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Abstract

By a “reproducing” method for H = L?(R") we mean the use of two countable
families {e, : @ € A}, {fo : @ € A}, in H, so that the first “analyzes” a function h € H
by forming the inner products {< h,e, >: a € A}, and the second “reconstructs” h
from this information: h =3 .4 <h,eq > fa.

A variety of such systems have been used successfully in both pure and applied
mathematics. They have the following feature in common: they are generated by a single
or a finite collection of functions by applying to the generators two countable families
of operators that consist of two of the following three actions: dilations, modulations,
and translations. The Gabor systems, for example, involve a countable collection of
modulations and translations; the affine systems (that produce a variety of wavelets)
involve translations and dilations.

Considerable amount of research has been conducted in order to characterize those
generators of such systems. In this paper we establish a result that “unifies” all of these
characterizations by means of a relatively simple system of equalities. Such unification
has been presented in a work by one of us. One of the novelties here is the use of
a different approach that provides us with a considerably more general class of such
reproducing systems; for example, in the affine case, we need not to restrict the dilation
matrices to ones that preserve the integer lattice and are expanding on R™. Another
novelty is a detailed analysis, in the case of affine and quasi-affine systems, of the

characterizing equations for different kinds of dilation matrices.
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1 Introduction

The terms reproducing systems or reproducing formulae are applied to any of several
methods that “analyze” a vector v (or function) and, then “reconstructs” v in terms of this
analysis. In order to fix our ideas, let us consider a specific way in which this procedure is

carried out that will help us explain the principal features of this paper.

A countable family {e, : @ € A} of elements in a separable Hilbert space H is a frame

if there exist constants 0 < A < B < oo satisfying

Allvl* < > v, ea)? < Bl
acA
for all v € H. If only the right hand side inequality holds, we say that {e, : & € A} is a
Bessel system with constant B. A frame is a tight frame if A and B can be chosen so
that A = B, and is a normalized tight frame if A = B = 1. Thus, if {e4 : @ € A} is a

normalized tight frame in H, then

ol = (v, ea)l? (1.1)

acA

for each v € H. This is equivalent to

v = Z(v,ea> €a (1.2)

acA
for all v € H, where the series in (1.2) converges in the norm of H (we refer the reader
to [18], Chapters 7 and 8, for the basic properties of frames that we shall use). We shall
also consider dual systems {e, : @ € A}, {fo : @ € A}, where the first system is used for
analyzing v and the second for reconstructing v. In this case the reproducing formula has

the form

v = Z(v,ea) S, (1.3)

acA

which is clearly more general than (1.2).

For the moment, in order to explain the scope of this paper, let us restrict ourselves to
the case of normalized tight frames. Examples of systems that we intend to examine are

the Gabor systems, which have the form
Gp.c(g) = (TP g(x — Ck) : m, k € 2"}, (1.4)

where g € L?(R") and B,C € GL,(R). Another class of examples is given by the affine

systems
Fa() = {Wju(x) = | det AP/ 2p(Alx — k) : j € Z,k € Z"}, (1.5)



where ¢ € L*(R") and A € GL,(R). There are relatively simple characterizations of those
functions g and 9 for which these systems (for appropriate A, B and C') are normalized tight
frames for L2(R™). It is fair to say that, though the adjective “simple” is appropriate for
describing the characterizations, it is not at all appropriate for a description of the proofs
found in the literature (see [18, 15, 17, 29, 6, 2, 3, 8, 7]). The characterizations of those g
that generate a Gabor system that is a normalized tight frame can be given by a system of
equalities, and the same is true for those v generating affine systems that are normalized
tight frames. Though these equalities are different, there are certain similarities that makes
it plausible to ask if there exists a general result that contains these two characterizations
as special cases. This is one of the novelties of this paper: we formulate and prove such a
result (Theorem 2.1, below). Another new feature is the method of proof. It relies on an
idea that appears in [19] and [23] that converts the expression on the right of equality (1.1)
into a function of € R” (here H = L?(R")) by applying to v translations that depend
on z; this function can then be written as an (almost periodic) Fourier series. Finally,
we obtain the characterization result as a consequence of the uniqueness property for this
(almost periodic) Fourier series. By these means, we obtain results that are more general

than those that appear in the literature.

Perhaps, as an illustration of the type of characterization equations we are considering,
it is useful to consider the affine systems (1.5) generated by a function ¢ € L?(R"). If they
are a normalized tight frame, then ¢ is called a normalized tight frame wavelet (TFW);
if, in addition, ||#||, = 1, the system is an orthonormal basis for L*(R") and ¢ is called an
orthonormal wavelet or, simply, a wavelet. The first characterization results for such
systems were obtained independently by G. Gripenberg ([16]) and X. Wang ([35]) in one

dimension, and the dilation A was, simply, multiplication by 2:

Theorem 1.1. (G. Gripenberg ([16]), X. Wang ([35])) A function ¢ € L*(R) is an or-

thonormal wavelet if and only if ||¢], = 1,

> (P =1 fora. e. £ €R, (1.6)
JEZ

and
Zw (276)0(29( £+q)) 0 for a.e. £ € R, (1.7)
j=0

whenever q is an odd integer.

Remarks.

1. In this paper, the form of the Fourier transform we use is

f© = [ fla)ee du.



2. Without the condition ||1)||, = 1, the two equalities (1.6) and (1.7) characterize the

normalized tight frame wavelets (as explained in [18, Chapter 7]).

Many extensions of this result were obtained in higher dimensions: for A = 2I this
was done in [15] and more general dilation matrices A were introduced in the references
we presented after equality (1.5). Many of the proofs involve the theory of shift invariant
spaces and, as a consequence, this limits the dilations A to be matrices that preserve the
integer lattice Z™. Another assumption about A that is made in these articles is that A is
expanding (i.e. each proper value A satisfies |A] > 1). As we shall see later on, we will
only need a somewhat more general hypothesis for A and do not assume that the lattice Z"
is preserved by A. We thus obtain a result that is more general than the characterization
in [7], in which A did not have to preserve the integer lattice, but had to be expanding. In
addition, we present an analysis of how the characterizing equations depend on the dilation

matrix A.

The second author of this article wrote a paper ([21]) that focuses on the “unified
approach” we have just described. The methods of proof in his article were based on the
ideas from shift invariant spaces we mentioned above; consequently, the results obtained are
less general because of the more restrictive assumptions we described in the last paragraph.
The new approach also presents a good perspective of the history of the subject. For these
reasons we chose the same title for this paper as the one used in [21] and added “II ”at the

end.

We end this introduction by indicating that the general result, Theorem 2.1, includes
and leads to several applications that are more general than the ones we described above.
For example, the Gabor and affine systems can be generated by finite families {g!,..., g"}
and {1, ..., 9"} of functions in L?(R™). Moreover, special cases involve yet other systems
generated by the translation, modulations and dilations. These features are best described

when we present the various applications of Theorem 2.1.

2 The main result

Let P be a countable collection of indices, {g, : p € P} be a family of functions in L?(R"™)
and {C, : p € P} be a corresponding collection of matrices in GL,(R). For y € R", let T,
be the translation (by y) operator defined by T}, f = f(- —y). The main result of this paper

presents a characterization of all those families of the form

{TCpk gp i k€ Z7",p € P}, (2.1)



that are normalized tight frames for L?(R"™). We introduce the following notation:

A=]cl@zm, (22)

peEP

where C[{ = (C;;)_1 (= the inverse of the transpose of Cp), and for o € A,
Po={peP: ClacZ}. (2.3)
If « =0¢€ A, then Py = P (since C’; 0 =0 for all p € P); otherwise the best we can say is

that P, C P.

Let N be defined on L?(R") by letting

N2(f) =Y K- Teprgp)) (2.4)

pEP keZ™

for f € L2(R™). By (1.1), the system (2.1) is a normalized tight frame for L?(R") if and
only if N is the L?(R")-norm of f:

N2(f) = 11£ll2 (2.5)
for all f € L?(R™). Our main result, therefore, involves conditions on the system (2.1) that
are equivalent to equality (2.5).

Since equalities (1.2) and (1.1) are valid for all v € H if and only if they hold for a dense
subspace of H (see [18, Chapter 7]), we will find it useful to introduce the set
D= {f e L*(R"): fe L°°(R"™) and supp f is compact},

which is dense in L?(R™).

Here is the statement of our main result:

Theorem 2.1. Let P be a countable indexing set, {g,}pep a collection of functions in
LAR") and {Cp}pep C GLn(R). Suppose that

K= 3 [ M ol e (€ de <o (26)

pPEP meZn

for all f € D, where CZ{ = (C’;)_l. Then the system (2.1) is a normalized tight frame for
L2(R™) if and only if

> e O+ ) = Bap for e CER, 2.7
PEPa

for each o € A, where § is the Kronecker delta for R™.



The proof of this result will be derived from some lemmas that will be established in
this section. In the course of doing so we shall also indicate why the hypothesis (2.6) is
plausible and discuss the convergence of some of the series we shall encounter. As a first

observation along these lines, note that if equality (2.7) is valid for « = 0, so that
1 2
——— g =1 forae £€R", 2.8
> gy B©OF =1 forac ¢ (28)
peEP

then if follows from Schwarz’s inequality that the other series in (2.7) are a.e. absolutely

convergent (recall that P, C P).

Let C be an n x n real matrix and f,g € L?(R"). The C-bracket product of f and g

is defined as

£, = > fle—Ck)g(x - Ck). (2.9)

kezm
This is an extension of the notion and notation introduced in [11] when C' = I. It is clear
that [f, g] is CZ"™- periodic; that is, [f, g](z + Cm; C) = [f, g](z; C) for each m € Z".
Lemma 2.2. Let C € GL,(R) and C' = (CY)~L. If f € D and g € L>(R"), then

> Tex ) = g [ 16 ChPde (2:10)

kezr cr
where T" = [0,1)".

Proof. Since (Tgy )"\ (&) = e72™CkE §(¢), it follows from the Plancherel theorem that
the left side of (2.10) equals

3 ‘ 2”0"“%5‘ (2.11)
kezn
Since R™ = (J;cz» {C*(T™ — 1)} is a disjoint union, the integral in (2.11) can be written in

the form

I a(€ — O1]) 2miCk:€ P oAe Iy 2miCk-E
Z/mn (€= (e - Cly et de = [F,4)(6: C") 2R e

lezn e

But [f,§](¢;CT) is a C'Z"-periodic function belonging to L2(CIT™) (since f € D). Thus,
the expression (2.11) is, up to a constant, the square of the /2-norm of the Fourier coefficients

of this C!Z"-periodic function with respect to the orthonormal basis

{V/]det C| *™CkE . | e 7™}

of L2(CTT™). Equality (2.10) now follows immediately from this observation. O



Lemma 2.3. Let C € GL,(R) and C! = (C')~'. For each f € D and g € L*(R"), the

function

= > T/, Texg)P (2.12)

kezn
1s the trigonometric polynomial
H(x) = ) H(m)em(©me,
mezn
where .
Am) = —
(m) | det C|

and only a finite number of these expressions is non-zero.

| J© 5+ CTm) 5 g(¢ + Clm) de, (2.13)

Proof. If we do establish (2.13), the fact that H(m) = O for all but finitely many m is
an immediate consequence of the fact that f (€) and f (€ 4+ CTm) must have disjoint support
if |m| is sufficiently large.

By Lemma 2.2,

det Ol H(z) = [ (T 1) 3)(6 CDPdg
CI’]I‘n
:/ 2w Z 672Wi01m-x]€(§+01m)m‘2d§
crn mezmr

/ Z —2miC mxf §+CI ) (§+CI Ze2mClocf(£+C[l) (f—i—CIl)d{
ciTn

meZm™ ez

Let £ =1 —m and express the above integrand function as a sum over £ and m. We obtain

the expression

1 ale+O0Im) 21iCTk-z I J; 7 ;
Z /qurn €+C'm)g(E+C'm Z e FE+CIm+CTk) §(&€ + CTm + CTk) de

mezn kezn

RISECDY e2miCTRT f(e + OTh) (€ + CTk) de

keZm

Z / f¢ §+C1k) 9(€) g(€ + C'k) d{) e2miCkr

keZn

The various exchanges of summations and integration are justified by the fact that f € D.
Equality (2.13) is obtained by dividing by |detC|. O

We are now ready to state and prove the principal result that we shall use to establish
Theorem 2.1:



Proposition 2.4. Let P be a countable indexing set, {gp}pep a collection of functions in
L*(R™), {Cp}pep C GLn(R), and let CL = (CL)~'. Assume that, for f € D, (2.6) is valid.
Then, the function

w() = N*(T, f) = > > (Tef, Tok o)

pEP keZm

is a continuous function that coincides pointwise with its absolutely convergent (almost

Z w(a) 627ria~;t ’

aeA

periodic) Fourier series

where

(o) = Raﬂ@f§+of§j|¢$c%@w%@+aum (214)

and the integral in (2.14) converges absolutely.

