mathbb{B}} \leq(2 K) C_{1} \sum_{j=0}^{\infty}\left|a_{\pi\left(2^{j}\right)}(x)\right| \eta\left(2^{j}\right) \\
& =(2 K) C_{1} \sum_{j=0}^{\infty} a_{2^{j}}^{*} \eta\left(2^{j}\right)
\end{aligned}
$$

Inequality (2.3) follows since η is doubling and increasing.
Lemma 2.2. Let \mathcal{B} and \mathbb{B} as in Theorem 1.1. Suppose that there exists $C_{2}>0$ such that for all $\Gamma \subset \mathbb{N}$ finite

$$
\begin{equation*}
\frac{1}{C_{2}} \eta(|\Gamma|) \leq\left\|\sum_{k \in \Gamma} e_{k}\right\|_{\mathbb{B}} \tag{2.4}
\end{equation*}
$$

for some function η (for example, $\eta(N)=h_{l}(N)$ and $C_{2}=1$). Then for any $x=$ $\sum_{k \in \mathbb{N}} a_{k}(x) e_{k} \in \mathbb{B}$

$$
\begin{equation*}
\left[\sup _{\Gamma} a_{k}^{*}(x) \eta(k)\right] \leq C_{2}\left(4 K^{3}\right)\|x\|_{\mathbb{B}}, \tag{2.5}
\end{equation*}
$$

where $\left\{a_{k}^{*}(x)\right\}$ is a decreasing rearrangement of $\left\{\left|a_{k}(x)\right|\right\}$ as in (1.1).
Proof. Let π be as in the proof of Lemma [2.1, For any $k \in \mathbb{N}$ we use condition (2.4) and then the left hand side inequality of (2.1) to obtain

$$
\left|a_{\pi(k)}(x)\right| \eta(k) \leq C_{2}\left|a_{\pi(k)}(x)\right|\left\|\sum_{j=1}^{k} e_{\pi(j)}\right\| \leq C_{2}\left(4 K^{2}\right)\left\|\sum_{j=1}^{k} a_{\pi(j)} e_{\pi(j)}\right\| .
$$

We use (1.2) to deduce $\left|a_{\pi(k)}(x)\right| \eta(k) \leq C_{2}\left(4 K^{3}\right)\|x\|_{\mathbb{B}}$. The result follows by taking the supremum on $k \in \Gamma$.

For $\Gamma \subset \mathbb{N}$ and $x=\sum_{k \in \mathbb{N}} a_{k}(x) e_{k} \in \mathbb{B}$ define the projection operator over Γ as

$$
S_{\Gamma}(x):=\sum_{k \in \Gamma} a_{k}(x) e_{k} .
$$

Lemma 2.3. Let \mathcal{B} and \mathbb{B} as in Theorem 1.1. For $\Gamma \subset \mathbb{N}$ finite

$$
\left\|S_{\Gamma}(x)\right\|_{\mathbb{B}} \lesssim\left(8 K^{4}\right)\left(\sum_{k=1}^{|\Gamma|} \mu(k) \frac{1}{k}\right)\|x\|_{\mathbb{B}}
$$

Proof. Apply Lemma 2.1 with $\eta(N)=h_{r}(N)$ to obtain

$$
\begin{aligned}
\left\|S_{\Gamma}(x)\right\|_{\mathbb{B}} & =\left\|\sum_{k \in \Gamma} a_{k}(x) e_{k}\right\|_{\mathbb{B}} \lesssim(2 K) \sum_{k=1}^{|\Gamma|} a_{k}^{*}(x) h_{r}(k) \frac{1}{k} \\
& \leq(2 K) \sum_{k=1}^{|\Gamma|} a_{k}^{*}(x) \frac{h_{r}(k)}{h_{l}(k)} h_{l}(k) \frac{1}{k} \\
& \leq(2 K)\left[\sup _{k} a_{k}^{*}(x) h_{l}(k)\right] \sum_{k=1}^{|\Gamma|} \mu(k) \frac{1}{k} .
\end{aligned}
$$

Use now Lemma (2.2) with $\eta(k)=h_{l}(k)$ to deduce the result.
We now prove Theorem 1.1. The proof follows arguments used in [4], [7] and [8] that were presented by V. N. Temlyakov at the Concentration week on greedy algorithms in Banach spaces and compressed sensing held on July 18-22 at Texas A\&M University.

