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Abstract

By a “reproducing” method for H = L2(Rn) we mean the use of two countable
families {eα : α ∈ A}, {fα : α ∈ A}, in H, so that the first “analyzes” a function h ∈ H
by forming the inner products {< h, eα >: α ∈ A}, and the second “reconstructs” h

from this information: h =
∑

α∈A < h, eα > fα.
A variety of such systems have been used successfully in both pure and applied

mathematics. They have the following feature in common: they are generated by a single
or a finite collection of functions by applying to the generators two countable families
of operators that consist of two of the following three actions: dilations, modulations,
and translations. The Gabor systems, for example, involve a countable collection of
modulations and translations; the affine systems (that produce a variety of wavelets)
involve translations and dilations.

Considerable amount of research has been conducted in order to characterize those
generators of such systems. In this paper we establish a result that “unifies” all of these
characterizations by means of a relatively simple system of equalities. Such unification
has been presented in a work by one of us. One of the novelties here is the use of
a different approach that provides us with a considerably more general class of such
reproducing systems; for example, in the affine case, we need not to restrict the dilation
matrices to ones that preserve the integer lattice and are expanding on Rn. Another
novelty is a detailed analysis, in the case of affine and quasi-affine systems, of the
characterizing equations for different kinds of dilation matrices.
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1 Introduction

The terms reproducing systems or reproducing formulae are applied to any of several

methods that “analyze” a vector v (or function) and, then “reconstructs” v in terms of this

analysis. In order to fix our ideas, let us consider a specific way in which this procedure is

carried out that will help us explain the principal features of this paper.

A countable family {eα : α ∈ A} of elements in a separable Hilbert space H is a frame

if there exist constants 0 < A ≤ B <∞ satisfying

A‖v‖2 ≤
∑
α∈A

|〈v, eα〉|2 ≤ B‖v‖2

for all v ∈ H. If only the right hand side inequality holds, we say that {eα : α ∈ A} is a

Bessel system with constant B. A frame is a tight frame if A and B can be chosen so

that A = B, and is a normalized tight frame if A = B = 1. Thus, if {eα : α ∈ A} is a

normalized tight frame in H, then

‖v‖2 =
∑
α∈A

|〈v, eα〉|2 (1.1)

for each v ∈ H. This is equivalent to

v =
∑
α∈A

〈v, eα〉 eα (1.2)

for all v ∈ H, where the series in (1.2) converges in the norm of H (we refer the reader

to [18], Chapters 7 and 8, for the basic properties of frames that we shall use). We shall

also consider dual systems {eα : α ∈ A}, {fα : α ∈ A}, where the first system is used for

analyzing v and the second for reconstructing v. In this case the reproducing formula has

the form

v =
∑
α∈A

〈v, eα〉 fα , (1.3)

which is clearly more general than (1.2).

For the moment, in order to explain the scope of this paper, let us restrict ourselves to

the case of normalized tight frames. Examples of systems that we intend to examine are

the Gabor systems, which have the form

GB,C(g) = {e2πiBm·xg(x− Ck) : m, k ∈ Zn} , (1.4)

where g ∈ L2(Rn) and B,C ∈ GLn(R). Another class of examples is given by the affine

systems

FA(ψ) = {ψj,k(x) = |detA|j/2ψ(Ajx− k) : j ∈ Z, k ∈ Zn}, (1.5)
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where ψ ∈ L2(Rn) and A ∈ GLn(R). There are relatively simple characterizations of those

functions g and ψ for which these systems (for appropriate A,B and C) are normalized tight

frames for L2(Rn). It is fair to say that, though the adjective “simple” is appropriate for

describing the characterizations, it is not at all appropriate for a description of the proofs

found in the literature (see [18, 15, 17, 29, 6, 2, 3, 8, 7]). The characterizations of those g

that generate a Gabor system that is a normalized tight frame can be given by a system of

equalities, and the same is true for those ψ generating affine systems that are normalized

tight frames. Though these equalities are different, there are certain similarities that makes

it plausible to ask if there exists a general result that contains these two characterizations

as special cases. This is one of the novelties of this paper: we formulate and prove such a

result (Theorem 2.1, below). Another new feature is the method of proof. It relies on an

idea that appears in [19] and [23] that converts the expression on the right of equality (1.1)

into a function of x ∈ Rn (here H = L2(Rn)) by applying to v translations that depend

on x; this function can then be written as an (almost periodic) Fourier series. Finally,

we obtain the characterization result as a consequence of the uniqueness property for this

(almost periodic) Fourier series. By these means, we obtain results that are more general

than those that appear in the literature.

Perhaps, as an illustration of the type of characterization equations we are considering,

it is useful to consider the affine systems (1.5) generated by a function ψ ∈ L2(Rn). If they

are a normalized tight frame, then ψ is called a normalized tight frame wavelet (TFW);

if, in addition, ‖ψ‖2 = 1, the system is an orthonormal basis for L2(Rn) and ψ is called an

orthonormal wavelet or, simply, a wavelet. The first characterization results for such

systems were obtained independently by G. Gripenberg ([16]) and X. Wang ([35]) in one

dimension, and the dilation A was, simply, multiplication by 2:

Theorem 1.1. (G. Gripenberg ([16]), X. Wang ([35])) A function ψ ∈ L2(R) is an or-

thonormal wavelet if and only if ‖ψ‖2 = 1,∑
j∈Z

|ψ̂(2jξ)|2 = 1 for a. e. ξ ∈ R, (1.6)

and

tq(ξ) =
∑
j≥0

ψ̂(2jξ)ψ̂(2j(ξ + q)) = 0 for a.e. ξ ∈ R, (1.7)

whenever q is an odd integer.

Remarks.

1. In this paper, the form of the Fourier transform we use is

f̂(ξ) =
∫

Rn

f(x) e−2πiξ·x dx .
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2. Without the condition ‖ψ‖2 = 1, the two equalities (1.6) and (1.7) characterize the

normalized tight frame wavelets (as explained in [18, Chapter 7]).

Many extensions of this result were obtained in higher dimensions: for A = 2I this

was done in [15] and more general dilation matrices A were introduced in the references

we presented after equality (1.5). Many of the proofs involve the theory of shift invariant

spaces and, as a consequence, this limits the dilations A to be matrices that preserve the

integer lattice Zn. Another assumption about A that is made in these articles is that A is

expanding (i.e. each proper value λ satisfies |λ| > 1). As we shall see later on, we will

only need a somewhat more general hypothesis for A and do not assume that the lattice Zn

is preserved by A. We thus obtain a result that is more general than the characterization

in [7], in which A did not have to preserve the integer lattice, but had to be expanding. In

addition, we present an analysis of how the characterizing equations depend on the dilation

matrix A.

The second author of this article wrote a paper ([21]) that focuses on the “unified

approach” we have just described. The methods of proof in his article were based on the

ideas from shift invariant spaces we mentioned above; consequently, the results obtained are

less general because of the more restrictive assumptions we described in the last paragraph.

The new approach also presents a good perspective of the history of the subject. For these

reasons we chose the same title for this paper as the one used in [21] and added “II ”at the

end.

We end this introduction by indicating that the general result, Theorem 2.1, includes

and leads to several applications that are more general than the ones we described above.

For example, the Gabor and affine systems can be generated by finite families {g1, . . . , gL}
and {ψ1, . . . , ψL} of functions in L2(Rn). Moreover, special cases involve yet other systems

generated by the translation, modulations and dilations. These features are best described

when we present the various applications of Theorem 2.1.

2 The main result

Let P be a countable collection of indices, {gp : p ∈ P} be a family of functions in L2(Rn)

and {Cp : p ∈ P} be a corresponding collection of matrices in GLn(R). For y ∈ Rn, let Ty

be the translation (by y) operator defined by Tyf = f(· − y). The main result of this paper

presents a characterization of all those families of the form{
TCpk gp : k ∈ Zn, p ∈ P

}
, (2.1)
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that are normalized tight frames for L2(Rn). We introduce the following notation:

Λ =
⋃
p∈P

CI
p (Zn) , (2.2)

where CI
p = (Ct

p)
−1 (= the inverse of the transpose of Cp), and for α ∈ Λ,

Pα = {p ∈ P : Ct
p α ∈ Zn}. (2.3)

If α = 0 ∈ Λ, then P0 = P (since Ct
p 0 = 0 for all p ∈ P); otherwise the best we can say is

that Pα ⊂ P.