Remark. The function w(x) given in the above proposition is an almost periodic func-

tion since these are characterized as uniform limits of generalized trigonometric polynomials

(see [1]).
Proof. Observe that

w(z) =N T ) =Y > W To oyt 900
pEP kEZ™
For a fixed p € P, let wy(z) denote the above sum over k € Z". By Lemma 2.3, wy(z) is

the Cp,Z"-periodic trigonometric polynomial

u)p(w) — Z ’Li)p(m) eZﬂiCII,m-x’
mezn

where

. 1

©olm) = Taee ] o
We claim that {w,(m) : p € P,m € Z"} belongs to {}(P x Z"). To see this, let K =
supp f (recall that f € D and, thus, K is compact) and K(m) = K — C’I{ m, so that
) f(e+ Clm) # 0 only if £ € K N K(m). Thus, the integral over R™ in (2.15) is really

over this intersection. An application of Schwarz’s inequality then gives us the fact that

F(&) F(&+ Clm) §,(€) gp(& + Clm) de. (2.15)

this integral does not exceed

) 1/2 ) 12
</ £ (€) ﬁp(§+0;{m)|2d§> (/ [f(&+Cym) gp(E)? d§>
K(m) K

8



and the change of variables £ = n— C’;m in the first integral makes this expression equal to

(/ Fn = Clm) G,(m) 2dn>1/2</ €+ Clm >};<§)2d§)1/2.

Then the inequality 2|cd| < |c|? + |d|? together with condition (2.6) proves
> 5l <
pEP meZ™
which is our claim. It follows that
Z Z wp 27rzCIm -z
PEP meZm

where the convergence is absolute and uniform. In terms of the notation introduced in (2.2)

and (2.3), we can write this last equality in the form

{Z/]Rn|det0| A £) (§+O‘) ()gp(f+a)d£}62ﬁia~x

aEN  pEP,
aeA{ [ J©F ZP p(€) Gp(€ + @) de b emios

=) i(a) T, (2.16)
aeA

where w(a) is the sum of some of the coefficients w,(m), as indicated within the curly
bracket. Since, as we have shown, {w,(m) : p € P,m € Z"} belongs to {*(P x Z"), it
follows that {w(a) : @ € A} belongs to £}(A). Then it immediately follows that the last

series in (2.16) is absolutely convergent. This finishes the proof of the proposition. O

Remark. Notice that condition (2.6) has been used to prove that {w(a) : @ € A}
belongs to /(A). As we shall see, in most cases, when we apply Theorem 2.1 we do not
need to assume condition (2.6); for example, it will be shown that the Gabor systems, the

affine systems and some related systems do satisfy this property.

The following lemma, that will be needed in the proof of Theorem 2.1, is a simple fact

about uniqueness of the coefficients of an almost periodic Fourier series, as the one in (2.16).

Lemma 2.5. Suppose {co : a € A} € (Y(A) where A C R™ is countable. Then, v(x) =
Y ach Ca e2mir — ( for all x € R™ if and only if co = 0 for all o € A.



Proof. It is clear that if ¢, = 0 for all @ € A, then v(z) = 0. Suppose v(z) = 0 for all
x € R" Fix 8 € A and let Q(R) = [—-R, R]", R > 0. Then

1 ; 1 ‘ .
0= lim —— / U(SU) e 2mBT 10 — lim Cor / e2riaw —2mifiw g
R=oo (2R)" Jo(r) R_)ooo%/:\ 2R)" Jo(r)

Let us examine each of the above integral means. If &« = 3, then the mean is 1. If o # [,

then .
1 / 2mi(a—p)- 1.1 / —omi(aj—B;)

e2mila T e — - e 2milaj =Bz 4. L

.y (e )

For at least one j, a; — 3; # 0. Thus, this factor is equal to

1 2sin(2n(a; — B;)R)
2R 2m(a;—f;)

which tends to zero as R — oco. O

Proof of Theorem 2.1. As observed before the statement of Theorem 2.1, it suffices
to prove the result for a dense subset of L?(R"™). Let us assume that condition (2.6) holds
for all f € D and that (2.7) is true. By Proposition 2.4,

- Z Z (T f, Tcpm gp>|2 = Z () e?ﬂiaw,
pEP meLn aEN

where the last series converges absolutely (thus, w(x) is continuous) and, by (2.7) and
(2.14),

i(@) = (| J©F(€+a)de)oao

for each f € D. The desired tight frame property (2.5) follows by letting = = 0.

Now let us assume that we have the tight frame property N2(f) = ||f||? for all f €
L?(R™). By Proposition 2.4, if f € D, then the function z(x) = w(z) — || f||? is continuous
and equals an absolutely convergent (generalized) trigonometric series whose coefficients

are
20)=w0) — % and  2(a)=d(a), a £0.
Since z(z) = 0, it follows from Lemma 2.5 that all coefficients Z(«) must be 0. Thus, for

a € A and f € D, we have

| F@fE+a) (Z e Taeicy PO b(E+ @) de=daslfIP. @17

Consider the case o = 0 and let

I N S P
peEP

10



By (2.6), hg is locally integrable; choose & to be a point of differentiability of the integral
of this function. Letting B(e) denote the ball of radius € > 0 about the origin, define f. by

; 1

fe(§) = JBOI XB(e)(§ — o) -
Then ||fe|l2 =1 and f. € D. By (2.17) with f = fe, we have
1
= li d¢ =h
1= lim e cee B ho(€) d€ = ho(&o)-

This shows that ho(§) =1, a.e. £ € R", and

ha(§) = )

pEP(a)

.7) is satisfied for o = 0. When a # 0, let

de 9p(&) 9p(§ + ).

Cpl ™"

By polarization of (2.17) we have

~

[ J©d+a)ha©de=0 (2.18)

for all f, ¢ € D. By Schwarz’s inequality and (2.6), h, is locally integrable. We can choose,
again, a point of differentiability &y of the integral of h,, and choose f. and ¢, such that

1 A 1
fe(§) = mXB(e)(f — o), Pe(§) = WXB(e)(f — & —a).

Hence ||fEH2 = H¢e”2 = 1) fe u¢e €D and’ by (218)7

1
0= EE’% £ 6ol < |B( )| (f) df = hoz(é-O)

Hence hy(€) =0, a.e. £ € R™, and (2.7) is satisfied for « # 0. O

Remark. In some applications, namely in the case of affine systems, it will be useful
to replace the dense set D that appears in the statement of Theorem 2.1 by smaller dense

sets of the form
Dp={f €D:(supp f) N E = 0},

for any linear subspace E of R™ of dimension smaller than n. The result of Theorem 2.1

still holds true if the set D is replaced by any of these smaller dense sets.

3 The Gabor systems

Given a function g € L?(R) and b,c € R\ {0}, then the classical Gabor system on R

generated by g with parameters b and c is the collection

Goe(g9) = {62mbmxg(m —ck):m,k€Z}. (3.1)

11



Many results are known that determine conditions on g and relations between the pa-
rameters for such systems to be a frame (see, for example, [18], where the Balian-Low
theorem is presented, the density theorem of Rieffel ([27, 22, 32]) and the duality condition
([19, 12, 30])). We begin by showing that Theorem 2.1 can be applied directly for obtaining
a characterization of those n-dimensional extensions of the system (3.1) that are normalized
tight frames. The results we obtain include characterizations obtained by different authors
([30, 10, 21]). In order to describe these systems we will use the translation operators

(as defined in Section 2) and the modulation operators M., z € R" defined by

(M. f)(z) = 2™ f(x),

for f € L?>(R") and 2 € R™. The Gabor systems will be generated by a finite family
G ={g',¢%...,g%} C L?(R") and a pair of matrices B, C' € GL,(R) so that they have the
form

G=Gpc(G) = {MpnTorg' :mke€Z", £=1,2,--- ,L}. (3.2)

If we change the order in which the translation and modulation operators are applied we

also have the system
G =Gpo(G) = {ToxMpmg' :m ke Z £=1,2,--- | L}. (3.3)
A simple calculation shows that
TerMpm g° = e *™ P Mp, Ty, g* (3.4)

m,k € Z", and it follows immediately that

Lemma 3.1. (a) G is a frame for L>(R") if and only if G is a frame for L3(R™); further-
more, the frame constants A and B can be taken to be the same in the two cases.

(b) G is an orthonormal system if and only z'fg~ is an orthonormal system.

We begin by observing that our main result, Theorem 2.1, easily implies the following

characterization theorem:

Theorem 3.2. The system G = Gp c(G) (or G = fng,c(G)) is a normalized tight frame if
and only if

L
. -
> rqere ¥'(€~ BRIGE BR+0Tm) = dno (35)
(=1 keZ"

for a.e. £ €R™, allm € Z", where C! = (C*)71.

12



Proof. It will be clear from our proof that we can reduce the argument by assuming
L = 1; in any case, we shall address this issue after we show how to apply Theorem 2.1.
By Lemma 3.1, it suffices to consider the system G. When we do this, we can write it in
the form (2.1) by letting g, = Mp, g for p € P =Z" and C, = C. Condition (2.6) follows:
for f € D, only a finite number of terms of the form f(§ + CT'm) can be non-zero if € is
restricted to K = supp f (recall that C and, therefore, C', are invertible and that K is
bounded). Hence the integrability over K of

S LS e+ ctmyge - Bp)?

2 @Ol 2,

follows from the integrability over K of

Y Ife+Ctm)a¢ - Bp)

pEL™

for each m € Z™ (since all but a finite number of these expressions is non-zero; also recall
that P = Z" in our present case). Furthermore, the fact that || f|| ., < oo reduces our task

to showing that

/K S [6(¢ - Bp)f? < oo (3.6)

peZn

For each j € Z", the collection {B(T™ + j —p) : p € Z"} is a partition of R™. Thus,

lalls = [ gPan= [ Y late- By s
Upezn B(T"+5—p) B(T™+j)

pEL™

which shows the integrability of the integrand in (3.6) over the set B(T™ + j) for each
j € Z". Since any bounded subset of R™ is contained in a finite number of such sets,
we have the desired integrability. Incidentally, if we had L > 1, this proves the local

integrability of L sums of the form (3.6). Theorem 3.2 now follows from Theorem 2.1 using
(Mpy g)"(§) = 9(§ = Bp). O

4 The Calderén condition and reproducing systems

As mentioned after the statement of Theorem 2.1, the case a = 0 of (2.7) is
Z 1 lG,(€)* =1 for a.e. &€ € R™ (4.1)
| det Cp| "
pEP

This formula is valid when the systems described in (2.1) are normalized tight frames and

satisfy condition (2.6). When applying this result to the affine system (1.5), a simple

13



calculation (see also Section 6) shows that (4.1) becomes

Z [p(BIE))P =1 for ae. &€R", (4.2)
JEZ
for ¢ € L?(R") and B = A' € GL,(R). Versions of the “resolution of the identity” (4.2)
have appeared in works of A. P. Calderén and has become known as the Calderén condition
in the area of orthonormal wavelets. For this reason we shall say that (4.1) is a Calderén

condition.

Under the assumption (2.6), Theorem 2.1 shows that the Calderén condition (4.1) is
necessary for the system {Tcpk g ke Zpe P}, given by (2.1), to be a normalized
tight frame. Together with the cases o # 0 of (2.7) we obtain a necessary and sufficient

condition. We will show in this section that other type of conditions can replace the cases
a # 0 of (2.7).

If we remove condition (2.6) we can still prove a weaker version of (4.1) where the
equality is replaced by an inequality. This result, which will play a major role in Section 5,
is a consequence of Lemma 2.3 and it is given below. The result is stated and proved for

Bessel systems as defined in Section 1.

Proposition 4.1. Let P be a countable set, {g,}pep a collection of functions in L*(R™),
and {Cp}pep C GL,(R). If the system {T(ka g kel pe 73} is Bessel with constant
B, then

1
> TEYen Gp(E)> < B for a.e. £ €R™ (4.3)
peEP

Proof. In most applications of this Proposition, P will be a subset of Z" for some
r € N. For simplicity we assume this to be the case here. However, the reader can easily
check that this is not a loss of generality.

Assume that {Tcpk gpkeZ pe 73} is a Bessel sequence with constant B. Then, for
every M € N

Yo D WA Torgl® < BIfIE

pEP,|p|<M keZ™

for all f € L?(R"™). Applying Lemmas 2.2 and 2.3 to each p € P (letting 2 = 0), we can

write

2 2 |dethp| | JOFE+ana©aE+oRa<BIflE @4

pEP,|p|<M keZ™
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for all f € D, M € N (also recall that C! = (C*)~!). For each M € N let

1
hoy = ap (&) .
o= ) et cy) 19(8)]

peP,|p|<M

Since each g, € L*(R") and there is only a finite number of elements of P in the above sum,
ho,m € L'(R™). Let Ly be the set of differentiability points of the integral of ho,ar and take
& € Ly. Letting B(e) denote the ball of radius € > 0 about the origin, define f. by
A 1
fe(§) = ———= xB()( — &) -
VIB(e)]

Then || fellz2 = 1 and f. € D. For M € N, let
M= |J Chzr\{0}) and oy = inf{|ChE|:Chk e Ao}
pEP,|p|l<M
Observe that dp; > 0 since each CI{ is invertible, k # 0, and there is only a finite number of
clements of P in the set Ag as. For € < dar/2, [€ — & <€, and CL € Ag ar we have

4] )
‘5+Cz{k—§0\Z\C{;k\—\f—&)\Z5M—6>5M—7M:7M>e,

so that & + CIf k — & does not belong to B(e). This means that f.(€ + CIf k) = 0 for all
k # 0, € < dp/2, and |p| < M, and, thus, all the terms in (4.4) equal 0 except the one
corresponding to k = 0. Thus,

1 1 1
lim/ ———hom (&) dé = lim —_ ————3,(&)* d¢ < B.
e—0 |§—§0|§6 ’B(ﬁ)’ e—0 |§_£0|§E ‘B(G)‘ pE’P%<M ’det Cp’

Since the left hand side of this formula coincides with kg ar(£o), we deduce that ho ar(§o) < B
for all £y € Lyy.