Take $\epsilon>0$ and $N=1,2,3, \ldots$. Choose $p_{N}(x)=\sum_{k \in P} b_{k} e_{k}$ with $|P|=N$ such that

$$
\begin{equation*}
\left\|x-p_{N}(x)\right\|_{\mathbb{B}} \leq \sigma_{N}(x)+\epsilon \tag{2.6}
\end{equation*}
$$

Let Γ be the set of indices picked by the thresholding greedy algorithm after N iterations, that is

$$
G_{N}(x)=\sum_{k \in \Gamma} a_{k}(x) e_{k}, \quad|\Gamma|=N .
$$

We have, from Lemma 2.3 and (2.6)

$$
\begin{aligned}
& \left\|x-G_{N}(x)\right\|_{\mathbb{B}} \leq\left\|x-p_{N}(x)\right\|_{\mathbb{B}}+\left\|p_{N}(x)-S_{P}(x)\right\|_{\mathbb{B}}+\left\|S_{P}(x)-S_{\Gamma}(x)\right\|_{\mathbb{B}} \\
= & \left\|x-p_{N}(x)\right\|_{\mathbb{B}}+\left\|S_{P}\left(x-p_{N}(x)\right)\right\|_{\mathbb{B}}+\left\|S_{P}(x)-S_{\Gamma}(x)\right\|_{\mathbb{B}}
\end{aligned}
$$

$$
\begin{align*}
& \lesssim\left[1+8 K^{4}\left(\sum_{k=1}^{|\Gamma|} \mu(k) \frac{1}{k}\right)\right]\left\|x-p_{N}(x)\right\|_{\mathbb{B}}+\left\|S_{P \backslash \Gamma}(x)-S_{\Gamma \backslash P}(x)\right\|_{\mathbb{B}} \\
& \leq\left[1+8 K^{4}\left(\sum_{k=1}^{|\Gamma|} \mu(k) \frac{1}{k}\right)\right]\left(\sigma_{N}(x)+\epsilon\right)+\left\|S_{P \backslash \Gamma}(x)\right\|_{\mathbb{B}}+\left\|S_{\Gamma \backslash P}(x)\right\|_{\mathbb{B}} . \tag{2.7}
\end{align*}
$$

It is not difficult to find an upper bound for $\left\|S_{\Gamma \backslash P}(x)\right\|_{\mathbb{B}}$. Since $p_{N}(x)$ is supported in P we have $S_{\Gamma \backslash P}\left(p_{N}(x)\right)=0$. By Lemma 2.3

$$
\begin{align*}
\left\|S_{\Gamma \backslash P}(x)\right\|_{\mathbb{B}} & =\left\|S_{\Gamma \backslash P}\left(x-p_{N}(x)\right)\right\|_{\mathbb{B}} \lesssim\left(8 K^{4}\right)\left(\sum_{k=1}^{|\Gamma \backslash P|} \mu(k) \frac{1}{k}\right)\left\|x-p_{N}(x)\right\|_{\mathbb{B}} \\
& \leq\left(8 K^{4}\right)\left(\sum_{k=1}^{N} \mu(k) \frac{1}{k}\right)\left[\sigma_{N}(x)+\epsilon\right] . \tag{2.8}
\end{align*}
$$

The bound for $\left\|S_{P \backslash \Gamma}(x)\right\|_{\mathbb{B}}$ is more delicate. Use Lemma 2.1 with $\eta(N)=h_{r}(N)$ to write

$$
\left\|S_{P \backslash \Gamma}(x)\right\|_{\mathbb{B}}=\left\|\sum_{k \in P \backslash \Gamma} a_{k}(x) e_{k}\right\|_{\mathbb{B}} \leq(2 K) \sum_{k=1}^{|P \backslash \Gamma|} a_{k}^{*}\left(S_{P \backslash \Gamma}(x)\right) h_{r}(k) \frac{1}{k} .
$$