Let N be defined on L2(Rn) by letting

N2(f) =
∑
p∈P

∑
k∈Zn

|〈f, TCpk gp〉|2 (2.4)

for f ∈ L2(Rn). By (1.1), the system (2.1) is a normalized tight frame for L2(Rn) if and

only if N is the L2(Rn)-norm of f :

N2(f) = ‖f‖2
2 (2.5)

for all f ∈ L2(Rn). Our main result, therefore, involves conditions on the system (2.1) that

are equivalent to equality (2.5).

Since equalities (1.2) and (1.1) are valid for all v ∈ H if and only if they hold for a dense

subspace of H (see [18, Chapter 7]), we will find it useful to introduce the set

D =
{
f ∈ L2(Rn) : f̂ ∈ L∞(Rn) and supp f̂ is compact

}
,

which is dense in L2(Rn).

Here is the statement of our main result:

Theorem 2.1. Let P be a countable indexing set, {gp}p∈P a collection of functions in

L2(Rn) and {Cp}p∈P ⊂ GLn(R). Suppose that

L(f) =
∑
p∈P

∑
m∈Zn

∫
supp f̂

|f̂(ξ + CI
pm)|2 1

|detCp|
|ĝp(ξ)|2 dξ <∞ (2.6)

for all f ∈ D, where CI
p = (Ct

p)
−1. Then the system (2.1) is a normalized tight frame for

L2(Rn) if and only if∑
p∈Pα

1
|detCp|

ĝp(ξ) ĝp(ξ + α) = δα,0 for a.e. ξ ∈ Rn, (2.7)

for each α ∈ Λ, where δ is the Kronecker delta for Rn.
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The proof of this result will be derived from some lemmas that will be established in

this section. In the course of doing so we shall also indicate why the hypothesis (2.6) is

plausible and discuss the convergence of some of the series we shall encounter. As a first

observation along these lines, note that if equality (2.7) is valid for α = 0, so that∑
p∈P

1
|detCp|

|ĝp(ξ)|2 = 1 for a.e. ξ ∈ Rn, (2.8)

then if follows from Schwarz’s inequality that the other series in (2.7) are a.e. absolutely

convergent (recall that Pα ⊂ P).

Let C be an n× n real matrix and f, g ∈ L2(Rn). The C-bracket product of f and g

is defined as

[f, g](x;C) =
∑
k∈Zn

f(x− Ck) g(x− Ck). (2.9)

This is an extension of the notion and notation introduced in [11] when C = I. It is clear

that [f, g] is CZn- periodic; that is, [f, g](x+ Cm;C) = [f, g](x;C) for each m ∈ Zn.

Lemma 2.2. Let C ∈ GLn(R) and CI = (Ct)−1. If f ∈ D and g ∈ L2(Rn), then∑
k∈Zn

|〈f, TCk g〉|2 =
1

|detC|

∫
CITn

|[f̂ , ĝ](ξ;CI)|2 d ξ, (2.10)

where Tn = [0, 1)n.

Proof. Since (TCk g)∧(ξ) = e−2πiCk·ξ ĝ(ξ), it follows from the Plancherel theorem that

the left side of (2.10) equals ∑
k∈Zn

∣∣∣ ∫
Rn

f̂(ξ) ĝ(ξ) e2πiCk·ξ dξ
∣∣∣2 . (2.11)

Since Rn =
⋃

l∈Zn{CI(Tn − l)} is a disjoint union, the integral in (2.11) can be written in

the form∑
l∈Zn

∫
CI(Tn)

f̂(ξ − CI l) ĝ(ξ − CI l) e2πiCk·ξ dξ =
∫

CI(Tn)
[f̂ , ĝ](ξ;CI) e2πiCk·ξ dξ .

But [f̂ , ĝ](ξ;CI) is a CIZn-periodic function belonging to L2(CITn) (since f ∈ D). Thus,

the expression (2.11) is, up to a constant, the square of the l2-norm of the Fourier coefficients

of this CIZn-periodic function with respect to the orthonormal basis

{
√
|detC| e2πiCk·ξ : k ∈ Zn}

of L2(CITn). Equality (2.10) now follows immediately from this observation. 2
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Lemma 2.3. Let C ∈ GLn(R) and CI = (Ct)−1. For each f ∈ D and g ∈ L2(Rn), the

function

H(x) =
∑
k∈Zn

|〈Tx f, TCk g〉|2 (2.12)

is the trigonometric polynomial

H(x) =
∑

m∈Zn

Ĥ(m) e2πi(CIm)·x,

where

Ĥ(m) =
1

|detC|

∫
Rn

f̂(ξ) f̂(ξ + CIm) ĝ(ξ) ĝ(ξ + CIm) dξ, (2.13)

and only a finite number of these expressions is non-zero.

Proof. If we do establish (2.13), the fact that Ĥ(m) = 0 for all but finitely many m is

an immediate consequence of the fact that f̂(ξ) and f̂(ξ+CIm) must have disjoint support

if |m| is sufficiently large.

By Lemma 2.2,

|detC|H(x) =
∫

CITn

|[(Tx f)∧, ĝ](ξ;CI)|2 d ξ

=
∫

CITn

∣∣∣e−2πiξ·x
∑

m∈Zn

e−2πiCIm·xf̂(ξ + CIm) ĝ(ξ + CIm)
∣∣∣2 dξ

=
∫

CITn

∑
m∈Zn

e−2πiCIm·xf̂(ξ + CIm) ĝ(ξ + CIm)
∑
l∈Zn

e2πiCI l·xf̂(ξ + CI l) ĝ(ξ + CI l) dξ .

Let k = l−m and express the above integrand function as a sum over k and m. We obtain

the expression∑
m∈Zn

∫
CITn

f̂(ξ + CIm) ĝ(ξ + CIm)
∑
k∈Zn

e2πiCIk·x f̂(ξ + CIm+ CIk) ĝ(ξ + CIm+ CIk) dξ

=
∫

Rn

f̂(ξ) ĝ(ξ)
∑
k∈Zn

e2πiCIk·x f̂(ξ + CIk) ĝ(ξ + CIk) dξ

=
∑
k∈Zn

(∫
Rn

f̂(ξ) f̂(ξ + CIk) ĝ(ξ) ĝ(ξ + CIk) dξ
)
e2πiCIk·x.

The various exchanges of summations and integration are justified by the fact that f ∈ D.

Equality (2.13) is obtained by dividing by |detC|. 2

We are now ready to state and prove the principal result that we shall use to establish

Theorem 2.1:
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Proposition 2.4. Let P be a countable indexing set, {gp}p∈P a collection of functions in

L2(Rn), {Cp}p∈P ⊂ GLn(R), and let CI
p = (Ct

p)
−1. Assume that, for f ∈ D, (2.6) is valid.

Then, the function

w(x) = N2(Tx f) =
∑
p∈P

∑
k∈Zn

|〈Txf, TCpk gp〉|2

is a continuous function that coincides pointwise with its absolutely convergent (almost

periodic) Fourier series ∑
α∈Λ

ŵ(α) e2πiα·x ,

where

ŵ(α) =
∫

Rn

f̂(ξ) f̂(ξ + α)
∑

p∈Pα

1
|detCp|

ĝp(ξ) ĝp(ξ + α) dξ, (2.14)

and the integral in (2.14) converges absolutely.

Remark. The function w(x) given in the above proposition is an almost periodic func-

tion since these are characterized as uniform limits of generalized trigonometric polynomials

(see [1]).

Proof. Observe that

w(x) = N2(Tx f) =
∑
p∈P

∑
k∈Zn

|〈f, TCp(k−C−1
p x) gp〉|2.