Since .
Z Tdet Gy 9p(E)° = A}linoo ho,nm (§),
peEP p

we obtain the desired result for all £ in the intersection of all Lj,s, which is a dense set in
R™ O

We now present the main result of this section, which follows from the arguments pre-

sented in Section 2.

Theorem 4.2. Let P be a countable indexing set, {gptpep a collection of functions in
LAR") and {Cp}pep C GLn(R). Suppose that (2.6) holds for all f € D. Then the system
{Tcpk gp: k€L pe 73} is a normalized tight frame for L?(R™) if and only if it is a Bessel
system with constant 1 and the Calderén condition (4.1) holds.
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Proof. Under condition (2.6), if {Tcpk gp: kel pec 73} is a normalized tight frame,
then it is clearly Bessel with constant 1, and, by Theorem 2.1, the Calderén condition (4.1)
holds (take o = 0 in (2.7)).

For the converse we need to recall the following fact about almost periodic functions

which can be found in [1, Satz XXXVI] (see also [36, page 111]):

Lemma 4.3. Suppose that h is a non-negative almost periodic function defined in R™, and

let
1
M(h) = 1i —
()= i, |Q<R>|/Q<R>

be the mean of h, where Q(R) = [~R, R]%. Then, M (h) = 0 if and only if h = 0.

Let

— Z Z (Tef, Tc,k 9p)|°

pEP keZm
as in Proposition 2.4. Since {Tcpk g k€ Z"p e P} is Bessel with constant 1 we
have w(x) < ||T, flI3 = ||f||3 for all f € L?(R™). Thus, for any f € D, the function
h(z) = || f||3 —w(z) is non-negative, and, by Proposition 2.4 and the remark that follows its
proof, is continuous and almost periodic. Taking the mean value of h(x) and using, again,
Proposition 2.4 to write w(z) as an absolutely convergent (generalized) Fourier series with

coefficients w(«), given by (2.14), we obtain

= lim 1 = 27rio¢~x

As in the proof of Lemma 2.5 all the above integrals are zero except the one corresponding
to a = 0 that becomes w(0). Thus, M(h) = ||f||3 — @(0) for all f € D. By the Calderén

condition (4.1), we have

i) = [ 1 |Z‘dtc| (©)F de = 13-

Hence, M(h) = 0 for all f € D. By Lemma 4.3, h(z) = 0 for all x € R™ and all f € D.
Taking = = 0 (recall that h is continuous) we deduce that {Tcpk g kel pec 77} is a

normalized tight frame, as desired, since D is dense in L?(R"). O

Remarks. (1) That Theorem 4.2 follows from our main work in Section 2 was pointed
out to us by S. Xiao. The method that we use follows the line of argument presented in

[24]. In the case of wavelet systems, like the types described by (1.5), Theorem 4.2 has
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been proved by M. Bownik [3] for expanding dilation matrices with integer entries, and by
R. Laugesen [23, 24| for expanding dilation matrices with real entries.

(2) As in the remark given at the end of Section 2, the set D that appears in Theorem 4.2
can be replaced by the smaller dense subsets Dg and Theorem 4.2 still holds.

For orthonormal systems, we have the following simple corollary of Theorem 4.2:

Corollary 4.4. Let P be a countable indexing set, {g,}pep a collection of functions in
LAR") and {Cp}pep C GLy(R). Suppose that (2.6) holds for all f € D and that the system
{Tcpk gp: k€L pc 79} is an orthonormal system in L?(R™). Then {TCpk gp: kel pe
P} is complete in L*(R™) if and only if the Calderdn condition (4.1) holds.

When applied to wavelet systems, like the types described in (1.5), Corollary 4.4 shows
that an orthonormal wavelet system is complete if and only if the Calderén condition for
wavelets (4.2) holds. This has been proved in [3, 33| for expanding dilation matrices with
integer entries and in [24] and for expanding dilation matrices with real entries.

In the next section, we shall explain how Theorem 4.2 and Corollary 4.4 can be applied
to the affine systems. For the moment, we restrict our attention to the Gabor systems and

establish other consequences of Theorem 4.2 and Corollary 4.4.

Consider the Gabor systems Gp ¢(G), given by (3.2), and C;B,C(G), given by (3.3). Since
(Mp,g)™ (&) = (£ — Bp), the Calderén condition (4.1) for the system GVB,C(G) becomes

L
Z Z ]g%ﬁ _ Bk)]Q = |det C| for a. e. £ € R™. (4.5)

(=1 keZ"

From Theorem (4.2) and Corollary (4.4) we obtain:

Corollary 4.5. Let G = {g',...,g*} € L*(R") and B,C € GL,(R). Then the Gabor
system G (or g~) is a normalized tight frame if and only if G (or é) is a Bessel system with
constant 1 and (4.5) holds.

Corollary 4.6. Let G = {g',...,g*} ¢ L?*(R") and B,C € GL,(R). Suppose that the
Gabor system G (or G) is an orthonormal system in L2(R™). Then G (or G) is complete if
and only if (4.5) holds.

The results obtained in the above corollaries are contained in [30, 20, 10]. Thus, neither
of these two results are new, but the point is that each follows easily from our general

framework.
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Using Proposition 4.1, we obtain the following special case of Theorem 2.1, where we

assume C), = C for every p € P. This result can also be found in [28, 21].

Theorem 4.7. Let P be a countable indexing set, {g,}pep be a collection of functions in
L*(R™) and C € GLn(R). Then, the system {Tcy gy : k € Z",p € P} is a normalized tight
frame for L*(R™) if and only if
> 5 gp(E+ Clm) = | det Cl oo for ace. & €R™, (4.6)
peP

for every m € Z™, where § is the Kronecker delta in R™.

Proof. Since (4.6) follows immediately from (2.7) when C, = C for all p € P, then
we only need to show that condition (2.6) is always satisfied in Theorem 2.1 under these
conditions. Indeed, since C), = C for every p € P, then the sum with respect to m in (2.6)
is finite (since f € D). If the system {Tck gp : k € Z",p € P} is a normalized tight frame,
then, by Proposition 4.1,

1
Z [det C] 19p(E)1* < 1. (4.7)
peEP

Together with the fact that the sum with respect to m is finite, this implies (2.6). Similarly,
if (4.6) holds, then we have inequality (4.7). Together with the fact that the sum with

respect to m is finite, this implies (2.6), as in the previous case. O

5 Affine systems and wavelets

The classical affine system on R generated by ¢ € L?(R) is the collection
Fov)) = {$jn(a) = 229z — k) 1 j € L,k € Z}. (5.1)

This is the system (1.5) when the dimension is 1 and A = 2. As mentioned in Section 1,
the characterization of those functions 1 for which F2(%) is a normalized tight frame in
L?(R) was accomplished by G. Gripenberg ([16]) and X. Wang ([35]), and this result has
been extended to general dilations a € R, a > 1, (cf. [8, Th. 1]), and to R™ where dilations
are performed by real expanding matrices (cf. [7, Cor. 2.4] and [24, Th. 5.1]).

To define these more general systems, we use the translation operators (as defined
in Section 2) and the dilation operators Dy, A € GL,(R), defined by

(Da f)(@) = | det A|/*y(Ax),

for f € L?2(R") and 2 € R™ Our affine systems will be generated by applying these
operators to a finite family ¥ = {«!,... 9%} c L?(R"), and they have the form

Fa(O)={D\Tp':jeZ, keZ" t=1,..., L} (5.2)
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A simple calculation shows that
D)y Te " = Tyap DY o',
so that, in order to apply Theorem 2.1, we are led to consider
P={(0):j€Z t=1,2,...,L},

g =gun=Div!,  and  C,=Cyy=Aforall(=1,... L.

There are good reasons for the fact that, in the literature, the characterizations of the
systems F (W), given by (5.2), that are normalized tight frames assume that the dilation
matrices are expanding. In a private communication, D. Speegle has presented us with
examples of dilation matrices which are not expanding for which there cannot exist any
tight frame wavelets.

By definition, a matrix M € GL,(R) is expanding on R" if and only if all the eigen-
values of M have modulus greater than 1. There is an equivalent definition of expanding
matrices (which we present in Lemma 5.2), that will be most useful for our purposes. To

show this equivalence we need the following result:

Lemma 5.1. Suppose M € GL,(R) and a, 3 € R such that 0 < o < |A\| < 8 < o0 for all
eigenvalues X of M. There ezists C = C(M,a, 3) > 1 such that

Sodla] < M| < Oplal, (53)
when x € R™, j € Z, 5 > 0.
Remark. By applying (5.3) to z = M 7y, we obtain
G070l < 1My < Ca iy, 6.4
when y € R", j € Z, j > 0.

Proof. We make use of the following fact involving the spectral radius, p(M) =
max{|\| : X eigenvalue of M}:

p(M) = Tim A1/
n—oo
(see [31, p. 235]). Since p(M) < (3, there exists Jp € N such that

M7 | < (| M ||| < 3]
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for j > Jy and x € R™. For 0 < j < Jy we have

(]

247 2] < |2 = 15

; [ M7]]
J < -
x| < (02}%0{ 5

})@ [al.

Hence, letting C' = maxo<j<.j, {1, H]gj”} we have |MJ x| < CB7|z|, for all j € Z, j > 0
and x € R™. This gives us the right hand side inequality in (5.3). For the left hand side
inequality of this formula, apply the result just proved to N = M~!; since p(N) < 1/a,
we deduce |N7 y| < C(1/a)’ |y, for all y € R™, j > 0, j € Z. The result follows by writing

y= Mz, forz € R". O

Remark. Lemma (5.1) appears without proof in a paper by P.G. Lemarié-Rieusset

([26]). We thank G. Garrigés for pointing this reference to us.

Lemma 5.2. A matrix M € GL,(R) is expanding if and only if there exist 0 < k < 1 <

v < o0 such that
| M7 2| > ke |z (5.5)

when x € R", j € Z, j > 0. Moreover, if M € GL,(R) is expanding, then we also have
iy 1 .
[M™ 2| < 2972 (5.6)
when x € R™, j € Z, j > 0.

Proof. If M is an expanding matrix, then we can choose > 1 in Lemma 5.1. Thus,
(5.5) follows immediately from the left hand side inequality of (5.3). The inequality (5.6)
follows by applying (5.5) to y = M ~Jz.

Assume now that (5.5) holds and suppose that A is an eigenvalue of M. If A € R, let x € R"

be an eigenvector corresponding to A. By (5.5) we have
AP |2] = [N a| = [M7a] > ky?|a]

for all j € Z, j > 0. It follows that |A\| > k'/7 for all j > 0. Hence, |\| > v > 1.
If A= a+1i8 € C", choose a corresponding eigenvector u = x + iy € C™. Since M is

expanding and = € R"”,
ko o] < [M7 | < |MP @i M7y = |MP (2 +dy)| = [Nl = (AP [ul.

Without loss of generality we can assume |y| < ||, so that |u| < v/2|z|. It follows that
kA9 |z| < AP V2 |z|. Since  # 0 (otherwise u = 0), we have k'/7y < |X|2'/7 for all j > 0.
Hence, 1 <y < |A. O
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The dilation matrices we are going to use are more general than the expanding ones:
they could have some, but not all, of its eigenvalues with modulus 1, while the rest have
modulus strictly larger than 1. Here we must notice that, if |det A| = 1, then there is no
U = {¢t, .-+ L} c L*(R") such that the Calderén condition:

L

S S WABTIEP =1, fora. e £ R, (5.7)

=1 jez
where B = A, holds. This result follows by an argument similar to one presented in [25],
where continuous wavelets are studied. It is also known that, in some cases, when some of
the eigenvalues of A have modulus greater than 1 and others have modulus smaller than 1,
there is no ¥ = {s!,--- o*} c L?(R") such that (5.7) hold, even if |det A] # 1. As we
pointed out before Lemma 5.1, this non-existence has been shown to us by D. Speegle, in a
personal communication, for the case of diagonal dilation matrices. At the moment we are

not aware of this (negative) result for general matrices A with these properties.

The dilation matrices we are going to use must have the properties described below:

Definition 5.1. Given M € GL,(R) and a non-zero linear subspace F' of R", we say that
M is expanding on F if there exists a complementary (not necessarily orthogonal) linear
subspace E of R™ with the following properties:

(i) R* = F+ F and FNE = {0};

(iil) M(F) = F and M(FE) = E, that is, F' and F are invariant under M,
(iii) condition (5.5) (and therefore (5.6)) holds for all z € F;
(iv) given r € N, there exists C' = C'(M,r) such that, for all j € Z, the set

ZIE)={mec ENZ": M/ m| <r}

J
has less than C elements.

Example 1. When M is an expanding matrix, Definition 5.1 is satisfied with F' = R"”
and E = {0}.