If $k \in \Gamma \backslash P$ and $s \in P \backslash \Gamma$ we have $a_{s}^{*}\left(S_{P \backslash \Gamma}(x)\right) \leq a_{k}^{*}\left(S_{\Gamma \backslash P}(x)\right)$ by construction of the thresholding greedy algorithm since $\min _{\Gamma}\left|a_{k}(x)\right| \geq \max _{\mathbb{N} \backslash \Gamma}\left|a_{k}(x)\right|$. Also, since $|P|=N=|\Gamma|$ we have $|P \backslash \Gamma|=|\Gamma \backslash P|$. Thus

$$
\left\|S_{P \backslash \Gamma}(x)\right\|_{\mathbb{B}} \leq(2 K) \sum_{k=1}^{|\Gamma \backslash P|} a_{k}^{*}\left(S_{\Gamma \backslash P}(x)\right) h_{r}(k) \frac{1}{k} .
$$

We use that $S_{\Gamma \backslash P}\left(p_{N}(x)\right)=0$ and Lemma 2.2 with $\eta=h_{l}$ to obtain

$$
\begin{aligned}
\left\|S_{P \backslash \Gamma}(x)\right\|_{\mathbb{B}} & \lesssim(2 K) \sum_{k=1}^{|\Gamma \backslash P|} a_{k}^{*}\left(S_{\Gamma \backslash P}\left(x-p_{N}(x)\right)\right) h_{r}(k) \frac{1}{k} \\
& =(2 K) \sum_{k=1}^{|\Gamma \backslash P|} a_{k}^{*}\left(G_{|\Gamma \backslash P|}\left(x-p_{N}(x)\right)\right) \frac{h_{r}(k)}{h_{l}(k)} h_{l}(k) \frac{1}{k} \\
& \leq(2 K)\left[\sup _{k} a_{k}^{*}\left(G_{|\Gamma \backslash P|}\left(x-p_{N}(x)\right)\right) h_{l}(k)\right]\left(\sum_{k=1}^{N} \mu(k) \frac{1}{k}\right) \\
& \leq(2 K)\left(4 K^{3}\right)\left\|G_{|\Gamma \backslash P|}\left(x-p_{N}(x)\right)\right\|_{\mathbb{B}}\left(\sum_{k=1}^{N} \mu(k) \frac{1}{k}\right) .
\end{aligned}
$$

We use now that \mathcal{B} is a quasi-greedy basis to write

$$
\begin{align*}
\left\|S_{P \backslash \Gamma}(x)\right\|_{\mathbb{B}} & \lesssim\left(8 K^{5}\right)\left\|x-p_{N}(x)\right\|_{\mathbb{B}}\left(\sum_{k=1}^{N} \mu(k) \frac{1}{k}\right) \\
& \leq\left(8 K^{5}\right)\left(\sigma_{N}(x)+\epsilon\right)\left(\sum_{k=1}^{N} \mu(k) \frac{1}{k}\right) . \tag{2.9}
\end{align*}
$$

Replacing (2.8) and (2.9) in (2.7), and letting $\epsilon \rightarrow 0$ we obtain the result stated in Theorem 1.1

3. Comments and questions

3.1. Let \mathcal{B} be a seminormalize quasi-greedy basis in a real Hilbert space \mathbb{H}. Since $\mathcal{B}=\left\{e_{k}\right\}_{k=1}^{\infty}$ is unconditional for constant coefficients (see Proposition 2 in [9]) it follows from Kintchine's inequality that

$$
\left\|\sum_{k \in \Gamma} e_{k}\right\|_{\mathbb{H}} \approx \sqrt{|\Gamma|} .
$$