For a fixed p ∈ P, let wp(x) denote the above sum over k ∈ Zn. By Lemma 2.3, wp(x) is

the CpZn-periodic trigonometric polynomial

wp(x) =
∑

m∈Zn

ŵp(m) e2πiCI
pm·x,

where

ŵp(m) =
1

|detCp|

∫
Rn

f̂(ξ) f̂(ξ + CI
pm) ĝp(ξ) ĝp(ξ + CI

pm) dξ. (2.15)

We claim that {ŵp(m) : p ∈ P,m ∈ Zn} belongs to `1(P × Zn). To see this, let K =

supp f̂ (recall that f ∈ D and, thus, K is compact) and K(m) = K − CI
p m, so that

f̂(ξ)f̂(ξ + CI
p m) 6= 0 only if ξ ∈ K ∩K(m). Thus, the integral over Rn in (2.15) is really

over this intersection. An application of Schwarz’s inequality then gives us the fact that

this integral does not exceed(∫
K(m)

|f̂(ξ) ĝp(ξ + CI
pm)|2 dξ

)1/2(∫
K
|f̂(ξ + CI

pm) ĝp(ξ)|2 dξ
)1/2
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and the change of variables ξ = η−CI
pm in the first integral makes this expression equal to(∫

K
|f̂(η − CI

pm) ĝp(η)|2 dη
)1/2(∫

K
|f̂(ξ + CI

pm) ĝp(ξ)|2 dξ
)1/2

.

Then the inequality 2|cd| ≤ |c|2 + |d|2 together with condition (2.6) proves∑
p∈P

∑
m∈Zn

|ŵp(m)| <∞,

which is our claim. It follows that

w(x) =
∑
p∈P

∑
m∈Zn

ŵp(m) e2πiCI
pm·x

where the convergence is absolute and uniform. In terms of the notation introduced in (2.2)

and (2.3), we can write this last equality in the form

w(x) =
∑
α∈Λ

{ ∑
p∈Pα

∫
Rn

1
|detCp|

f̂(ξ) f̂(ξ + α) ĝp(ξ) ĝp(ξ + α) dξ
}
e2πiα·x

=
∑
α∈Λ

{∫
Rn

f̂(ξ) f̂(ξ + α)
∑

p∈Pα

1
|detCp|

ĝp(ξ) ĝp(ξ + α) dξ
}
e2πiα·x

=
∑
α∈Λ

ŵ(α) e2πiα·x, (2.16)

where ŵ(α) is the sum of some of the coefficients ŵp(m), as indicated within the curly

bracket. Since, as we have shown, {ŵp(m) : p ∈ P,m ∈ Zn} belongs to `1(P × Zn), it

follows that {ŵ(α) : α ∈ Λ} belongs to `1(Λ). Then it immediately follows that the last

series in (2.16) is absolutely convergent. This finishes the proof of the proposition. 2

Remark. Notice that condition (2.6) has been used to prove that {ŵ(α) : α ∈ Λ}
belongs to `1(Λ). As we shall see, in most cases, when we apply Theorem 2.1 we do not

need to assume condition (2.6); for example, it will be shown that the Gabor systems, the

affine systems and some related systems do satisfy this property.

The following lemma, that will be needed in the proof of Theorem 2.1, is a simple fact

about uniqueness of the coefficients of an almost periodic Fourier series, as the one in (2.16).

Lemma 2.5. Suppose {cα : α ∈ Λ} ∈ `1(Λ) where Λ ⊂ Rn is countable. Then, v(x) =∑
α∈Λ cα e

2πiα·x = 0 for all x ∈ Rn if and only if cα = 0 for all α ∈ Λ.
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Proof. It is clear that if cα = 0 for all α ∈ Λ, then v(x) ≡ 0. Suppose v(x) = 0 for all

x ∈ Rn. Fix β ∈ Λ and let Q(R) = [−R,R]n, R > 0. Then

0 = lim
R→∞

1
(2R)n

∫
Q(R)

v(x) e−2πiβ·x dx = lim
R→∞

∑
α∈Λ

cα
1

(2R)n

∫
Q(R)

e2πiα·x e−2πiβ·x dx .

Let us examine each of the above integral means. If α = β, then the mean is 1. If α 6= β,

then
1

(2R)n

∫
Q(R)

e2πi(α−β)·x dx =
n∏

j=1

{ 1
2R

∫ R

−R
e−2πi(αj−βj)x dx

}
.

For at least one j, αj − βj 6= 0. Thus, this factor is equal to

1
2R

2 sin(2π(αj − βj)R)
2π(αj − βj)

,

which tends to zero as R→∞. 2

Proof of Theorem 2.1. As observed before the statement of Theorem 2.1, it suffices

to prove the result for a dense subset of L2(Rn). Let us assume that condition (2.6) holds

for all f ∈ D and that (2.7) is true. By Proposition 2.4,

w(x) =
∑
p∈P

∑
m∈Zn

|〈Tx f, TCpm gp〉|2 =
∑
α∈Λ

ŵ(α) e2πiα·x,

where the last series converges absolutely (thus, w(x) is continuous) and, by (2.7) and

(2.14),

ŵ(α) =
(∫

Rn

f̂(ξ) f̂(ξ + α) dξ
)
δα,0

for each f ∈ D. The desired tight frame property (2.5) follows by letting x = 0.

Now let us assume that we have the tight frame property N2(f) = ‖f‖2 for all f ∈
L2(Rn). By Proposition 2.4, if f ∈ D, then the function z(x) = w(x)− ‖f‖2 is continuous

and equals an absolutely convergent (generalized) trigonometric series whose coefficients

are

ẑ(0) = ŵ(0)− ‖f‖2, and ẑ(α) = ŵ(α), α 6= 0.

Since z(x) = 0, it follows from Lemma 2.5 that all coefficients ẑ(α) must be 0. Thus, for

α ∈ Λ and f ∈ D, we have∫
Rn

f̂(ξ) f̂(ξ + α)
(∑

p∈Pα

1
|detCp|

ĝp(ξ) ĝp(ξ + α)
)
dξ = δα,0 ‖f‖2. (2.17)

Consider the case α = 0 and let

h0(ξ) =
∑
p∈P

1
|detCp|

|ĝp(ξ)|2 .
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By (2.6), h0 is locally integrable; choose ξ0 to be a point of differentiability of the integral

of this function. Letting B(ε) denote the ball of radius ε > 0 about the origin, define fε by

f̂ε(ξ) =
1√
|B(ε)|

χB(ε)(ξ − ξ0) .

Then ‖fε‖2 = 1 and fε ∈ D. By (2.17) with f = fε, we have

1 = lim
ε→0

∫
|ξ−ξ0|≤ε

1
|B(ε)|

h0(ξ) dξ = h0(ξ0).

This shows that h0(ξ) = 1, a.e. ξ ∈ Rn, and (2.7) is satisfied for α = 0. When α 6= 0, let

hα(ξ) =
∑

p∈P(α)

1
|detCp|

ĝp(ξ) ĝp(ξ + α).

By polarization of (2.17) we have∫
Rn

f̂(ξ) φ̂(ξ + α)hα(ξ) dξ = 0 (2.18)

for all f, φ ∈ D. By Schwarz’s inequality and (2.6), hα is locally integrable. We can choose,

again, a point of differentiability ξ0 of the integral of hα, and choose fε and φε such that

f̂ε(ξ) =
1√
|B(ε)|

χB(ε)(ξ − ξ0), φ̂ε(ξ) =
1√
|B(ε)|

χB(ε)(ξ − ξ0 − α).

Hence ‖fε‖2 = ‖φε‖2 = 1, fε , φε ∈ D and, by (2.18),

0 = lim
ε→0

∫
|ξ−ξ0|≤ε

1
|B(ε)|

hα(ξ) dξ = hα(ξ0).

Hence hα(ξ) = 0, a.e. ξ ∈ Rn, and (2.7) is satisfied for α 6= 0. 2

Remark. In some applications, namely in the case of affine systems, it will be useful

to replace the dense set D that appears in the statement of Theorem 2.1 by smaller dense

sets of the form

DE = {f ∈ D : (supp f̂) ∩ E = ∅},

for any linear subspace E of Rn of dimension smaller than n. The result of Theorem 2.1

still holds true if the set D is replaced by any of these smaller dense sets.