Example 2. For a € R, |a| > 1, the matrix
0

M= ("
0 1

has eigenvalues a and 1. Letting F' be the eigenspace corresponding to the eigenvalue a,
and F the eigenspace corresponding to the eigenvalue 1, it is clear that M is expanding

on F', in the sense of Definition 5.1. It is easy to obtain analogous, higher dimensional,

21



diagonal matrices, even allowing some of the elements of the diagonal to be -1, that satisfy

“expanding on F”.

Example 3. More generally, given a € R, |a] > 1 and two independent vectors u,v €
R?, let M be a matrix for which u is an eigenvector corresponding to the eigenvalue a and
v is an eigenvector corresponding to the eigenvalue 1. By taking F = {tu : t € R} and
E = {tv : t € R} is easy to see that the conditions of Definition 5.1 are satisfied.

Example 4. For a € R, |a| > 1, and § € R, consider the matrix

a 0 0
M=10 cosf —sinf|,

0 sinf cos6

which corresponds to a dilation on the X—axis and a rotation around the origin in the

Y Z-plane. The matrix M is expanding on F' =R x {0} x {0}, with E = {0} x R x R.

Example 5. For a,b € R, |a| > 1, consider

I
o O 2
o = O
= o O

With F = Rx{0}x{0}, and E = {0} xR xR, properties (i), (ii), and (iii) of Definition 5.1 are
obvious. A little bit of work is required to prove property (iv); however it is straightforward.

Write m € ENZ3 as m = (0, ma, m3) with ma, m3 € Z. Since

a 0 0
M =10 1 jbl, J €7,
0 0 1

|M7m| < r implies |mg + jbms|? 4+ |m3|? < 2. Hence |m3| < r and |msg + jbms| < r. For
each m3 € Z fixed, there are at most 2r elements mgy € Z such that |mg + jbms| < r. Since
there are at most 2r elements ms € Z such that |mg| < r, it follows that the number of

clements in Zj (F) does not exceed 4r? for all j € Z.

The main result of this section is the following characterization of the affine systems
Fa(¥), which will be obtained as a consequence of Theorem 2.1. As we mentioned in
Section 1, this result is related and extends several other results that are in the literature.
We will later show (Theorem 5.7) that there is an equivalent formulation of the following

theorem, where (5.8) is replaced by a simpler expression.
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Theorem 5.3. Let U = {y!,.-- ¢r} c L2(R") and A € GL,(R) be such that the matriz
B = A' is expanding on a subspace F' of R™. Then, the system Fa(¥), given by (5.2), is a
normalized tight frame for L*>(R™) if and only if

L
SN GBI GBI(E+a) =bap  for ae. € R, (5.8)

{=1 jEPy
and all o € A = ¢4 BI(Z"™), where, fora € A, P, ={j €Z: B a € Z"}.
Proof. Recall that D’ Tj, ¢* = T4—;;, D’ ' . Apply Theorem 2.1 with
P={G,0):jez t=1,2,... L},
g =gy =Dy, and C,=Cypy=Aforalll{=1,..., L

Since

3(&) = (D4 (€) = DR(€) = |det B 7/ (B ¢),
(5.8) follows from (2.7) in Theorem 2.1, provided the hypothesis (2.6) in this Theorem is
satisfied. Therefore, all that it is left to prove is that the hypothesis (2.6) is satisfied in this

particular case. Thus, we need to show that L(f) < oo for f in an appropriate dense set of
L?(R™), where

L(f)

2.2 2 /suppf|f (6 + BIm)[2 | det ]| (D) (&) de

L
(=1 jEZ meZn
L

MY [ e Bm R de. 59)

(=1 jeZ mezn ’SWPP S

The dense set we choose is the following: since B = A' is expanding on F, we can then

take E a complementary subspace to F' as in Definition 5.1, and consider
Dp={feD:(suppf)NE =0} (5.10)

where D = {f € L*(R"): f € L®(R") and supp f is compact}. This set Dy is dense in
L?(R"), since E has measures zero.
The proof that L(f) < oo if f € Dg is given in Proposition 5.6 below. To prove this

delicate result we need some preparation and two lemmas.

Since B is expanding on F, by property (i) of Definition 5.1, given x € R", there exist
unique xp € F and zg € E such that © = xp + xg. For r, s € R, define

1
Q(r,s)={z=ap+zg:ap€F, zp € E, -~ <|zp|<r, |zg| <s}, (5.11)
r

and write Q(r) = Q(r,7) (see Figure 5). It is clear that given any f € D there exists r € N
such that suppf C Q(r).
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<

1/r

Figure 1: The set Q(r) (n = 2).

Lemma 5.4. Let M € GL,(R) be expanding on a subspace F of R™, and r € R. There
exists N = N(M,r) € N such that

#{jel: MIneQ(r)} <N
for allm € R™.

Proof. Choose F to be a complementary subspace for F' as in Definition 5.1. If n € F,
we can choose N = 1. Forn ¢ E, write n = np+np with np € F, ng € E and np # 0. Then,
by (ii) of Definition 5.1, for any j € Z, we have M7y = M/np + Ming with M/nr € F and
Ming € E.

Choose jo = jo(n) to be the smallest integer such that |[M7ng| > 1/r. This is possible
since, by property (iii) of the matrix M, there exist 0 < k < 1 < v < oo such that

\MInp| > ky'Ing| if jE€Z,j>0,

and .
|M~Inp| < Ev‘j!nﬂ if j€Z,j>0.

Thus, if j < jo, then |MIng| < 1/r, which implies that M’y ¢ Q(r) by the definition of
Q(r)-
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Choose Ny = 1+ [log,(r?/k)] (observe that k/r < 1/r < r implies r?/k > 1, so that
[logv(r2/k)] > 0). Since M is expanding on F, if j > Ny > 1, we have

M Hon] = |MINne] > ko | M| > by
by the choice of jg. Thus,
L 1 N1 71
| M7 Honp| > ky/ = > kyN = > k—= =17,
T r kr
This shows that if j > Ng, thenM7Jonr ¢ Q(r). Hence,
{(j€Z: MneQ(r)} C {jo,jo+1,---,jo+ No—1}.

By taking N = Ny the proof is finished. O

Remark. Lemma 5.4 is adapted from [2, Lemma 2.3], where the result is proved only

for expanding matrices on R".

For r, s € R, define

Q(r,s)={x=xp+zp:zrp€F,zg € E, |zp| <r |zp| <s},

and write Q(r) = Q(r,r). These sets will be used in the statement and the proof of the next

lemma.

Lemma 5.5. Let M € GL,(R) be expanding on a subspace F' of R", r € R, and E be a
complementary subspace of F' as in Definition 5.1. There exists C= é(M, r) € R such that

#{m e Z"\E: Mm € Q(r)} < C|det M|~/
for all j € Z.
Proof. For m € Z" \ E, write m = mp + mg with mp € F, mg € E and mp # 0. Let
T, = inf{me| : m € (2" \ B) N Q(r)} > 0.

Take j1 to be the smallest positive integer greater than log, (r/(kT)), where k and v are
as in Lemma 5.2 (adapted to Definition 5.1). If j > j; and m € Z™ \ E, then, by (iii) of
Definition 5.1, we have |M/mp| > ky7|mp| > kw7 Tr = r. Hence, for j > ji,

#{meZ"\E: M'm e Q(r)} = 0. (5.12)
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Thus, we only need to consider j < ji. Choose m € Z"\ E with Mim € Q(r), £ € [0,1)"
and j < j1. Write £ = &p + £ with &g € F and £ € E. Since M is expanding on F’,

| M~ (mp + €p)| <IMTH (mp)| + M7 ¢p))|
1 _. . 1 ..
<oy M (mp)| + 7
1 1 1 1
A~ _ < AT _ =
<t LRl S T S = Ry
where S1 = sup{|{r| : £ € [0,1)"}. Also, since ||M|| > p(M) > 1, we have
M+ €5)| < [ M7 + M g] < M7+ 55 = R,
where Sy = sup{|¢g| : £ € [0,1)"}. We have just shown that
{meZ"\E: MineQ(r)} C{meZ":m+1[0,1)" C M (Q(R1, Ry))} = M} g, -

Since the sets m + [0,1)", m € Z", are disjoint,

#{m cZ'\E: Mn e Q(r)} < #M{%hR2 = ‘ U (m +[0,1)")
meM%17R2
< |M7(Q(R1, Ry))| = |Q(Ry, R)| | det M|7* | det M|~ (5.13)

The Lemma then follows from (5.12) and (5.13) by taking C = |Q(Ry1, Ry)||det M|/t. O

We can now go back to our task of showing that L(f) < oo. The situation here is
different from the case we encountered in Section 3, where we showed that the integrability
condition (2.6) follows from the fact that g € L?(R™) (recall that, in the case of Gabor
systems, the matrices C), are independent of p). We will show in the following Proposition
that if

L

DY WABIYP <1 forae.  ERY (5.14)

=1 jeZ
then the integrability condition (2.6) is satisfied for the affine system F4 (where the matrix
B = A' is expanding on a subspace F of R"). Observe that if F4(¥) is a normalized tight
frame for L?(R™), then, by Proposition 4.1 applied to the affine system (5.2), we deduce
inequality (5.14). This inequality also holds if we assume (5.8) (take o = 0). Therefore,
the following Proposition implies that if either F4(¥), given by (5.2), is a normalized tight
frame or if the case o = 0 of (5.8) holds, then L(f) < oo, where L(f) is given by (5.9). This

is all we need to finish the proof of Theorem 5.3.
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Proposition 5.6. Let U = {y' --- L} ¢ L?2(R") and A € GL,(R) be such that the
matriz B = Al is expanding on a subspace F' of R"™. If (5.14) holds, then L(f) < oo, where
L(f) is given by (5.9).

Proof. Let f € Dy and choose r € N such that supp f C Q(r). Then

L
(=22 Z/ f(&+ BIm)[* [$4(B7€)| de
{=1 jEZ meZn
L
=22 /B con FBI+m)2 |9 m))? [det BP dn.  (5.15)
in

(=1 jEZ meZLn

We write Lo(f) for the sum of the terms in (5.15) for which m € ENZ", and Ly(f) for the
sum of the terms in the same expression for which m € Z™\ E. Then, L(f) = Lo(f)+ L1(f).
We first estimate Lo(f). For m € ENZ", if £ € Q(r) and & + Bim € Q(r), then, for
j € Z, we have
|B'm| < |&p + B'm| + |ép| <7 +7=2r,

where & = &p + &g, with & € F and &g € E. Thus, using the notation introduced in
property (iv) of Definition 5.1, we have:

{meENZ":£eQ(r)and £+ B'm € Q(r)} C Z] (E),

for every j € Z. By property (iv) of Definition 5.1, the number of elements in ZgT(E) is
less than C' = C(B, 2r) for all j € Z. Thus

Lo(f) < C(B.20)fI% ZZ/ GBI de.

{=1 jeZ

Using (5.14), it follows that
Lo(f) < C(B,20) | f131Q(r)] < ce. (5.16)

We now estimate L;(f). For m € Z"\ E, if Bin € Q(r) and B’(n +m) € Q(r), then,
for j € Z, we have that

\Bimp| < |BY(nr +mp)| + |Bingp| <r+7r =2,

and
|B/mp| < |BY(ng +mp)| + |Bnp| <r+r =2,

where we decomposed m and 7 as a unique sum of elements in F and E. Thus, with the

notation introduced before Lemma 5.5,

{meZ"\E:B'neQ(r)and B (n+m) e Q(r)} c{me Z"\ E: B'me Q(2r)},
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for every j € Z. By Lemma 5.5, the number of elements in the last set does not exceed
C(B,2r)|det B|™, for all j € Z. Thus,

L
L) < B2 3 S /B ol
in r

(=1 jez

By Lemma 5.4, the number of j € Z such that B7n € Q(r) does not exceed a fixed number,
N(B,r), independently of n € R™. Hence,

L
Li(f) < C(B.20) | fI1% N(B,r) Y 1443 < 0. (5.17)
/=1

From (5.15), (5.16), and (5.17) we deduce that, if f € Dg, then L(f) < oco. O

Equality (5.8) in Theorem 5.3 can be written in a simpler form involving the lattice
points m € Z" instead of the elements o € A. This shows that there is a redundancy in the

original condition (5.8). We have the following:

Theorem 5.7. Let U = {y!,.-- ¢F} c L2(R") and A € GL,(R) be such that the matriz
B = A is expanding on a subspace F of R™. Then the system Fa(V), given by (5.2), is a
normalized tight frame for L*>(R™) if and only if

L
SN BIYPBI(E+m) =bmo  for ae. LR, (5.18)

(=1 jePm,
and all m € Z", where Py, = {j € Z: B™Im € Z"}.