Thus, in this case we can take $\eta(N)=N^{1 / 2}$ in Lemma 2.1 and Lemma 2.2, giving us Theorem 3 from [9].
3.2. Let $\mathcal{B}=\left\{e_{k}\right\}_{k=1}^{\infty}$ be a quasi-greedy basis in $L^{p}\left(\mathbb{T}^{d}\right)$. If $2 \leq p<\infty$ the space $L^{p}\left(\mathbb{T}^{d}\right)$ has type 2 and cotype p. Thus

$$
\begin{equation*}
C_{p}^{\prime}|\Gamma|^{1 / p} \leq\left\|\sum_{\Gamma} e_{k}\right\| \leq C_{p}|\Gamma|^{1 / 2}, \quad \Gamma \subset \mathbb{N} \tag{3.1}
\end{equation*}
$$

Taking $\eta(N) \approx N^{1 / 2}$ in Lemma 2.1 and $\eta(N) \approx N^{1 / p}$ in Lemma 2.2 we obtain Theorem 11 form [7] for the case $2 \leq p<\infty$.

The case $1<p \leq 2$ of Theorem 11 from [7] is obtained by observing that for this range of p 's the space $L^{p}\left(\mathbb{T}^{d}\right)$ has type p and cotype 2 , so that

$$
\begin{equation*}
C_{p}^{\prime}|\Gamma|^{1 / 2} \leq\left\|\sum_{\Gamma} e_{k}\right\| \leq C_{p}|\Gamma|^{1 / p}, \quad \Gamma \subset \mathbb{N} . \tag{3.2}
\end{equation*}
$$

3.3. The proofs of Lemmata 2.1 and 2.2 follow the pattern of the proofs of $1 . \Rightarrow$ 2. in Theorem 3.1 and Theorem 4.2 from [3] for the limiting case " $\alpha=0$ ".
3.4. As in 9 write, for $N=1,2,3, \ldots$

$$
e_{N}(\mathbb{B})=e_{N}:=\sup _{x \in \mathbb{B}} \frac{\left\|x-G_{n}(x)\right\|_{\mathbb{B}}}{\sigma_{N}(x)}, \quad\left(\frac{0}{0}=1\right) .
$$

Theorem 1.1 shows that for a quasi-greedy basis in a real Banach space

$$
e_{N} \leq C\left(\sum_{k=1}^{N} \mu(k) \frac{1}{k}\right) \lesssim \mu(N) \log N, \quad N \in \mathbb{N}
$$

For greedy bases, Theorem 4 from [9] shows that

$$
\begin{equation*}
e_{N} \approx \mu(N), \quad N \in \mathbb{N} \tag{3.3}
\end{equation*}
$$

The same argument that proves (3.3) can be used to prove the following result: for a quasi-greedy basis \mathcal{B} in a real Banach space \mathbb{B}

$$
\begin{equation*}
\tilde{e}_{N} \approx \mu(N), \quad N \in \mathbb{N} \tag{3.4}
\end{equation*}
$$

were

$$
\tilde{e}_{N}(\mathbb{B})=\tilde{e}_{N}:=\sup _{x \in \mathbb{B}} \frac{\left\|x-G_{n}(x)\right\|_{\mathbb{B}}}{\tilde{\sigma}_{N}(x)}, \quad\left(\frac{0}{0}=1\right) .
$$

and

$$
\tilde{\sigma}_{N}(x)=\tilde{\sigma}_{N}(x ; \mathcal{B}, \mathbb{B}):=\inf \left\{\left\|x-\sum_{k \in \Gamma} a_{k}(x) e_{k}\right\|_{\mathbb{B}}:|\Gamma| \leq N\right\}
$$

is the expansional best approximation to $x=\sum_{k \in \mathbb{N}} a_{k}(x) e_{k} \in \mathbb{B}$.
Since $\sigma_{N}(x) \leq \tilde{\sigma}_{N}(x)$, for a quasi-greedy basis we have by (3.4) and Theorem 1.1

$$
\begin{equation*}
\mu(N) \lesssim \tilde{e}_{N}(\mathcal{B}) \leq e_{N}(\mathcal{B}) \lesssim \mu(N) \log N \tag{3.5}
\end{equation*}
$$

By the comments that follow the statement of Theorem 1.1 if μ has positive dilation index, $\mu(N) \lesssim \tilde{e}_{N}(\mathcal{B}) \leq e_{N}(\mathcal{B}) \lesssim \mu(N)$.