3 The Gabor systems

Given a function g ∈ L2(R) and b, c ∈ R \ {0}, then the classical Gabor system on R
generated by g with parameters b and c is the collection

Gb,c(g) = {e2πibmxg(x− ck) : m, k ∈ Z} . (3.1)

11



Many results are known that determine conditions on g and relations between the pa-

rameters for such systems to be a frame (see, for example, [18], where the Balian-Low

theorem is presented, the density theorem of Rieffel ([27, 22, 32]) and the duality condition

([19, 12, 30])). We begin by showing that Theorem 2.1 can be applied directly for obtaining

a characterization of those n-dimensional extensions of the system (3.1) that are normalized

tight frames. The results we obtain include characterizations obtained by different authors

([30, 10, 21]). In order to describe these systems we will use the translation operators

(as defined in Section 2) and the modulation operators Mz, z ∈ Rn defined by

(Mz f)(x) = e2πiz·x f(x),

for f ∈ L2(Rn) and x ∈ Rn. The Gabor systems will be generated by a finite family

G = {g1, g2, . . . , gL} ⊂ L2(Rn) and a pair of matrices B,C ∈ GLn(R) so that they have the

form

G = GB,C(G) = {MBmTCk g
` : m, k ∈ Zn, ` = 1, 2, · · · , L} . (3.2)

If we change the order in which the translation and modulation operators are applied we

also have the system

G̃ = G̃B,C(G) = {TCkMBm g` : m, k ∈ Zn, ` = 1, 2, · · · , L} . (3.3)

A simple calculation shows that

TCkMBm g` = e−2πiBm·CkMBmTCk g
` (3.4)

m, k ∈ Zn, and it follows immediately that

Lemma 3.1. (a) G is a frame for L2(Rn) if and only if G̃ is a frame for L2(Rn); further-

more, the frame constants A and B can be taken to be the same in the two cases.

(b) G is an orthonormal system if and only if G̃ is an orthonormal system.

We begin by observing that our main result, Theorem 2.1, easily implies the following

characterization theorem:

Theorem 3.2. The system G = GB,C(G) (or G̃ = G̃B,C(G)) is a normalized tight frame if

and only if
L∑

`=1

∑
k∈Zn

1
|detC|

ĝ`(ξ −Bk) ĝ`(ξ −Bk + CIm) = δm,0 (3.5)

for a.e. ξ ∈ Rn, all m ∈ Zn, where CI = (Ct)−1.

12



Proof. It will be clear from our proof that we can reduce the argument by assuming

L = 1; in any case, we shall address this issue after we show how to apply Theorem 2.1.

By Lemma 3.1, it suffices to consider the system G̃. When we do this, we can write it in

the form (2.1) by letting gp = MBp g for p ∈ P = Zn and Cp = C. Condition (2.6) follows:

for f ∈ D, only a finite number of terms of the form f̂(ξ + CI m) can be non-zero if ξ is

restricted to K = supp f̂ (recall that C and, therefore, CI , are invertible and that K is

bounded). Hence the integrability over K of∑
p∈Zn

1
|det(C)|

∑
m∈Zn

|f̂(ξ + CI m) ĝ(ξ −B p)|2

follows from the integrability over K of∑
p∈Zn

|f̂(ξ + CI m) ĝ(ξ −B p)|2

for each m ∈ Zn (since all but a finite number of these expressions is non-zero; also recall

that P = Zn in our present case). Furthermore, the fact that ‖f̂‖∞ < ∞ reduces our task

to showing that ∫
K

∑
p∈Zn

|ĝ(ξ −Bp)|2 <∞ . (3.6)

For each j ∈ Zn, the collection {B(Tn + j − p) : p ∈ Zn} is a partition of Rn. Thus,

‖g‖2
2 =

∫
⋃

p∈Zn B(Tn+j−p)
|ĝ(η)|2 dη =

∫
B(Tn+j)

∑
p∈Zn

|ĝ(ξ −B p)|2 dξ

which shows the integrability of the integrand in (3.6) over the set B(Tn + j) for each

j ∈ Zn. Since any bounded subset of Rn is contained in a finite number of such sets,

we have the desired integrability. Incidentally, if we had L > 1, this proves the local

integrability of L sums of the form (3.6). Theorem 3.2 now follows from Theorem 2.1 using

(MBp g)∧(ξ) = ĝ(ξ −Bp). 2

4 The Calderón condition and reproducing systems

As mentioned after the statement of Theorem 2.1, the case α = 0 of (2.7) is∑
p∈P

1
|detCp|

|ĝp(ξ)|2 = 1 for a.e. ξ ∈ Rn. (4.1)

This formula is valid when the systems described in (2.1) are normalized tight frames and

satisfy condition (2.6). When applying this result to the affine system (1.5), a simple
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calculation (see also Section 6) shows that (4.1) becomes∑
j∈Z

|ψ̂(Bjξ)|2 = 1 for a.e. ξ ∈ Rn, (4.2)

for ψ ∈ L2(Rn) and B = At ∈ GLn(R). Versions of the “resolution of the identity”(4.2)

have appeared in works of A. P. Calderón and has become known as the Calderón condition

in the area of orthonormal wavelets. For this reason we shall say that (4.1) is a Calderón

condition.

Under the assumption (2.6), Theorem 2.1 shows that the Calderón condition (4.1) is

necessary for the system
{
TCpk gp : k ∈ Zn, p ∈ P

}
, given by (2.1), to be a normalized

tight frame. Together with the cases α 6= 0 of (2.7) we obtain a necessary and sufficient

condition. We will show in this section that other type of conditions can replace the cases

α 6= 0 of (2.7).

If we remove condition (2.6) we can still prove a weaker version of (4.1) where the

equality is replaced by an inequality. This result, which will play a major role in Section 5,

is a consequence of Lemma 2.3 and it is given below. The result is stated and proved for

Bessel systems as defined in Section 1.

Proposition 4.1. Let P be a countable set, {gp}p∈P a collection of functions in L2(Rn),

and {Cp}p∈P ⊂ GLn(R). If the system
{
TCpk gp : k ∈ Zn, p ∈ P

}
is Bessel with constant

B, then ∑
p∈P

1
|detCp|

|ĝp(ξ)|2 ≤ B for a.e. ξ ∈ Rn. (4.3)

Proof. In most applications of this Proposition, P will be a subset of Zr for some

r ∈ N. For simplicity we assume this to be the case here. However, the reader can easily

check that this is not a loss of generality.

Assume that
{
TCpk gp : k ∈ Zn, p ∈ P

}
is a Bessel sequence with constant B. Then, for

every M ∈ N ∑
p∈P,|p|≤M

∑
k∈Zn

|〈f, TCpk gp〉|2 ≤ B‖f‖2
2

for all f ∈ L2(Rn). Applying Lemmas 2.2 and 2.3 to each p ∈ P (letting x = 0), we can

write ∑
p∈P,|p|≤M

∑
k∈Zn

1
|detCp|

∫
Rn

f̂(ξ) f̂(ξ + CI
p k) ĝp(ξ) ĝp(ξ + CI

p k) dξ ≤ B‖f‖2
2 (4.4)
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for all f ∈ D, M ∈ N (also recall that CI = (Ct)−1). For each M ∈ N let

h0,M =
∑

p∈P,|p|≤M

1
|detCp|

|ĝp(ξ)|2 .

Since each gp ∈ L2(Rn) and there is only a finite number of elements of P in the above sum,

h0,M ∈ L1(Rn). Let LM be the set of differentiability points of the integral of h0,M and take

ξ0 ∈ LM . Letting B(ε) denote the ball of radius ε > 0 about the origin, define fε by

f̂ε(ξ) =
1√
|B(ε)|

χB(ε)(ξ − ξ0) .

Then ‖fε‖2 = 1 and fε ∈ D. For M ∈ N, let

Λ0,M =
⋃

p∈P,|p|≤M

CI
p (Zn \ {0}) and δM = inf {|CI

p k| : CI
p k ∈ Λ0,M}.

Observe that δM > 0 since each CI
p is invertible, k 6= 0, and there is only a finite number of

elements of P in the set Λ0,M . For ε < δM/2, |ξ − ξ0| < ε, and CI
p ∈ Λ0,M we have

|ξ + CI
p k − ξ0| ≥ |CI

p k| − |ξ − ξ0| ≥ δM − ε > δM − δM
2

=
δM
2
> ε ,

so that ξ + CI
p k − ξ0 does not belong to B(ε). This means that f̂ε(ξ + CI

p k) = 0 for all

k 6= 0, ε < δM/2, and |p| < M , and, thus, all the terms in (4.4) equal 0 except the one

corresponding to k = 0. Thus,

lim
ε→0

∫
|ξ−ξ0|≤ε

1
|B(ε)|

h0,M (ξ) dξ = lim
ε→0

∫
|ξ−ξ0|≤ε

1
|B(ε)|

∑
p∈P,|p|≤M

1
|detCp|

|ĝp(ξ)|2 dξ ≤ B.