Proof. It is enough to show that (5.8) is valid for each o € A if and only if (5.18) is
valid for each m € Z". Each lattice point m € Z" belongs to A since Z" = B%(Z") C A =
Ujez B (Z"), and, therefore, (5.8) implies (5.18). Now, suppose that (5.18) is true for all
m € Z™ \ {0} (the case m = 0 in (5.18) is equal to the case a = 0 in (5.8), and so we only
have to consider the case m # 0). For any o € A\ {0}, we have a = B%my for some jy € Z
and some mg € Z" \ {0}. By making the change of variables £ = B/07 in the left hand side
of (5.8), we obtain

L L
DD BIGPBE ) =) D BT PN(BI (4 mp)) (5.19)

(=1 jEPa (=14€P o,

Let k = j — jo and observe that Po = Ppig,,, = {j € Z : B~/(Bm) € Z"}. Since
B~(k+io)(Biomgy) = B~Fmyg, it follows that j = k + jo € Ppiom, if and only if k € Py.
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Replacing —j + jo by —k in the second sum of (5.19), we obtain

ZZMB% ) (B(6+ ) Z > (B Fn) PUBF(n + mo))

(=1 j€Pq =1 k€Ppm,
and the last expression is zero for a.e. n € R™ by (5.18) (recall that my # 0). So the left
hand side is also zero for a.e. £ € R™ when a € A\ {0}. O

Examples of orthonormal A-wavelets (that is, systems ¥ = {y!,... ¥} Cc L?(R"),
such that F4(¥) is an orthonormal basis of L?(R")) for expanding matrices on R™ can be
found in [13, 34, 14]. Here we show how Theorem 5.3 can be applied to obtain examples of
orthonormal A-wavelets for some dilation matrices A for which B = A? satisfy Definition
5.1, but is not necessarily expanding on R".

In order to construct these examples, observe that if j € Py (see Theorem 5.7 for the
definition of the set P we use here), then B~k = m € Z", so that if ¢/ € L2(R") and
(supp ¢Y) N (supp (- — m)) = 0 (ae) for all m € Z"\ {0}, £ = 1,---, L, then all the
equations in (5.18) with k£ # 0 are trivially true. Since Py = Z, we have the following:

Corollary 5.8. Assume the same set up as in Theorem 5.7, and suppose that (supp 1[/) N
(SUPW%(' —m)) =0 (a.e) for allm e Z"\ {0}, ¢ =1,--- L. If

L
SN WABTIOP =1 fora e E€R", (5.20)
=1 jeZ

then the system Fa(V) is a normalized tight frame for L*(R™). If, in addition, ||¢¢||]2 = 1
forall=1,--- L, then W = {1 --- L} is an orthonormal A-wavelet for L*>(R™).

A:a07
0 1

as in Example 2. We construct a single function v € L?(R?), with [[1||2 = 1, such that 1 is

an orthonormal A-wavelet. The vertical strips

Example 6. For a € R,a > 1, let

V={y) eR: 5 <lal < 3}

are tiled by the sets

1 1 n
E, = R?: — < =, =
n=1{(z,y) € 2a_\af|<2, 5



3
L 2. - o o - o o ..ol
Es
1
1 By
,2, ,,,,,,,,,,,
-1 A B, - N
Eq
Eo
Figure 2: Example 6.
(see Figure 2). Define
[ee)
Sp,=A"FE,, n=012... and W = US”‘
n=0
Observe that W is a disjoint union of the sets S, . Thus, we have
oo o0
1,1 1 1 1
W == 47 _— — = 1 —_ _— = 1 .
L nZ:o 2(2a” 2a”+1) ( a)nzzoa”

Define ¢ € L2(R2) by ¢ = yw. The above computation shows that [|¢[|2 = 1. Since
Ure o A", = Us2 g BEn =V, and {A7V : j € Z} is a tiling of R? by the vertical strips 47V,
(5.20) follows. Finally, observe that horizontal and vertical translations of W by non zero
integers do not overlap. Hence, 9 is an orthonormal A-wavelet. (An example similar to this

one has been exhibited in [5] for the case a = 2.)

Remarks

(1) Applying Theorem 4.2 to the affine system F4(¥), it follows that F4(¥) is a nor-
malized tight frame for L?(R") if and only if it is a Bessel system with constant 1 and the
Calder6n condition (5.20) holds. In particular, if F4(¥) is an orthonormal system, then
Fa(¥) is complete if and only if (5.20) holds. See Remark (1) following Theorem 4.2 for

appropriate references to this result.
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(2) The ideas presented in this section apply to more general affine systems than (5.2).
For {y!,--- ¢t} € L2(R"), Ay,..., AL € GL,(R) and Ny,...Nj € GL,(R), consider the
affine systems

(D%, Tnwt' 1 jE€L kel =1,... L} (5.21)

Since Dil Ty, 0t (z) = Ty, ~iN,k Dil,_; Yt (x), the system (5.21) can be described as a collec-
tion of the form (2.1) for appropriate choices of P, g, and C),. Then Theorems 2.1 and 4.2
can be applied to characterize normalized tight frames for the affine systems given by (5.21).
Since the study of this case is very similar to Theorem 5.3, the details will be omitted. The
results one obtains in the case of expansive dilation matrices A1,..., A, € GL,(R) can be
found in [24].

6 Affine systems and wavelets: special dilation matrices

In this section, we are going to analyze the forms that the characterization equations (5.18)
assume for different values of m € Z", depending on the dilation matrices A: for example,
a corollary of our work in this section is that, for affine systems in one dimension with
A = 2, the equations (5.18) in Theorem 5.7 are the equations (1.6) and (1.7) in the classical
Theorem 1.1.

Observe that the major difference between these two equations is that, in the first, we
encounter the sum over all j € Z, while, in the second, the sum is over all j > 0. In terms
of the notation used for the general case in (5.18), (1.6) and (1.7) represent the two types
of equations obtained when m = 0 (the Calder6n condition we already discussed) and the

case when m # 0.

We will present different classes of dilation matrices where there are, in fact, three or more
types of equalities. We always have the case m = 0, which, in terms of the notation in

Theorem 5.7), gives Py = Z and represents the Calderén condition

L
Y WHBIYP =1 fora e R (6.1)

=1 jez

As we shall see, the case m # 0 can assume several different forms. In the simple example

2 0
A= <0 1> , there are two different types of equalities besides the case corresponding to

0 . 0
m=0. If m= EZQ,mQ#O,Wehavepm:ZsinceA_]k:(
mso ma

j € Z. On the other hand, if m is not of the above form, then one obtains an equation

> € 72 for all

similar to equation (1.7) (see Example 8 for details).
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To better understand how these cases arise, let us first consider the intersection I(B) =
Nicz B'(Z™), where B = A" € GL,(R), and B is expanding on a subspace F of R".
If B is expanding on R", then I(B) = {0}. In general, I(B) C Z". When I(B) is not empty
and m € I(B), m # 0, then we have P,,, = Z, and (5.18) is equivalent to

L

Z Zz[zf(B*j{) V(B i (E+m))=0 fora. e ¢eR™. (6.2)

(=1 jez
Observe that (6.2) is void for dilation matrices expanding on R™. For the matrices of
Example 2, we have I(B) = {0} x Z. For the matrices of Example 3, we have I(B) = ENZ2.
For the matrices of Example 4, the set I(B) depends on the angle of rotation 6. For the

matrices of Example 5, we have I(B) = {0} x Z x Z when b is an integer.

We describe further how equation(5.18) assumes different forms by selecting three types
of the dilation matrix B = A' € GL,(R).

6.1 Matrices of Type-I

Definition 6.1. A matrix M € GL,(R) is of Type-I if

MI(ZM)NZ" = I(M) = (| MY(Z") (6.3)
€L

for all j € Z\ {0}.

Examples of matrices of Type-I are the matrices M = al,, with a € R such that o’ ¢ Q
for all j € Z\ {0}; in this case, I(M) = {0}. More generally, any diagonal matrix whose
diagonal entries a;; are such that o/, ¢ Q for all j € Z\ {0} is a matrix of Type-I. The
matrices of Example 2 are also of this type when a € R is such that a/ ¢ Q for all j € Z\ {0};

in this case I(M) = {0} x Z.

We now apply Theorem 5.7 to characterize the affine system F4(¥), given by (5.2),

where B = A! is a matrix of Type-I that is expanding on a subspace of R".

Proposition 6.1. Let ¥ = {¢!,--- oI} C L2(R") and A € GL,(R) be such that B = A
1s a matriz of Type-I which is expanding on a subspace of R™. Then the affine system
Fa(W), given by (5.2), is a normalized tight frame for L*(R™) if and only if the following
conditions hold: (6.1), (6.2) and

L
D O PE+m) =0 for ae £ERT, (6.4)

/=1

and allm € Z™ \ 1(B).
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Proof. We have already observed that (6.1) and (6.2) correspond to the cases m = 0
and m € I(B) \ {0} of (5.18). Thus, we only need to consider the case m € Z" \ I(B).
It is clear that the set P, = {j € Z : B~/m € Z"} contains the element j = 0. We now
show that it does not contain any other element. If there exist j € Z, with j # 0, such that
j € P, then we must have B~9m € Z". Since —j # 0 we deduce from (6.3) that m € I(B),
contrary to the properties of m. Hence, P,,, = {0} and (5.18) gives

L
Z&e(ﬁ)@@e(f +m) =0 for a. e. £ eR”,

/=1

which is what we wanted to prove. O

0
Example 7. For the matrix A = (7(; 1) and a single 1 € L?(R?), it follows from

Proposition 6.1 that the affine system F4(v), given by (5.2), is a normalized tight frame
for L?(R?) if and only if

Y (g, &) =1 forae. &,6 R,
JEZ
D (i, L) d(rigr, &+mg) =0 forae. &,& €R, and all my € Z\ {0},
JEZ
V(€L E)P(EL+my, Ea4+m) =0 forae. &,& € R, and all my € Z\ {0}, my € Z.

6.2 Matrices of Type-II

Definition 6.2. A matrix M € GL,(R) is of Type-II if M(Z"™) C Z" (equivalently, all the

entries of M are integers).

Before we describe the equations that characterize affine systems for dilation matrices

of Type-II that are expanding on a subspace of R, we make the following observation.

Lemma 6.2. Let M € GL,(Z). If m € Z™" \ I(M), there exist unique d € Z+* U {0} and
r € Z"\ M(Z") such that m = M.

Proof. If m ¢ M(Z"), then write m = M%mn and the result follows by taking d =
0, r =m. If m € M(Z"), write m = Mmy with my € Z"; while, if m; ¢ M(Z"), the result
follows by taking d = 1, r = my. If my € M(Z"), write m; = Mmy with mg € Z". Thus,
m = M?msy. If mg ¢ M(Z"), the result follows by taking d = 2, r = mg. Continue in this
way. This process stops. Otherwise, m = Mjmj for all j € Z*, with m; € Z™. Since,

oMYA ZYY c M(ZM cZt c MY ZM c M2 C - -, (6.5)
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we deduce m € I(M), contrary to our assumption.

To show uniqueness, suppose that M% = m = M%m; with d; > d and r,r; € Z™\ M(Z").
Then, r = M4 ~%m;. Since r ¢ M(Z"), we deduce from (6.5) that r ¢ MN—=4(Z") if d; > d.
Hence, di =dand r=r;. O

Proposition 6.3. Let ¥ = {',--- ¢r} Cc L?(R") and let A € GL,(R) be such that
B = A' is a matriz of Type-II which is expanding on a subspace of R™. Then the affine
system Fa(W), given by (5.2), is a normalized tight frame for L*(R™) if and only if the
following conditions hold: (6.1), (6.2) and

L

SN B PBIE+1) =0 for ae. £€R", (6.6)

¢=1 >0

and all r € Z" \ B(Z"™) (observe that r ¢ 1(B)).

Proof. We have already observed that (6.1) and (6.2) are the cases m = 0 and m €
I(B)\ {0} of (5.18). Thus, we only need to consider the case m € Z™ \ I(B).

We want to examine P, = {j € Z: B~/m € Z"}. If j € P,,, we have B~Im = s € Z".
By Lemma 6.2, there exist unique d € Z* U {0} and r € Z" \ B(Z") such that m = B
Hence, s = B~7+% . We must have —j +d > 0 (otherwise, with —j +d = —¢ < 0, we
deduce s = B~%r, and r = B's € B(Z")).

Thus, for m = Blr € Z"\ I(B), (5.18) of Theorem 5.7 is equivalent to

L
SN B PBI(E+BIr) =0 forae £ R, (6.7)

with r € Z" \ B(Z"). Replacing ¢ by B%n in the above expression and then changing the

index of summation to k = d — j we obtain (6.6). O

2 0
Example 8. For the matrix A = <0 1) and a single ¢ € L%(R?), it follows from

Proposition 6.3 that the affine system F4(v), given by (5.2), is a normalized tight frame
for L?(R?) if and only if

Z \1&(23'{1, {2)]2 =1 fora.e. &,% €R,

JEZ

Z&(ngl, &2) 1&(21'51, &+ my) =0 forae. &,& € R, and all mg € Z )\ {0},
JEZ

Z%@(ijl, &) V(21 (&1 +q1), & +ma) =0 forae. &,& €R,and all g1 € Z )\ 2Z,m3 € Z.
Jj=0
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6.3 Matrices of Type-III

Definition 6.3. A matrix M € GL,(R) is of Type-III if there exists § € N, § > 1, such
that:
(i) M°(Z") c Z",
and
(i) M"(Z")NZ" =I(M) = (B (M) forall 0<r<§, reZ
€7

The following are examples of matrices of Type-III:

V2 0 0

Ao V2 0 0
M, = , My=]10 1 0], Ms=|o0 L1 -1
<0‘/§> 0 0 1 0\??
V2 V2

Observe that the lower-right 2 x 2 matrix of Mj is a rotation by m/4 radians. Since M2, M2,
and M3 are matrices with integer entries, the matrices My, My and Ms satisfy (i) of Defi-

nition 6.3. To verify condition (ii), notice that
I(M;) = {0}, I(Ms) ={0} x Z x Z and I(M3) ={0}.