Question 1. Is the inequality on the right hand side of (3.5) sharp? That is, is it possible to find a quasi-greedy basis \mathcal{B} such that $e_{N}(\mathcal{B}) \approx \mu(N) \log N$?

Question 2. Is it true that for a quasi-greedy basis $\tilde{\sigma}_{N}(x) \lesssim \sigma_{N}(x) \log N$? If the answer is "yes" then by (3.4) we will have $e_{N}(\mathcal{B}) \lesssim \tilde{e}_{N}(\mathcal{B}) \log N \lesssim \mu(N) \log N$, given another proof of the right hand side of (3.5).
3.5. For a quasi-greedy basis $\mathcal{B}=\left\{e_{k}\right\}_{k=1}^{\infty}$ in $L^{p}\left(\mathbb{T}^{d}\right)$, inequalities 3.1 and 3.2 (or type and cotype properties of $L^{p}\left(\mathbb{T}^{d}\right)$) show that $\mu(N) \lesssim N^{\left|\frac{1}{p}-\frac{1}{2}\right|}$. By the comments that follow the statement of Theorem [1.1, if $p \neq 2$ and $1<p<\infty, e_{N}(\mathbb{B}) \lesssim N^{\left|\frac{1}{p}-\frac{1}{2}\right|}$, proving Theorem 1.1 from [8]. (Notice that $w(N):=N^{\left|\frac{1}{p}-\frac{1}{2}\right|}$ has positive dilation index if $p \neq 2$.) For $p=2$ we have $e_{N}(\mathcal{B}) \lesssim \log N$ by Theorem 1.1.

Consider now the trigonometric system $\mathcal{T}^{d}=\left\{e^{i k x}: k \in \mathbb{Z}^{d}\right\}$ in $L^{p}\left(\mathbb{T}^{d}\right), 1 \leq p \leq \infty$ (here $L^{\infty}\left(\mathbb{T}^{d}\right)$ is $C\left(\mathbb{T}^{d}\right)$, the set of continuous functions in \mathbb{T}^{d}). It is proved in [5] (Theorem 2.1) that

$$
e_{N}\left(\mathcal{T}^{d}, L^{p}\left(\mathbb{T}^{d}\right)\right) \lesssim N^{\left|\frac{1}{p}-\frac{1}{2}\right|}, \quad 1 \leq p \leq \infty
$$

Question 3. (Asked by V. N. Temlyakov at the Concentration week on greedy algorithms in Banach spaces and compressed sensing held on July 18-22 at Texas A\&M University.)
a) Characterize those systems \mathcal{B} in $L^{p}\left(\mathbb{T}^{d}\right), 1 \leq p \leq \infty$, such that $e_{N}\left(\mathcal{T}^{d}, L^{p}\left(\mathbb{T}^{d}\right)\right) \lesssim$ $N^{\left|\frac{1}{p}-\frac{1}{2}\right|}, N \in \mathbb{N}$. Notice that if $1<p \neq 2<\infty$, the characterization must be satisfy by \mathcal{T}^{d} as well as any quasi-greedy basis.

More generally,
b) Let $v(N)$ be an increasing function of N. Characterize those systems \mathcal{B} in a Banach space \mathbb{B} for which $e_{N}(\mathcal{B}, \mathbb{B}) \lesssim v(N)$.