Since the left hand side of this formula coincides with h0,M (ξ0), we deduce that h0,M (ξ0) ≤ B

for all ξ0 ∈ LM .

Since ∑
p∈P

1
|detCp|

|ĝp(ξ)|2 = lim
M→∞

h0,M (ξ),

we obtain the desired result for all ξ in the intersection of all LM , which is a dense set in

Rn. 2

We now present the main result of this section, which follows from the arguments pre-

sented in Section 2.

Theorem 4.2. Let P be a countable indexing set, {gp}p∈P a collection of functions in

L2(Rn) and {Cp}p∈P ⊂ GLn(R). Suppose that (2.6) holds for all f ∈ D. Then the system{
TCpk gp : k ∈ Zn, p ∈ P

}
is a normalized tight frame for L2(Rn) if and only if it is a Bessel

system with constant 1 and the Calderón condition (4.1) holds.

15



Proof. Under condition (2.6), if
{
TCpk gp : k ∈ Zn, p ∈ P

}
is a normalized tight frame,

then it is clearly Bessel with constant 1, and, by Theorem 2.1, the Calderón condition (4.1)

holds (take α = 0 in (2.7)).

For the converse we need to recall the following fact about almost periodic functions

which can be found in [1, Satz XXXVI] (see also [36, page 111]):

Lemma 4.3. Suppose that h is a non-negative almost periodic function defined in Rn, and

let

M(h) ≡ lim
R→∞

1
|Q(R)|

∫
Q(R)

h(x) dx

be the mean of h, where Q(R) = [−R,R]d. Then, M(h) = 0 if and only if h ≡ 0.

Let

w(x) =
∑
p∈P

∑
k∈Zn

|〈Txf, TCpk gp〉|2

as in Proposition 2.4. Since
{
TCpk gp : k ∈ Zn, p ∈ P

}
is Bessel with constant 1 we

have w(x) ≤ ‖Tx f‖2
2 = ‖f‖2

2 for all f ∈ L2(Rn). Thus, for any f ∈ D, the function

h(x) = ‖f‖2
2−w(x) is non-negative, and, by Proposition 2.4 and the remark that follows its

proof, is continuous and almost periodic. Taking the mean value of h(x) and using, again,

Proposition 2.4 to write w(x) as an absolutely convergent (generalized) Fourier series with

coefficients ŵ(α), given by (2.14), we obtain

M(h) = lim
R→∞

1
|Q(R)|

∫
Q(R)

h(x) dx = ‖f‖2
2 −

∑
α∈Λ

lim
R→∞

1
|Q(R)|

∫
Q(R)

ŵ(α) e2πiα·x dx .

As in the proof of Lemma 2.5 all the above integrals are zero except the one corresponding

to α = 0 that becomes ŵ(0). Thus, M(h) = ‖f‖2
2 − ŵ(0) for all f ∈ D. By the Calderón

condition (4.1), we have

ŵ(0) =
∫

Rn

|f̂(ξ)|2
∑
p∈P

1
|detCp|

|ĝp(ξ)|2 dξ = ‖f‖2
2 .

Hence, M(h) = 0 for all f ∈ D. By Lemma 4.3, h(x) = 0 for all x ∈ Rn and all f ∈ D.

Taking x = 0 (recall that h is continuous) we deduce that
{
TCpk gp : k ∈ Zn, p ∈ P

}
is a

normalized tight frame, as desired, since D is dense in L2(Rn). 2

Remarks. (1) That Theorem 4.2 follows from our main work in Section 2 was pointed

out to us by S. Xiao. The method that we use follows the line of argument presented in

[24]. In the case of wavelet systems, like the types described by (1.5), Theorem 4.2 has
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been proved by M. Bownik [3] for expanding dilation matrices with integer entries, and by

R. Laugesen [23, 24] for expanding dilation matrices with real entries.

(2) As in the remark given at the end of Section 2, the set D that appears in Theorem 4.2

can be replaced by the smaller dense subsets DE and Theorem 4.2 still holds.

For orthonormal systems, we have the following simple corollary of Theorem 4.2:

Corollary 4.4. Let P be a countable indexing set, {gp}p∈P a collection of functions in

L2(Rn) and {Cp}p∈P ⊂ GLn(R). Suppose that (2.6) holds for all f ∈ D and that the system{
TCpk gp : k ∈ Zn, p ∈ P

}
is an orthonormal system in L2(Rn). Then

{
TCpk gp : k ∈ Zn, p ∈

P
}

is complete in L2(Rn) if and only if the Calderón condition (4.1) holds.

When applied to wavelet systems, like the types described in (1.5), Corollary 4.4 shows

that an orthonormal wavelet system is complete if and only if the Calderón condition for

wavelets (4.2) holds. This has been proved in [3, 33] for expanding dilation matrices with

integer entries and in [24] and for expanding dilation matrices with real entries.

In the next section, we shall explain how Theorem 4.2 and Corollary 4.4 can be applied

to the affine systems. For the moment, we restrict our attention to the Gabor systems and

establish other consequences of Theorem 4.2 and Corollary 4.4.

Consider the Gabor systems GB,C(G), given by (3.2), and G̃B,C(G), given by (3.3). Since

(MB p g)∧(ξ) = ĝ(ξ −Bp), the Calderón condition (4.1) for the system G̃B,C(G) becomes

L∑
`=1

∑
k∈Zn

|ĝ`(ξ −B k)|2 = |detC| for a. e. ξ ∈ Rn. (4.5)

From Theorem (4.2) and Corollary (4.4) we obtain:

Corollary 4.5. Let G = {g1, . . . , gL} ⊂ L2(Rn) and B,C ∈ GLn(R). Then the Gabor

system G (or G̃) is a normalized tight frame if and only if G (or G̃) is a Bessel system with

constant 1 and (4.5) holds.

Corollary 4.6. Let G = {g1, . . . , gL} ⊂ L2(Rn) and B,C ∈ GLn(R). Suppose that the

Gabor system G (or G̃) is an orthonormal system in L2(Rn). Then G (or G̃) is complete if

and only if (4.5) holds.

The results obtained in the above corollaries are contained in [30, 20, 10]. Thus, neither

of these two results are new, but the point is that each follows easily from our general

framework.
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Using Proposition 4.1, we obtain the following special case of Theorem 2.1, where we

assume Cp = C for every p ∈ P. This result can also be found in [28, 21].

Theorem 4.7. Let P be a countable indexing set, {gp}p∈P be a collection of functions in

L2(Rn) and C ∈ GLn(R). Then, the system
{
TCk gp : k ∈ Zn, p ∈ P

}
is a normalized tight

frame for L2(Rn) if and only if∑
p∈P

ĝp(ξ) ĝp(ξ + CIm) = |detC| δm,0 for a.e. ξ ∈ Rn, (4.6)

for every m ∈ Zn, where δ is the Kronecker delta in Rn.

Proof. Since (4.6) follows immediately from (2.7) when Cp = C for all p ∈ P, then

we only need to show that condition (2.6) is always satisfied in Theorem 2.1 under these

conditions. Indeed, since Cp = C for every p ∈ P, then the sum with respect to m in (2.6)

is finite (since f ∈ D). If the system
{
TCk gp : k ∈ Zn, p ∈ P

}
is a normalized tight frame,

then, by Proposition 4.1, ∑
p∈P

1
|detC|

|ĝp(ξ)|2 ≤ 1. (4.7)

Together with the fact that the sum with respect to m is finite, this implies (2.6). Similarly,

if (4.6) holds, then we have inequality (4.7). Together with the fact that the sum with

respect to m is finite, this implies (2.6), as in the previous case. 2

5 Affine systems and wavelets

The classical affine system on R generated by ψ ∈ L2(R) is the collection

F2(ψ) = {ψj,k(x) = 2j/2ψ(2jx− k) : j ∈ Z, k ∈ Z}. (5.1)

This is the system (1.5) when the dimension is 1 and A = 2. As mentioned in Section 1,

the characterization of those functions ψ for which F2(ψ) is a normalized tight frame in

L2(R) was accomplished by G. Gripenberg ([16]) and X. Wang ([35]), and this result has

been extended to general dilations a ∈ R, a > 1, (cf. [8, Th. 1]), and to Rn where dilations

are performed by real expanding matrices (cf. [7, Cor. 2.4] and [24, Th. 5.1]).