Obvious substitutions of /2 by other roots and of the rotation by /4 by other rotations

give many more examples of matrices of this type.

Now we want to write down the form that equation (5.18) assumes for the affine system
Fa(¥) when the dilation matrix is of Type-III. Besides (6.1) and (6.2), which correspond
to the cases m = 0 and m € I(B)\ {0}, we are led to consider the case m € I(B°)\ I(B) (it
is easy to see that this set is non empty for the matrix M3). The details can be seen in the
proof of Proposition 6.5 below. Before we present this proposition, we state the following
lemma, which shows that, for matrices of Type-I11, condition (ii) is true for any integer that

is not divisible by 4.
Lemma 6.4. Let M be a matriz of Type-III. If Z" N M*(Z"™) 2 I(M), then ¢ divides s.

Proof. If s = 0 the result is obviously true. If s < 0, from Z"™ N M*(Z") 2 I(M)
we deduce M 92" NZ" 2 M~*(I(M)) = I(M). Hence, without loss of generality we can
assume s > 0. Write s =cd+r, 0 <r <4, r € Z, with ¢ a non-negative integer. Choose
m e Z"NM*(Z") and m ¢ I(M). Using (i) of Definition 6.3 we obtain

m e M*(Z") = M"M®(Z") ¢ M"(Z").
Hence m € Z" N M"(Z™). By (ii) of Definition 6.3, m € I(M) if 0 < r < §, contrary to our

assumption. We deduce that » must be zero, showing that s has to be a multiple of . O
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Proposition 6.5. Let ¥ = {¢!,--- o} c L2(R") and A € GL,(R) be such that B = A*
1s a matriz of Type-III which is expanding on a subspace of R™. Then the affine system
Fa(¥), given by (5.2), is a normalized tight frame for L*(R™) if and only if the following
conditions hold: (6.1), (6.2),

L
SN B PUBIE+m) =0 for ae R, (6.8)

¢=1 jez

and all m € I(B%) \ I(B), and
L e —
SN BT BAE+a) =0 for ae. §ER, (6.9)
(=1 j>0

and all ¢ € Z™ \ B%(Z") (observe that q ¢ I(B?)).

Proof. The set Z™ is the disjoint union of the sets
{0}, I(B)\{0}, I(B)\I(B), and Z"\I(B’).

For m € I(B), condition (5.18) is equivalent to (6.1) if m = 0, and to (6.2) if m # 0.
Consider now

m e I(B°)\ I(B). (6.10)

We claim that, for m as above, we have:
Pm=1{j€Z:Bmecz"}=1{id:icZ}. (6.11)

Since, for all i € Z, B~%m € B~"(I(B%)) = I(B%), and I(B°) C Z", it is clear that
the set in the right hand side of (6.11) is contained in P,m Suppose now that j € P,, and
j # 16 for each i € Z". We can then write j = ¢d — s with 0 < s < 4. Therefore,

B7/m = B*B~%“m € B*(B~“(I(B%)) = B*(1(B°%)) C B*(Z").

Also, B™9m € Z" since j € Pp,. Thus, B~/m € Z" N B*(Z"). Since B is of Type-II1, by (ii)
of Definition 6.3, B~/m € I(B), and, consequently, m € B’(I(B)) = I(B), contradicting
the choice of m. This establishes (6.11).

For m as in (6.10), the equality (6.11) shows that (5.18) in Theorem 5.7 is equivalent to

Zzwe “5{ we —16(54_ m)) =0 for a.e. £ € R",

(=1 i€Z

which is (6.8).
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Choose, finally,
m e Z"\ I(B°). (6.12)

By Lemma 6.2 applied to M = B°, we deduce the existence of unique d € Z+ U {0} and
q € 7"\ B°(Z") such that m = B%q. We claim that, for m as in (6.12), we have

Pn={j€Z:BacZ"}y={ké: kecZ k<d}. (6.13)

If j = k6 with k € Z, k < d, then we can use (i) of Definition 6.3 to obtain B~/m =
B~k By — Bld=k)og ¢ 77 since d — k > 0 and ¢ € Z". This shows that the set on the
right side of (6.13) is contained in P,,. Choose now j € P,, so that B~#m = s € Z". Then,
s = B7Im = Bt Hence, ¢ = B'~%®s ¢ Z" N BI~®(7Z"). Also, ¢ ¢ B°(Z"™), which
implies ¢ ¢ I(B). By Lemma 6.4 applied to M = B, we deduce j = k¢ for some k € Z. Then,
q=B%* D% and k —d < 0 (otherwise, if k —d =t > 0, then ¢ = B%s € B%(Z") c B(Z")
by (i) of Definition 6.3). This establishes (6.13).

For m as in (6.12), the equality (6.13) shows that (5.18) in Theorem 5.7 is equivalent to

L
Z S° B GUBHR(E + Bg) =0 for ae. & €R™. (6.14)

=1keZ,k<d

The change of variables ¢ = B%7 shows that (6.14) is equivalent to

~

S > PHBURIn) PYBE-RI(n 4 q)) =0  for ae. nER" (6.15)
(=1 k€Z, k<d
Finally, the change of indices j = d — k in the summation shows that (6.15) is equivalent
to (5.18) in Theorem 5.7 for the values of m given by (6.12). This finishes the proof of the

Proposition. O

20
Example 9. For the matrix A = <\0[ 1) and a single ¢ € L?*(R?), it follows from

Proposition 6.5 that the affine system F4(v), given by (5.2), is a normalized tight frame
for L?(R?) if and only if

S (226, )P =1 forae &,5€R,

JEZ

D (297761, &) (20261, L+ me) =0 for ae. &,6 €R, and all my € Z\ {0},
JEZ

Z@;@jfl: &) V(& +q1), &+ma) =0 forae. &,& €R, andall g € Z\ 2Z,m; € Z.
Jj=0
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6.4 Matrices expanding on R"

If the dilation matrix A € GL,(R) is expanding (i.e., it is expanding on F' = R™), then
the form of the equalities (5.18) can be expressed in a way that is yet more similar to
the “classical” equalities (1.6) and (1.7). That is, one equality, corresponding to the case
g = 0 in (6.16), is the Calderén condition, while the others have a form that is a direct

generalization of (1.7).

Theorem 6.6. Let U = {3!, ... L} c L*(R"), B = A' and A € GL,(R) be expanding
on R™. Then the system F(V), given by (5.2), is a normalized tight frame for L*(R™) if
and only if

L
SN GBI GUBI(E+q) =040 for ae. € R, (6.16)

(=1 jeP,

and all ¢ € Z™ \ B(Z™), where Py ={j € Z: B7iq € Z"}.

Proof. We must show the equivalence of (5.18) and (6.16) when B is expanding.

Let us first observe that, in this case,

I(B) = (| B/(z") = {0}.
Jj=>0

This is an immediate consequence of inequality (5.6) in Lemma 5.2. Indeed, if x € I (B),
then, for each j > 0, there exists m; € Z" such that x = BI m;j. By (5.6), we then have
Imj| = |B77 2| < 1777 |z| and the last expression tends to zero as j — oo since y > 1.
Hence, m; must be zero since the last expression must be strictly smaller than 1, the minimal
norm for a non-zero lattice point, for j large enough.

It is clear that (5.18) implies (6.16), and that the two expressions are the same when
g = m = 0. Therefore, we only have to show that equality (5.18), for m € Z" \ {0}, is
equivalent to one of the equalities (6.16), for an appropriate g € Z™ \ B(Z"™). We first claim
that any such m € Z"\ {0} can be written as m = B?q for some d > 0 and ¢ € Z"\ B(Z"),
provided B is expanding. To prove this claim proceed as follows. If m ¢ B(Z"), then set
d = 0 and ¢ = m; while, if m € B(Z"), then set m = Bm; and we reason for m; as
we just did for m: either m; ¢ B(Z"), and we are done with ¢ = mq, or m; € B(Z")
in which case m = Bm; = B?mgy with mo € Z". This process must stop after a finite
number of steps; otherwise, m = B m; for a m; € Z" for all j > 0. This would imply that
m € I'(B) = N;j>0B?(Z™) and we reach a contradiction. This establishes the last claim.

Thus, if (5.18) with m # 0 is true, then we can write m = B%q for some d > 0 and
q € Z"\ B(Z"). Now, using the change of variables ¢ = B and the fact that j € Ppag it
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and only if k = j — d € P,, we obtain

L
ZZMB% GBI +m) =Y > (BIYP(BI(E+ Blyg))

=1 j€Pm {=1j€Pga,

_Z N GBI OBy + g)) ZZW (B Fn+q). O

(=1 jEPya, (=1 kePy

Remark. The types of matrices we have considered in this section do not cover all the

possible matrices that are expanding on subspaces of R"™. For example, the matrix
V2 00

M=]10 20

0 01

does not belong to any of the above types. It is a significant problem to understand the
form that (5.8) in Theorem 5.3 assumes for all the dilation matrices expanding on subspaces
of R™, in order to obtain expressions that do not involve the sets A and P,, in the same
spirit as done in Propositions 6.1, 6.3, and 6.5. The problem has been completely solved in
[8] for dimension 1 (the matrix is a real number a, with a > 1), where they have considered
the sets

Ei={acR:a>1, and ¢’ € Z for some integer j > 0},
Ey={acR:a>1, and ¢/ € Q\ Z for some integer j > 0},
Es={acR:a>1, and ¢’ ¢ Q for all integer j > 0},

and they have given simpler expressions for the characterization equations in each one of

these cases. The general problem in dimension n > 1 remains open.

7 Quasi-affine systems

Let U = {y!,... o} ¢ L?(R"), and A € GL,(R). The quasi-affine system generated
by W, denoted as F4(¥), is defined by

={¢jes ke t=1,... L}, (7.1)

where _
|det A|2 Ty Dajt, j < 0

Dy Ty ", j > 0.

~
j7k -
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The notion of quasi-affine system was introduced by A. Ron and Z. Shen in [28] under
the assumption that A € GL,(Z). It is easy to verify that when the dilation matrix A
preserves the integer lattice (i.e., AZ"™ C Z™), then the quasi-affine systems F 4, unlike the
affine systems F4, are invariant under integer translations. Ron and Shen discovered that
there is some sort of equivalence between the affine systems F4(¥) and the corresponding
quasi-affine systems F 'A(V). In particular, they obtained the following result (discovered

in [28] under a mild decay assumption on v, and proved in full generality in [9]):

Theorem 7.1 ([9]). Let A € GL,(Z) be expanding. Then the quasi-affine system Fa(¥) is
a normalized tight frame if and only the corresponding affine system Fa(V) is a normalized

tight frame.

More general notions of equivalence are also proved in [9], such as the fact that affine
and quasi-affine frames are equivalent. It follows from Theorem 7.1 that, once the quasi-
affine systems F A(¥) have been studied using techniques from the theory of shift-invariant
spaces, then the results can be transferred to the corresponding affine systems F4 (W) (cf.
[29, 3, 21] for an application of this approach to the characterization of affine tight and dual

frames).

The main result of this section is yet another application of Theorem 2.1, which gives

the following characterization of normalized quasi-affine tight frames.

Theorem 7.2. Let ¥ = {!,---*} € L2(R") and let A € GL,(R) be such that the matriz
B = At is expanding on a subspace F' of R™. Then the quasi-affine system fA(\I/), given by
(7.1), is a normalized tight frame for L*>(R™) if and only if

L

S S GBI PBIE 4 m) =Gng  for ae. £ R, (7.2)

=1 JELZTUQm

for allm € Z™, and

L
YN B IYPBEI(E+a) =0 forae (R, (7.3)

(=1 jeQa

for all o € AT\ Z", where AT = e+ 40y B (Z™) and Q. = {j € Z*t U{0} : B~z € Z"}.

Remarks.
1. Our result is not restricted to integer-valued expanding matrices, as is the classical

result of A. Ron and Z. Shen, but is valid for real matrices expanding on subspaces, as
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defined in Section 5. As a corollary to our result, we will show the equivalence of affine and
quasi-affine systems may not hold if the matrix is not integer-valued (see Example 11).

2. The expressions (7.2) and (7.3) share some features with equation (5.7) in Theo-
rem 5.4. Observe that, if A € GL,(Z) (hence, AZ™ C Z"), then A? = Z™ and equation (7.3)
is void. We will show in Proposition 8.2 that, in the case of integer-valued matrices, the
expressions (7.2) and (5.7) are equivalent, and this gives a new proof of Theorem 7.1.

3. If a =0, then Z~ U Qy = Z, and (7.2) becomes the Calderén condition

L
YD B IYP =1, forae R,

=1 jez

exactly as in the case of affine systems.

Proof of Theorem 7.2. Apply Theorem 2.1 with
P={(G,0):j€z, t=1,2,... L},

|det A|3 D!, j <0 I, j<0¢6=1,..,L
9 = 961 = . , G=Chon=9 .