4. Appendix

Lemma 4.1. If \mathcal{B} is a quasi-greedy basis in a Banach space \mathbb{B}, the function μ defined in (1.3) is doubling.
Proof. It is proved in [9] and [1] that for a quasi-greedy basis $\mathbb{B}=\left\{e_{k}\right\}_{k=1}^{\infty}$ with quasi-gredy constant K, if $B \subset A \subset \mathbb{N}$ (finite sets) then

$$
\begin{equation*}
\left\|\sum_{k \in B} e_{k}\right\|_{\mathbb{B}} \leq K\left\|\sum_{k \in A} e_{k}\right\|_{\mathbb{B}} \tag{4.1}
\end{equation*}
$$

We have to prove that $\mu(2 N) \leq D \mu(N)$ for some D independent of N. Since $\mu(2 N)$ is defined as a supremum over the finite set $1 \leq k \leq 2 N$, there exists $k_{0} \leq 2 N$ such
that $\mu(2 N)=h_{r}\left(k_{0}\right) / h_{l}\left(k_{0}\right)$. Notice that h_{r} is doubling with doubling constant 2 by the triangle inequality.

Suppose first that $k_{0}=2 s \leq 2 N$ is even. From (4.1) we deduce $h_{l}(s) \leq K h_{l}(2 s)$. Hence

$$
\mu(2 N)=\frac{h_{r}(2 s)}{h_{l}(2 s)} \leq(2 K) \frac{h_{r}(s)}{h_{l}(s)} \leq(2 K) \mu(N)
$$

since $s \leq N$.
Assume now that $k_{0}=2 s+1$ is odd. Since $2 s+1=k_{0} \leq 2 N$ we deduce $s \leq N-\frac{1}{2}$, and since s is an integer $s \leq N-1$. From (4.1) we deduce $h_{r}(2 s+1) \leq K h_{r}(2 s+2)$ and $h_{l}(s+1) \leq K h_{l}(2 s+1)$. Hence

$$
\mu(2 N)=\frac{h_{r}(2 s+1)}{h_{l}(2 s+1)} \leq K^{2} \frac{h_{r}(2 s+2)}{h_{l}(s+1)} \leq 2 K^{2} \frac{h_{r}(s+1)}{h_{l}(s+1)} \leq\left(2 K^{2}\right) \mu(N)
$$

since $s+1 \leq N$.
Acknowledgements. This work started when the author participated in the Concentration week on greedy algorithms in Banach spaces and compressed sensing held on July 18-22 at Texas A\&M University. I would like to express my gratitude to the Organizing Committee for the invitation to participate in this meeting.

References

[1] S.J. Dilworth, N.J. Kalton, D. Kutzarova, V.n. Temlyakov, The Thresholding Greedy Algorithm, Greedy Bases, and Duality, Constr. Approx., 19, (2003),575-597.
[2] G. Garrigós, E. Hernández, J.M. Martell, Wavelets, Orlicz spaces and greedy bases, Appl. Compt. Harmon. Anal., (24): (2008), 70-93.
[3] G. Garrigós, E. Hernández, M. de Natividade, Democracy functions and optimal embeddings for approximation spaces, Adv. in Comp. Math. 2011 (Accepted)
[4] A. Kamont, V.N. Temlyakov, Greedy approximation and the multivariate Haar system, Studia Math, 161 (3), (2004), 199-223.
[5] V. N. Temlyakov, Greedy algorithm and n - term trigonometric approximation, Const.Approx., 14, (1998), 569-587.
[6] V. N. Temlyakov, Greedy approximation, Acta Numerica (2008), 235-409.
[7] V. N. Temlyakov, M. Yang, P. Ye, Greedy approximation with regard to non-greedy bases, Adv. in Comp. Math., 34, (2011), 219-337.
[8] V. N. Temlyakov, M. Yang, P. Ye, Lebesgue-type inequalities for greedy approximation with respect to quasi-greedy bases, Preprint.
[9] P. Wojstaszczyk, Greedy Algorithm for General Biorthogonal Systems, Journal of Approximation Theory, 107, (2000), 293-314.

Eugenio, Hernández, Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049, Madrid, Spain

E-mail address: eugenio.hernandez@uam.es

[^0]: Date: November 2, 2011.
 2010 Mathematics Subject Classification. 41A65, 41A46, 41A17.
 Key words and phrases. Lebesgue-type inequalities, thresholding greedy algorithm, quasi-greedy bases, democracy functions.

 Research supported by Grant MTM2010-16518 (Spain).