To define these more general systems, we use the translation operators (as defined

in Section 2) and the dilation operators DA, A ∈ GLn(R), defined by

(DA f)(x) = |detA|1/2ψ(Ax),

for f ∈ L2(Rn) and x ∈ Rn. Our affine systems will be generated by applying these

operators to a finite family Ψ = {ψ1, . . . ψL} ⊂ L2(Rn), and they have the form

FA(Ψ) = {Dj
A Tk ψ

` : j ∈ Z, k ∈ Zn, ` = 1, . . . , L}. (5.2)
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A simple calculation shows that

Dj
A Tk ψ

` = TA−jk D
j
A ψ

` ,

so that, in order to apply Theorem 2.1, we are led to consider

P =
{
(j, `) : j ∈ Z, ` = 1, 2, . . . , L

}
,

gp ≡ g(j,l) = Dj
A ψ

`, and Cp ≡ C(j,`) = A−j for all ` = 1, . . . , L.

There are good reasons for the fact that, in the literature, the characterizations of the

systems FA(Ψ), given by (5.2), that are normalized tight frames assume that the dilation

matrices are expanding. In a private communication, D. Speegle has presented us with

examples of dilation matrices which are not expanding for which there cannot exist any

tight frame wavelets.

By definition, a matrix M ∈ GLn(R) is expanding on Rn if and only if all the eigen-

values of M have modulus greater than 1. There is an equivalent definition of expanding

matrices (which we present in Lemma 5.2), that will be most useful for our purposes. To

show this equivalence we need the following result:

Lemma 5.1. Suppose M ∈ GLn(R) and α, β ∈ R such that 0 < α < |λ| < β < ∞ for all

eigenvalues λ of M. There exists C = C(M,α, β) ≥ 1 such that

1
C
αj |x| ≤ |M j x| ≤ Cβj |x|, (5.3)

when x ∈ Rn, j ∈ Z, j ≥ 0.

Remark. By applying (5.3) to x = M−jy, we obtain

1
C
β−j |y| ≤ |M−j y| ≤ Cα−j |y|, (5.4)

when y ∈ Rn, j ∈ Z, j ≥ 0.

Proof. We make use of the following fact involving the spectral radius, ρ(M) =

max{|λ| : λ eigenvalue of M}:

ρ(M) = lim
n→∞

‖Mn‖1/n

(see [31, p. 235]). Since ρ(M) < β, there exists J0 ∈ N such that

|M j x| ≤ ‖M j‖|x| ≤ βj |x|
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for j ≥ J0 and x ∈ Rn. For 0 ≤ j < J0 we have

|M j x| ≤ ‖M j‖ |x| = ‖M j‖
βj

βj |x| ≤
(

max
0≤j<J0

{‖M j‖
βj

})
βj |x|.

Hence, letting C = max0≤j<J0

{
1, ‖M

j‖
βj

}
we have |M j x| ≤ Cβj |x|, for all j ∈ Z, j ≥ 0

and x ∈ Rn. This gives us the right hand side inequality in (5.3). For the left hand side

inequality of this formula, apply the result just proved to N = M−1; since ρ(N) < 1/α,

we deduce |N j y| ≤ C(1/α)j |y|, for all y ∈ Rn, j > 0, j ∈ Z. The result follows by writing

y = M jx, for x ∈ Rn. 2

Remark. Lemma (5.1) appears without proof in a paper by P.G. Lemarié-Rieusset

([26]). We thank G. Garrigós for pointing this reference to us.

Lemma 5.2. A matrix M ∈ GLn(R) is expanding if and only if there exist 0 < k ≤ 1 <

γ <∞ such that

|M j x| ≥ kγj |x| (5.5)

when x ∈ Rn, j ∈ Z, j ≥ 0. Moreover, if M ∈ GLn(R) is expanding, then we also have

|M−j x| ≤ 1
k
γ−j |x| (5.6)

when x ∈ Rn, j ∈ Z, j ≥ 0.

Proof. If M is an expanding matrix, then we can choose α > 1 in Lemma 5.1. Thus,

(5.5) follows immediately from the left hand side inequality of (5.3). The inequality (5.6)

follows by applying (5.5) to y = M−jx.

Assume now that (5.5) holds and suppose that λ is an eigenvalue of M . If λ ∈ R, let x ∈ Rn

be an eigenvector corresponding to λ. By (5.5) we have

|λ|j |x| = |λjx| = |M jx| ≥ kγj |x|

for all j ∈ Z, j ≥ 0. It follows that |λ| ≥ k1/jγ for all j ≥ 0. Hence, |λ| ≥ γ > 1.

If λ = α + iβ ∈ Cn, choose a corresponding eigenvector u = x + iy ∈ Cn. Since M is

expanding and x ∈ Rn,

kγj |x| ≤ |M j x| ≤ |M j x+ iM j y| = |M j(x+ iy)| = |λju| = |λ|j |u|.

Without loss of generality we can assume |y| ≤ |x|, so that |u| ≤
√

2 |x|. It follows that

k γj |x| ≤ |λ|j
√

2 |x|. Since x 6= 0 (otherwise u = 0), we have k1/j γ ≤ |λ| 21/j for all j ≥ 0.

Hence, 1 < γ ≤ |λ|. 2
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The dilation matrices we are going to use are more general than the expanding ones:

they could have some, but not all, of its eigenvalues with modulus 1, while the rest have

modulus strictly larger than 1. Here we must notice that, if |detA| = 1, then there is no

Ψ = {ψ1, · · · , ψL} ⊂ L2(Rn) such that the Calderón condition:

L∑
`=1

∑
j∈Z

|ψ̂`(B−jξ)|2 = 1 , for a. e. ξ ∈ Rn, (5.7)

where B = At, holds. This result follows by an argument similar to one presented in [25],

where continuous wavelets are studied. It is also known that, in some cases, when some of

the eigenvalues of A have modulus greater than 1 and others have modulus smaller than 1,

there is no Ψ = {ψ1, · · · , ψL} ⊂ L2(Rn) such that (5.7) hold, even if |detA| 6= 1. As we

pointed out before Lemma 5.1, this non-existence has been shown to us by D. Speegle, in a

personal communication, for the case of diagonal dilation matrices. At the moment we are

not aware of this (negative) result for general matrices A with these properties.

The dilation matrices we are going to use must have the properties described below:

Definition 5.1. Given M ∈ GLn(R) and a non-zero linear subspace F of Rn, we say that

M is expanding on F if there exists a complementary (not necessarily orthogonal) linear

subspace E of Rn with the following properties:

(i) Rn = F + E and F ∩ E = {0};
(ii) M(F ) = F and M(E) = E, that is, F and E are invariant under M ;

(iii) condition (5.5) (and therefore (5.6)) holds for all x ∈ F ;

(iv) given r ∈ N, there exists C = C(M, r) such that, for all j ∈ Z, the set

Zj
r (E) = {m ∈ E ∩ Zn : |M j m| < r}

has less than C elements.

Example 1. When M is an expanding matrix, Definition 5.1 is satisfied with F = Rn

and E = {0}.

Example 2. For a ∈ R, |a| > 1, the matrix

M =

(
a 0

0 1

)

has eigenvalues a and 1. Letting F be the eigenspace corresponding to the eigenvalue a,

and E the eigenspace corresponding to the eigenvalue 1, it is clear that M is expanding

on F , in the sense of Definition 5.1. It is easy to obtain analogous, higher dimensional,
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diagonal matrices, even allowing some of the elements of the diagonal to be -1, that satisfy

“expanding on F”.

Example 3. More generally, given a ∈ R, |a| > 1 and two independent vectors u, v ∈
R2, let M be a matrix for which u is an eigenvector corresponding to the eigenvalue a and

v is an eigenvector corresponding to the eigenvalue 1. By taking F = {tu : t ∈ R} and

E = {tv : t ∈ R} is easy to see that the conditions of Definition 5.1 are satisfied.

Example 4. For a ∈ R, |a| > 1, and θ ∈ R, consider the matrix

M =


a 0 0

0 cos θ − sin θ

0 sin θ cos θ

 ,

which corresponds to a dilation on the X–axis and a rotation around the origin in the

Y Z–plane. The matrix M is expanding on F = R× {0} × {0}, with E = {0} × R× R.

Example 5. For a, b ∈ R, |a| > 1, consider

M =


a 0 0

0 1 b

0 0 1

 .