D 45 %, 7 >0, A7, 5 >0,4=1,...,L.
With this choice for P, g, and C), using the relation T'y—j D49 = D 4; Ty 1, it follows
that the system {T¢,r gy : k € Z",p € P} is the quasi-affine system Fa(¥).
With the same choices, the set A, given by (2.2), is

A=AN= (] Pznyu |J BzZYy= | Bz

JEZ™ JEZTU{0} JEZTU{0}

and the set P,, given by (2.3), is

Po={(,0):j€Z ,t=1,...,L: a €Z"}U
U{(,0):jeZTu{0},¢=1,....L: B7aecZ"}.

Thus, if « = m € Z", then P, = (Z~ U Q) x {1,...,L}, and equation (7.2) follows
from (2.6) in Theorem 2.1. Similarly, if & € A?\ Z", then P, = Q4 x {1,...,L}, and
equation (7.3) follows from (2.6) in Theorem 2.1.

Therefore, all that is left to prove is that the hypothesis (2.6) is satisfied in this particular
case. Choose f € Dg, where D is a dense subspace of L?(R") defined by (5.10), and E is a
complementary subspace to F' as in Definition 5.1. Thus, we need to show that L(f) < oo

for f € Dg, where

L
GE DYDY /Suppfrﬂwm)\?\demrwz@%%ar?d&

(=1 jeZ— meZn
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L
$3 Y [ it BimP det 47| (D) (@) P e

(=1 jez+u{0} mezn /SUPP f

Since (D))" (€) = |det A|~1/24)(BI¢), then

L
L= /Suppf|f<s+m>\2W<Bj§>2d£+

(=1 jeZ— meZn

L
Y [ fer Bmp e eP
(=1 jez+U{0} meznr /SWPPf
Write L9(f) = LL(f) + L%(f), where L7 (f) and L% (f) denote the sums corresponding to
j€Z and j € ZT U{0}, respectively.

Consider first the expression for LY (f). Since f € D, there exists an R > 0 such that
supp f € B(R). In order to have L(f) # 0, we must have |¢| < R and |¢ + m| < R.
Therefore, |m| < 2 R, and the sum with respect to m in L? (f) is finite, where the number
of m € Z" is at most (2 R)". Furthermore, if the quasi-affine system ﬂ(\ll) is a normalized
tight frame for L?(R"), then, by Proposition 4.1 applied to the quasi-affine system (7.1),

we deduce that ;

SUSTWABTIGP <1 for ae. €€ R

(=1 jez
This inequality also holds if we assume (7.3) (take o = 0). Together with the bound for the

sum with respect to m, the last inequality shows that:
LL(f) < 2R)" [BR)| | /% (7.4)

Finally, consider the expression for L% (f). It is clear that

L
H<n=Y3 % / e B B0 de

(=1 jeZmerr
and L(f) < oo, by Proposition 5.6. O

A simple application of Theorem 4.2 to the quasi-affine systems Fa yields another

characterization of quasi-affine normalized tight frames.

Theorem 7.3. Let ¥ = {y!,-- -y} € L2(R") and A € GL,(R) be such that the matriz
B = Al is expanding on a subspace F' of R™. Then the quasi-affine system .7?,4(\1/), given
by (7.1), is a normalized tight frame for L?(R™) if and only if it is a Bessel system with
constant 1 and the Calderdn condition (6.1) holds.
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Proof. Apply Theorem 4.2 with P, g, and C}, as in the proof of Theorem 7.2. The fact
that condition (2.6) is satisfied for all f € Dg, where D is a dense subspace of L?(R"™)
defined by (5.10), and F is a complementary subspace to F' as in Definition 5.1, follows

from the same argument as in the proof of Theorem 7.2. O

Using Theorem 7.3, we make the following observation.

Corollary 7.4. Let ¥ = {y!,..- 9L} C L*(R") and A € GL,(R) be such that the ma-
triv B = A' is expanding on a subspace F of R™. If the quasi-affine system .7?,4(\1') s a
normalized tight frame for L?(R™), then the corresponding affine system Fa(¥) is also a
normalized tight frame for L*(R™).

In order to prove Corollary 7.4, we need the following Lemma, which is adapted from
[9, Theorem 2].

Lemma 7.5. Let U = {¢!,---9l} C L2(R") and A € GL,(R). If the system F1(¥) =
{Dy Tpot: j € ZF U{0},k € Z",¢ =1,..., L} is a Bessel system with constant B, then
the affine system Fa(V), given by (5.1), has the same property.

Proof. Since F (¥) is a Bessel system with constant B, then

L
SUNTST W DAY < BIIFIR

(=1 7>0 kezZ™

for all f € L2(R™). Thus, given N € N and any g € L?(R"), from the last inequality with
f= Dgg we deduce that

L
S (DY g, DL T < BIDY gl3 = Bllglls, (7.5)
¢=1 j>0 kezZn

for all g € L%(R") and N € N. Since (D¥ g, DQ Tp ") = <g,Di‘_N Ty, ¥*), then from (7.5)

we have that

L
SIS g N TP < B gl

(=1 j>0 kezn

for all g € L?(R™) and N € N. Thus, applying the change of indices i = j — N we obtain

L
S>3 e Dh v < Bllgll3,

{=11>—N keZ™

and the result then follows by taking the limit for N approaching infinity. O
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Proof of Corollary 7.4. If the quasi-affine system fA(\II), given by (7.1), is a Bessel
system with constant 1, then so is the system F (V) = {Dy; Tp ' : j € Zt U{0},k €
Z" ¢ =1,...,L}, and so, by Lemma 7.5, is the corresponding affine system F4 (V). By the
item 3 of the Remarks after Theorem 7.2, the systems Fa(¥) and F4(¥) satisfy the same

Calderén condition, and this completes the proof. O

8 Quasi-affine systems: special dilation matrices

In this section, we are going to analyze, in the same spirit as in Section 6, the forms that
the characterization equations (7.2) and (7.3) assume corresponding to different values of
m € Z"™ and « € A9. These differences will depend on the dilation matrix A, expanding on
subspaces of R", similarly to the situation we encountered in Section 6.

As a consequence of the results we discuss in this Section, we have that for A € GL,(R)
of Type-II (i.e., A has integer entries), the affine system F4 (V) is a normalized tight frame
if and only if the corresponding quasi-affine system F A(¥) has the same property (see
Theorem 7.1 and the references given before its statement for this equivalence in the case of
expanding dilation matrices in GL,,(R)). On the other hand, we give examples of matrices
A of Type-I for which F4 (V) is a normalized tight frame, but the corresponding quasi-affine
system F A(V) does not have the same property.

If we take m = 0 in (7.2), we have Q,, = Z* U {0} (the set Q,, is defined in Theorem
7.2). Then (7.2) is the Calderén condition

L
S Y WHBIYP =1 fora e EeR™. (8.1)
=1 jez

If m # 0 and m € I(B) = ez, i>0} BY(Z"), we have Q,, = Z* U {0}, and (7.2) is

equivalent to

~

Z Z@ZK(B_jﬁ) PY(Bi(E+m))=0 fora. e ¢EeR™. (8.2)
(=1 jez
The set 19(B) is contained in Z". If B is an expanding matrix on R"™ we have I1(B) = {0}
and, consequently, condition (8.2) is not present. For the matrices of Example 2 in Section
5, we have I9(B) = {0} x Z. For the matrices of Example 3 in Section 5, we have I%(B) =
ENZ2. For the matrices of Example 4 in Section 5, the set I9(B) depends on the angle of
rotation 6. For the matrices of Example 5 in Section 5, we have I9(B) = {0} x Z x Z when

b is an integer.
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For other values of o € A, the form that (7.2) and (7.3) assume depends on the dilation
matrix B = A € GL,(R). As special applications of Theorem 7.2 we treat below matrices of
Type-1 and Type-I1, as defined in Section 6. In order to avoid excessive technical discussions,
we leave to the reader the exploration of how dilation matrices of Type-III are involved in

the quasi-affine case.

8.1 Matrices of Type-I

Recall that B € GL,(R) is a matrix of Type-I if B/(Z") NZ" = I(B) = ;5 B'(Z") for
all j € Z\ {0}, according to Definition 6.1. Then, in this situation, I9(B) C B(Z") NZ" =
I(B) C I1(B), so that we have

I9(B) = I(B). (8.3)

In view of this equality, condition (6.2) for affine systems and condition (8.2) for quasi-affine

systems range over the same values of m.

We can now give the form that the equations that appear in Theorem 7.2 assume in

this situation.

Proposition 8.1. Let ¥ = {¢!,--- 4L} c L2(R") and A € GL,(R) be such that B = A
18 a matriz of Type-I which is expanding on a subspace of R™. Then the quasi-affine system
fA(\I/), given by (7.1), is a normalized tight frame for L*(R™) if and only if the following
conditions hold: the Calderén condition (8.1), (8.2),

Mh

OYPUE+m) =0 for a.e. £ € R, (8.4)
=1
and allm € Z™" \ 19(B), and
L
ZZ VI(BIE)YUBI(E+m)) =0 for a.e. £ €R", (8.5)
=1j>1

and all m € Z" \ I1(B).

Proof. We apply Theorem 7.2. We have already observed that (8.1) and (8.2) are
the cases m = 0 and m € I%(B) \ {0} of (7.2). We now need to consider the cases of
m € Z"\ I9(B) and o € A?\ I9(B).

For m € Z" \ 19(B), since B is of Type-I, we obtain Q,, = {0}. In this case, (7.2) is

equivalent to

L
SN BT YBI(E+m) =0 forae {€R", (8.6)
(=1 j<0
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For a € A7\ Z", write o = B%m for some jo € Z* and m € Z"\ I4(B). Then, j € Q, if
and only if j € ZT U {0} and B~7a = B~/TJom € Z". Since B is of Type-I, we deduce that
J = jo, so that Q, = {jo}. In this case,

L

PYBTI0E) Yl (B=Io (€ + Biom)) =0 for a.e. £ € R™.
=1
Change B~/°¢ to 1) to obtain (8.4). Finally, observe that the terms with j = 0 in (8.6) add
up to zero by the just proved equation (8.4), so that (8.6) becomes (8.5) after changing j
to —j, O

Example 10. If a € R, a > 1, with o’ ¢ Q for all j € ZT, and a single ¢ € L*(R),
it follows from Proposition 8.1 that the quasi-affine system .7?,4(1/1), given by (7.1), is a
normalized tight frame for L?(R) if and only if

D ld(a’e) P=1 forae £€R, (8.7)
JEZ
D(EY(E+m) =0 forae £€R, andall me Z\ {0}, (8.8)
and
Z@(ajf)iﬂ(aj(ﬁ +m))=0 forae £€R, andallme Z\ {0}. (8.9)
i>1

Remark. Comparing Propositions 6.1 and 8.1, it is clear that, for matrices of Type-I
expanding on subspaces of R", if the quasi-affine frame is a normalized tight frame for
L?(R™), then also the corresponding affine frame is a normalized tight frame for L?(R™). Of
course, this is in agreement with Corollary 7.4. On the other hand, (8.5) does not appear in
Proposition 6.1: this fact will allow us to exhibit affine normalized tight frames for L?(R"),
for which the corresponding quasi-affine system is not a normalized tight frame for L?(R").

This is presented in the following example.

Example 11. We carry out the construction in dimension n = 1. Let a € R, a > 1,
and a ¢ N. Let r € N be such that r —1 < a < r. Assume r — (1/2) < a < r (the case
r—1 < a < r—(1/2) requires only minor modifications from the example we present below).
Choose € Rsuch that r — 1 <a< g <r,andlet e=r— (3> 0.

Write J = (r — 3,8), and I = (B,a(r — 1), so that JUI = (r — &, a(r — 3)). Observe
that a(r — %) > (r — %)2 =72 —r4 % > 3, since r > 2. Choose jy to be a positive integer
large enough so that

a(r — %)

G < min{e, 5 — a}. (8.10)
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1 .
Let K = —-1, and consider W, = (£K) U (£J). Define ¢, by

¢a = XWa'

Since @K U J = (£I) U (£J) = £(r — 3,a(r — 3)), (8.7) holds for 1. By (8.10), W, N

(Wo +m) =0 for all m € Z \ {0}. Hence (8.8) is true.

If we choose a € R, a > 1, such that a/ ¢ Q for all j € ZT, from Example 10 we deduce
that the affine system F,(¢,) is a normalized tight frame L?(R"). Moreover, by (8.10), if
Eca 'K,

Ya(ad) Ya(aé +a) =1,  (since K +a CJ),
and for j € Zt, a(a?€) ha(ai€ 4 af) = 0, since P,(a?€) = 0. Thus, (8.9) does not hold for
m = 1 and, consequently, the quasi-affine system ﬁa(wa) is not a normalized tight frame
for L3(R).

8.2 Matrices of Type-II

Recall that B € GL,,(R) is a matrix of Type-II if B(Z") C Z", according to Definition 6.2.

Then, in this situation,
..CB*(z"YCcB(Z")YCZ'c B YZ")c B *Z") C ---
and, consequently,

B)y= () B'(z"=()B(z")=I1(B). (8.11)

{iez,i>0} i€z

In view of this equality, condition (6.2) for affine systems and condition (8.2) for quasi-affine

systems range over the same values of m.