With F = R×{0}×{0}, and E = {0}×R×R, properties (i), (ii), and (iii) of Definition 5.1 are

obvious. A little bit of work is required to prove property (iv); however it is straightforward.

Write m ∈ E ∩ Z3 as m = (0,m2,m3) with m2,m3 ∈ Z. Since

M j =


aj 0 0

0 1 jb

0 0 1

 , j ∈ Z,

|M j m| < r implies |m2 + jbm3|2 + |m3|2 < r2. Hence |m3| < r and |m2 + jbm3| < r. For

each m3 ∈ Z fixed, there are at most 2r elements m2 ∈ Z such that |m2 + jbm3| < r. Since

there are at most 2r elements m3 ∈ Z such that |m3| < r, it follows that the number of

elements in Zj
r (E) does not exceed 4r2 for all j ∈ Z.

The main result of this section is the following characterization of the affine systems

FA(Ψ), which will be obtained as a consequence of Theorem 2.1. As we mentioned in

Section 1, this result is related and extends several other results that are in the literature.

We will later show (Theorem 5.7) that there is an equivalent formulation of the following

theorem, where (5.8) is replaced by a simpler expression.
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Theorem 5.3. Let Ψ = {ψ1, · · · , ψL} ⊂ L2(Rn) and A ∈ GLn(R) be such that the matrix

B = At is expanding on a subspace F of Rn. Then, the system FA(Ψ), given by (5.2), is a

normalized tight frame for L2(Rn) if and only if

L∑
`=1

∑
j∈Pα

ψ̂`(B−jξ) ψ̂`(B−j(ξ + α)) = δα,0 for a.e. ξ ∈ Rn, (5.8)

and all α ∈ Λ =
⋃

j∈ZB
j(Zn), where, for α ∈ Λ, Pα = {j ∈ Z : B−jα ∈ Zn}.

Proof. Recall that Dj
A Tk ψ

` = TA−jk D
j
A ψ

` . Apply Theorem 2.1 with

P =
{
(j, `) : j ∈ Z, ` = 1, 2, . . . , L

}
,

gp ≡ g(j,l) = Dj
A ψ

`, and Cp ≡ C(j,`) = A−j for all ` = 1, . . . , L.

Since

ĝp(ξ) = (Dj
Aψ

`)∧(ξ) = D−j
B ψ̂`(ξ) = |detB|−j/2ψ̂`(B−j ξ),

(5.8) follows from (2.7) in Theorem 2.1, provided the hypothesis (2.6) in this Theorem is

satisfied. Therefore, all that it is left to prove is that the hypothesis (2.6) is satisfied in this

particular case. Thus, we need to show that L(f) <∞ for f in an appropriate dense set of

L2(Rn), where

L(f) =
L∑

`=1

∑
j∈Z

∑
m∈Zn

∫
supp f̂

|f̂(ξ +Bjm)|2 |detAj | |(Dj
Aψ

`)∧(ξ)|2 dξ

=
L∑

`=1

∑
j∈Z

∑
m∈Zn

∫
supp f̂

|f̂(ξ +Bjm)|2 |ψ̂`(B−jξ)|2 dξ . (5.9)

The dense set we choose is the following: since B = At is expanding on F , we can then

take E a complementary subspace to F as in Definition 5.1, and consider

DE = {f ∈ D : (supp f̂) ∩ E = ∅} (5.10)

where D = {f ∈ L2(Rn) : f̂ ∈ L∞(Rn) and supp f̂ is compact}. This set DE is dense in

L2(Rn), since E has measures zero.

The proof that L(f) < ∞ if f ∈ DE is given in Proposition 5.6 below. To prove this

delicate result we need some preparation and two lemmas.

Since B is expanding on F , by property (i) of Definition 5.1, given x ∈ Rn, there exist

unique xF ∈ F and xE ∈ E such that x = xF + xE . For r, s ∈ R, define

Q(r, s) =
{
x = xF + xE : xF ∈ F, xE ∈ E, 1

r
< |xF | < r, |xE | < s

}
, (5.11)

and write Q(r) = Q(r, r) (see Figure 5). It is clear that given any f ∈ DE there exists r ∈ N
such that supp f̂ ⊂ Q(r).
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Figure 1: The set Q(r) (n = 2).

Lemma 5.4. Let M ∈ GLn(R) be expanding on a subspace F of Rn, and r ∈ R. There

exists N = N(M, r) ∈ N such that

#{j ∈ Z : M jη ∈ Q(r)} ≤ N

for all η ∈ Rn.

Proof. Choose E to be a complementary subspace for F as in Definition 5.1. If η ∈ E,

we can choose N = 1. For η /∈ E, write η = ηF +ηE with ηF ∈ F, ηE ∈ E and ηF 6= 0. Then,

by (ii) of Definition 5.1, for any j ∈ Z, we have M jη = M jηF +M jηE with M jηF ∈ F and

M jηE ∈ E.

Choose j0 = j0(η) to be the smallest integer such that |M j0ηF | > 1/r. This is possible

since, by property (iii) of the matrix M , there exist 0 < k ≤ 1 < γ <∞ such that

|M jηF | ≥ kγj |ηF | if j ∈ Z, j ≥ 0 ,

and

|M−jηF | ≤
1
k
γ−j |ηF | if j ∈ Z, j ≥ 0 .

Thus, if j < j0, then |M jηF | ≤ 1/r, which implies that M jη /∈ Q(r) by the definition of

Q(r).
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Choose N0 = 1 + [logγ(r2/k)] (observe that k/r ≤ 1/r < r implies r2/k > 1, so that

[logγ(r2/k)] ≥ 0). Since M is expanding on F , if j ≥ N0 ≥ 1, we have

|M j+j0ηF | = |M jM j0ηF | ≥ kγj |M j0ηF | > kγj 1
r
,

by the choice of j0. Thus,

|M j+j0ηF | > kγj 1
r
≥ kγN 1

r
≥ k

r2

k

1
r

= r .

This shows that if j ≥ N0, thenM j+j0ηF /∈ Q(r). Hence,

{j ∈ Z : M jη ∈ Q(r)} ⊂ {j0, j0 + 1, · · · , j0 +N0 − 1}.

By taking N = N0 the proof is finished. 2

Remark. Lemma 5.4 is adapted from [2, Lemma 2.3], where the result is proved only

for expanding matrices on Rn.

For r, s ∈ R, define

Q̃(r, s) = {x = xF + xE : xF ∈ F, xE ∈ E, |xF | < r, |xE | < s} ,

and write Q̃(r) = Q̃(r, r). These sets will be used in the statement and the proof of the next

lemma.

Lemma 5.5. Let M ∈ GLn(R) be expanding on a subspace F of Rn, r ∈ R, and E be a

complementary subspace of F as in Definition 5.1. There exists C̃ = C̃(M, r) ∈ R such that

#{m ∈ Zn \ E : M jm ∈ Q̃(r)} ≤ C̃|detM |−j

for all j ∈ Z.

Proof. For m ∈ Zn \ E, write m = mF +mE with mF ∈ F, mE ∈ E and mF 6= 0. Let

Tr = inf{|mF | : m ∈ (Zn \ E) ∩ Q̃(r)} > 0.

Take j1 to be the smallest positive integer greater than logγ(r/(kTr)), where k and γ are

as in Lemma 5.2 (adapted to Definition 5.1). If j ≥ j1 and m ∈ Zn \ E, then, by (iii) of

Definition 5.1, we have |M jmF | ≥ kγj |mF | ≥ k r
kTr

Tr = r. Hence, for j ≥ j1,

#{m ∈ Zn \ E : M jm ∈ Q̃(r)} = 0. (5.12)
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Thus, we only need to consider j < j1. Choose m ∈ Zn\E with M jm ∈ Q̃(r), ξ ∈ [0, 1)n

and j < j1. Write ξ = ξF + ξE with ξF ∈ F and ξE ∈ E. Since M is expanding on F ,

|M−j1+j(mF + ξF )| ≤|M−j1+j(mF )|+ |M−j1+jξF )|

≤1
k
γ−j1 |M j(mF )|+ 1

k
γ−j1+j |ξF |

<
1
k
γ−j1r +

1
k
|ξF | ≤

1
k
γ−j1r +

1
k
S1 ≡ R1

where S1 = sup{|ξF | : ξ ∈ [0, 1)n}. Also, since ‖M‖ ≥ ρ(M) ≥ 1, we have

|M−j1+j(mE + ξE)| ≤ ‖M‖−j1r + ‖M‖−j1+j |ξE | ≤ ‖M‖−j1r + S2 ≡ R2,

where S2 = sup{|ξE | : ξ ∈ [0, 1)n}. We have just shown that

{m ∈ Zn \ E : M jη ∈ Q̃(r)} ⊂ {m ∈ Zn : m+ [0, 1)n ⊂M j1−j(Q̃(R1, R2))} ≡ Mj
R1,R2

.