We can now give the form that the equations that appear in Theorem 7.2 assume in

this situation.

Proposition 8.2. Let ¥ = {¢!,--- 4!} c L2(R") and A € GL,(R) be such that B = A*
18 a matriz of Type-II which is expanding on a subspace of R™. Then the quasi-affine system
.7?,4(\1/), given by (7.1), is a normalized tight frame for L*(R™) if and only if the following
conditions hold: the Calderdn condition (8.1), (8.2), and

L _
S PHBIOBI(E+49) =0 forae R, (8.12)

¢=1 j>0

and all g € Z" \ B(Z").
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Proof. We apply Theorem 7.2. We have already observed that (8.1) and (8.2) are the
cases m = 0 and m € I9(B) \ {0} of (7.2).
For matrices of Type-II, A? = U;cz+ 10y BI(Z"™) = Z" by the inclusions that precede (8.11),
and (7.3) is void. Thus, we only need to consider the case m € Z" \ I9(B). Observe that,
since I9(B) = I(B), by (8.11), we can apply Lemma 6.2 to deduce the existence of unique
d € Z +U{0} and ¢ € Z" \ B(Z") such that m = Biq.
We want to examine Q,, = {j € Z* U {0} : B7m € Z"}. If j € Q,,, then B~/ Blq =
B~im € Z". We must have —j +d > 0 (otherwise, with —j +d = —¢ < 0, we deduce
B~‘q € Z", which implies ¢ € BY(Z") C B(Z"), contrary to our choice of ).
Also, if 0 < j < d, then j € Q,,; in fact, since —j +d > 0 and B is of Type-1I, we obtain
B7im = B~tlq ¢ Z". Thus, Q,, = {0,1,2,---,d}, and (7.2) is equivalent to

L

L d
YN BTG YUBI(E+ Blg)) + Y > (BTGB I(E+ Blg) =0

/=1 j<0 /=1 ]:0

for a.e. £ € R™. Collecting the two sums with j ranging from —oo to d, doing the change of
variables ¢ = B%, and changing the index of summation to k = —j + d, we obtain (8.12).
This finishes the proof of the Proposition. O

Remarks.

(1) Comparing Propositions 6.3 and 8.2, and taking into account the equality (8.11),
it is clear that for matrices of Type-II (i.e. matrices with integer entries), expanding on
subspaces of R", the quasi-affine frame is a normalized tight frame for L?(R") if and only
if the affine frame is a normalized tight frame for L?(R™). This generalizes Theorem 7.1 to
the case of matrices which are not just expanding, but expanding on subspaces of R".

(2) We have proved in Example 7 that the equivalence stated in the above remark
does not carry over to matrices of Type-I. On the other hand, recently M. Bownik [4]
has modified the quasi-affine system (7.1) to obtain this equivalence for rational dilation

matrices expanding on R™ (that is, matrices with rational entries).

9 Dual systems

In this section, we consider the case of systems satisfying a reproducing formula of the form

sz(v,ea>77a, veH
acA

where the “analyzing” family {1 }ac4 differs from the “synthetizing” family {e, }oca. Since

the results that we shall present in this section follow for the most part by simple adaptations
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of the arguments used in the tight frame case, in order to avoid repetitions, we will omit or
simply sketch some of the proofs.

Let e = {eq}aca and n = {ny aca be Bessel systems for H. Then {74 }aca is called a
dual system to {e,}aca, if

Kep(v,w) = Z(v,ea> (Mo, w) = (v, W), for all v,w € H. (9.13)
acA
If this is the case, then we have:
v = Z(v,na> eq = Z<U,€a>7]a, for all v € H,
acA acA

with convergence in H. Note that, by the polarization identity for sesquilinear forms, we
have Kep(v,w) = § 22:0 i" Ke (v + i"w,v + i"w). Therefore, (9.13) holds if and only if
it holds for all v = w € H. Also, it is enough to prove (9.13) for v = w in a dense subspace
of H (cf. [15]).

We have the following general result, which characterizes a class of dual systems for the

collections of the form {T¢,r g, : p € P,k € Z"}.

Theorem 9.1. Let {To,kgp : p € P,k € Z"} and {Tc,kvp : p € P,k € Z"} be Bessel
systems for L?(R™), where P is countable, {gp}pep, {Vp}pep, are collections of functions in
LAR") and {Cp}pep C GLy(R). Suppose that

R o, 1 o
Z;;mén /suppf |f(€+ Cym)| [det G| 19p(§)|7 d€ < 0. (9.14)
and 1
R Lo ) ,
Z 2 g € GO i E e < o0 (9.15)

for all f € D, where Cz{ = (C’;)_l. Then {Tc,kvp : p € P,k € Z"} is a dual frame to
{Tc,kgp :p € P,k €Z"} in L*(R") if and only if

1
> TEYen 9p(E) Ap(€ +a) =640 for ae. £ ER™, (9.16)
PEP

for each o« € A, where § is the Kronecker delta for R™, and A, P, are defined by (2.2) and

In order to prove Theorem 9.1, we need the following Lemmas, whose proofs can be
easily adapted from those of Lemmas 2.2 and 2.3 (see also [21, Sec.4]). Recall that the
dense subspace D C L?(R") is defined in Section 2.
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Lemma 9.2. Let C € GL,(R) and CT = (CY)~'. If f € D and g, € L*(R"), then

1

Tdet T i [£,81&CT) 3, flg ¢ de, (9.17)

> Terg) (Towy, f) =

keZn

where T" = [0,1)".

Lemma 9.3. Let C € GL,(R) and C! = (C")~'. For each f € D and g,y € L*(R"), the

function

K(z) = Y (T f,Torg) (Tew 7. Te f) (9.18)
kezn

18 the trigonometric polynomial
Z K e2mi (CTm)-x
mezZn

where

- 1
K(m) = ——
(m) ’ det C| R

and only a finite number of these expressions is non-zero.

F(&) F(E+CTm) §(€) (€ + CTm) de, (9.19)

The following Proposition is the principal result that we shall use to establish Theorem
9.1. The proof is very similar to the proof of Proposition 2.4 and will be omitted. Observe
that, unlike Proposition 2.4 where only condition (9.14) was needed, in this case we need
both (9.14) and (9.15) in order to show that the generalized Fourier series (9.20) converges
absolutely.

Proposition 9.4. Let P be a countable indexing set, {gp}pep, {Vp}pep be collections of
functions in L2(R™), {Cp}lpep C GLn(R), and let C’If = (CL)~'. Assume that, for f € D,
the conditions (9.14) and (9.15) hold. Then, the function

=3 > (Tef Teykgp) Loy Tef)

pEP kEZ™

is a continuous function that coincides pointwise with its absolutely convergent (almost
periodic) Fourier series
> ib(a) e (9.20)
a€A

where
1

et Cp|

a(@) = | FOFE+a) 3 e B (E+a)ds (9:21)

PEP

and the integral in (9.21) converges absolutely.
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Remark. Asin Proposition 2.4, the series for w(x) given in Proposition 9.4 is an almost
periodic function since these are characterized as uniform limits of generalized trigonometric

polynomials (see [1]).
We can now prove Theorem 9.1.

Proof of Theorem 9.1. By the observation at the beginning of this section, it suffices

to prove that
DY (i Topw g0 (Tok v 1) = IIFIP, (9.22)

pEP keZnr
for f in a dense subset of L%(R"). Let us assume that conditions (9.14) and (9.15) hold for
all f € D, where D is given in Section 2, and that (9.16) is true. By Proposition 9.4,

- Z Z (T f, To,m 9p) <Tcpm Yoo Iy f) = Z w(a) 627ria~x7

pEP meZn a€EA

where the last series converges absolutely (thus, w(z) is continuous) and, by (9.16),

i(@) = (| F€F(E+a)de ) dug

for each f € D. Then equation (9.22) follows by letting = = 0.
Now let us assume that equation (9.22) holds for all f € L?(R"). By Proposition 9.4,
if f € D, then the function z(z) = w(x) — ||f||? is continuous and equals an absolutely

convergent (generalized) trigonometric series whose coefficients are
20)=@(0) —[If?,  and  2(a) = d(a), a #0.

Since z(z) = 0, it follows from Lemma 2.5 that all coefficients Z(«) must be 0. Thus for
a€ANand feD

IRGIGD (Z,detmgp(f)&p(ua))df:é,

(9.23)

Consider the case o = 0 and let

9= gy WO W)
peP

By (9.14) and (9.15), so is locally integrable. Choose £y to be a point of differentiability of
the integral of this function. Letting B(e) denote the ball of radius € > 0 about the origin,

define f. by .
fe(§) = m XB(e)(f —&o) -

o1



Then ||fe]l2 =1 and f. € D. By (9.23) with f = f. we have

1 =lim

0 Jle—gol<e | B(e)

This shows that s¢(§) =1, a.e. £ € R", and (9.16) is satisfied for o = 0.
When « # 0, let

s50(§) d§ = s0(o)-

€)= Y gy WO )

PEP ()
By the polarization of (9.23), we have

| JOhE+ ) sa(e)ds =0 (9:24)

for all f,h € D. By Schwarz’s inequality and conditions (9.14), (9.15), we have that s, is
locally integrable. We can choose, again, a point of differentiability &y of the integral of s,
and choose f. and he such that

1 A 1

Ae ] € - ) he = T € - - .
fe(§) o] XB(e) (€ — &) €3] 0] XB(e)(§ — & — a)
Hence ||fc|la = |lgell2 = 1, fe , g € D and by (9.24),
. 1 B
0= lim /5 e TB] (6 = 0(60)

Hence s,(£) =0, a.e. £ € R", and (9.16) is satisfied for « #0. O

The application of Theorem 9.1 to the Gabor systems Gg ¢(G), defined by (3.2), yields
the following characterization of Gabor dual frames, known as the Wexler-Raz theorem
(cf. [20, 30, 21]). Our proof, which is adapted from [21], will only be sketched.

Theorem 9.5 (Wexler-Raz). Let G = {g',--- , g%}, T = {7},--- ,~*} Cc L3(R"), B,C ¢
GL,(R), and assume that Gp,c(G) and Gp,c(T') are Bessel systems for L*(R™). Then the
system Gp c(I') is a dual system to Gp,c(G) if and only if

L
> (9", Tpi, Mo, ") = | det Bl |det C| 8,0 61,0 (9.25)
/=1

for each u, v € Z"™, where § is the product Kronecker delta in Z", B! = (B)™! and
cl=(cH1'.

Proof. We apply Theorem 9.1 with g, = Mp, g, v = MBp,y,p € P =7" and Cp, = C.
An argument similar to the proof of Theorem 3.2 shows that, if Gp ¢(G) and Gp o (I') are
Bessel systems for L2(R"), then

L
Y (f.Tox Mpm g°)(Tok Mpm~',h) = (f,h)  forall f,h € L*(R")
{=1 k;meZn
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if and only if

L
=2 §'(€ = BK) 3§ = Bk + CTm) = .0
(=1 kezn
for a.e. £ € R", all m € Z™.

The proof then follows by expanding the BZ™- periodic function F'(§) into a Fourier

|detC|

series, as in the argument used in [21, theorem 6.1]. 0.

The application of Theorem 9.1 to the affine systems F4(¥), defined by (5.2), yields
the following characterization of affine dual systems, whose proof is similar to the proof of

Theorem 2.1. This theorem generalizes previous results about affine dual systems, such as
those in [15, 2, 7].

Theorem 9.6. Let ¥ = {1, .- oI} & = {¢!,---  ¢F} € L2(R") and A € GL,(R) such
that the matriz B = A! is expanding for a subspace F of R™. Assume that the systems
Fa(¥) and F4(®) are Bessel systems for L>(R™). Then the system Fa(®) is a dual system
to Fa(V) if and only if

L
S S UBIE FBI(E+ Q) =bag  for ae. € R, (9.26)

{=1 jEPu
and all a € A =J;cy B/ (Z"), where, fora € A, Po ={j € Z: B a € Z"}.
Proof. Recall that Di‘ Ty ' = Ty Di‘ Y* . We are going to apply Theorem 9.1 with
P={(G.0):j€Z (=1,2,...,L},

9 = 9Gy = DAVt =G = D)oy and C,=Cpupy=A7 foralll=1,...,L.

Since we have that g,(¢) =(D/yv")\(€) = |det B /2B ¢), and 3,(&) = (D4¢)(€) =
|det B|79/2¢*(B~7 ¢), then (9.26) follows from (9.16) in Theorem 9.1, provided the condi-
tions (9.14) and (9.15) in this Theorem are satisfied. Therefore, all that it is left to prove
is that (9.14) and (9.15) are satisfied in this particular case. Thus, we need to show that:

L
D=2 % [ ifcrBmPi ot <o 0
=1 jEZ meZn supp f

and

L
SY S [l B S <o, 029

(=1 jEZ meZ"
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for f in an appropriate dense set of L?(R™). Like in the proof of Theorem 2.1, the dense set

we choose is

Dp={feD: (supp /)N E = 0}

where D = {f € L*(R"): felL™® (R™) and supp f is compact}, and F is a complementary
subset to F' as in Definition 5.1. The proof that L(f) < oo and J(f) < oo now follows from

Proposition 5.6. O
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