Since the sets m+ [0, 1)n, m ∈ Zn, are disjoint,

#{m ∈ Zn \ E : M jη ∈ Q(r)} ≤ #Mj
R1,R2

=
∣∣∣ ⋃

m∈Mj
R1,R2

(m+ [0, 1)n)
∣∣∣

≤
∣∣M j1−j(Q̃(R1, R2))

∣∣ = |Q̃(R1, R2)| | detM |j1 |detM |−j (5.13)

The Lemma then follows from (5.12) and (5.13) by taking C̃ = |Q̃(R1, R2)| | detM |j1 . 2

We can now go back to our task of showing that L(f) < ∞. The situation here is

different from the case we encountered in Section 3, where we showed that the integrability

condition (2.6) follows from the fact that g ∈ L2(Rn) (recall that, in the case of Gabor

systems, the matrices Cp are independent of p). We will show in the following Proposition

that if
L∑

`=1

∑
j∈Z

|ψ̂`(B−jξ)|2 ≤ 1 for a. e. ξ ∈ Rn, (5.14)

then the integrability condition (2.6) is satisfied for the affine system FA (where the matrix

B = At is expanding on a subspace F of Rn). Observe that if FA(Ψ) is a normalized tight

frame for L2(Rn), then, by Proposition 4.1 applied to the affine system (5.2), we deduce

inequality (5.14). This inequality also holds if we assume (5.8) (take α = 0). Therefore,

the following Proposition implies that if either FA(Ψ), given by (5.2), is a normalized tight

frame or if the case α = 0 of (5.8) holds, then L(f) <∞, where L(f) is given by (5.9). This

is all we need to finish the proof of Theorem 5.3.
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Proposition 5.6. Let Ψ = {ψ1, · · · , ψL} ⊂ L2(Rn) and A ∈ GLn(R) be such that the

matrix B = At is expanding on a subspace F of Rn. If (5.14) holds, then L(f) <∞, where

L(f) is given by (5.9).

Proof. Let f ∈ DE and choose r ∈ N such that supp f̂ ⊂ Q(r). Then

L(f) ≤
L∑

`=1

∑
j∈Z

∑
m∈Zn

∫
Q(r)

|f̂(ξ +Bjm)|2 |ψ̂`(B−jξ)|2 dξ

=
L∑

`=1

∑
j∈Z

∑
m∈Zn

∫
Bjη∈Q(r)

|f̂(Bj(η +m)|2 |ψ̂`(η)|2 |detB|j dη . (5.15)

We write L0(f) for the sum of the terms in (5.15) for which m ∈ E ∩Zn, and L1(f) for the

sum of the terms in the same expression for which m ∈ Zn\E. Then, L(f) = L0(f)+L1(f).

We first estimate L0(f). For m ∈ E ∩ Zn, if ξ ∈ Q(r) and ξ + Bjm ∈ Q(r), then, for

j ∈ Z, we have

|Bjm| ≤ |ξE +Bjm|+ |ξE | < r + r = 2r ,

where ξ = ξF + ξE , with ξF ∈ F and ξE ∈ E. Thus, using the notation introduced in

property (iv) of Definition 5.1, we have:

{m ∈ E ∩ Zn : ξ ∈ Q(r) and ξ +Bjm ∈ Q(r)} ⊂ Zj
2r(E),

for every j ∈ Z. By property (iv) of Definition 5.1, the number of elements in Zj
2r(E) is

less than C = C(B, 2r) for all j ∈ Z. Thus

L0(f) ≤ C(B, 2r)‖f̂‖2
∞

L∑
`=1

∑
j∈Z

∫
Q(r)

|ψ̂`(B−jξ)|2 dξ.

Using (5.14), it follows that

L0(f) ≤ C(B, 2r)‖f̂‖2
∞|Q(r)| <∞. (5.16)

We now estimate L1(f). For m ∈ Zn \ E, if Bjη ∈ Q(r) and Bj(η +m) ∈ Q(r), then,

for j ∈ Z, we have that

|BjmF | ≤ |Bj(ηF +mF )|+ |BjηF | < r + r = 2r,

and

|BjmE | ≤ |Bj(ηE +mE)|+ |BjηE | < r + r = 2r,

where we decomposed m and η as a unique sum of elements in F and E. Thus, with the

notation introduced before Lemma 5.5,

{m ∈ Zn \ E : Bjη ∈ Q(r) and Bj(η +m) ∈ Q(r)} ⊂ {m ∈ Zn \ E : Bjm ∈ Q̃(2r)},
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for every j ∈ Z. By Lemma 5.5, the number of elements in the last set does not exceed

C̃(B, 2r)|detB|−j , for all j ∈ Z. Thus,

L1(f) ≤ C̃(B, 2r)‖f̂‖2
∞

L∑
`=1

∑
j∈Z

∫
Bjη∈Q(r)

|ψ̂`(η)|2 dη.

By Lemma 5.4, the number of j ∈ Z such that Bjη ∈ Q(r) does not exceed a fixed number,

N(B, r), independently of η ∈ Rn. Hence,

L1(f) ≤ C̃(B, 2r)‖f̂‖2
∞N(B, r)

L∑
`=1

‖ψ̂`‖2
2 <∞. (5.17)

From (5.15), (5.16), and (5.17) we deduce that, if f ∈ DE , then L(f) <∞. 2

Equality (5.8) in Theorem 5.3 can be written in a simpler form involving the lattice

points m ∈ Zn instead of the elements α ∈ Λ. This shows that there is a redundancy in the

original condition (5.8). We have the following:

Theorem 5.7. Let Ψ = {ψ1, · · · , ψL} ⊂ L2(Rn) and A ∈ GLn(R) be such that the matrix

B = At is expanding on a subspace F of Rn. Then the system FA(Ψ), given by (5.2), is a

normalized tight frame for L2(Rn) if and only if

L∑
`=1

∑
j∈Pm

ψ̂`(B−jξ) ψ̂`(B−j(ξ +m)) = δm,0 for a.e. ξ ∈ Rn, (5.18)

and all m ∈ Zn, where Pm = {j ∈ Z : B−jm ∈ Zn}.

Proof. It is enough to show that (5.8) is valid for each α ∈ Λ if and only if (5.18) is

valid for each m ∈ Zn. Each lattice point m ∈ Zn belongs to Λ since Zn = B0(Zn) ⊂ Λ =

∪j∈ZB
j(Zn), and, therefore, (5.8) implies (5.18). Now, suppose that (5.18) is true for all

m ∈ Zn \ {0} (the case m = 0 in (5.18) is equal to the case α = 0 in (5.8), and so we only

have to consider the case m 6= 0). For any α ∈ Λ \ {0}, we have α = Bj0m0 for some j0 ∈ Z
and some m0 ∈ Zn \ {0}. By making the change of variables ξ = Bj0η in the left hand side

of (5.8), we obtain

L∑
`=1

∑
j∈Pα

ψ̂`(B−jξ) ψ̂`(B−j(ξ + α)) =
L∑

`=1

∑
j∈P

Bj0m0

ψ̂`(B−j+j0η) ψ̂`(B−j+j0(η +m0)) (5.19)

Let k = j − j0 and observe that Pα = PBj0m0
= {j ∈ Z : B−j(Bj0m) ∈ Zn}. Since

B−(k+j0)(Bj0m0) = B−km0, it follows that j = k + j0 ∈ PBj0m0
if and only if k ∈ Pk.
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Replacing −j + j0 by −k in the second sum of (5.19), we obtain

L∑
`=1

∑
j∈Pα

ψ̂`(B−jξ) ψ̂`(B−j(ξ + α)) =
L∑

`=1

∑
k∈Pm0

ψ̂`(B−kη) ψ̂`(B−k(η +m0))

and the last expression is zero for a.e. η ∈ Rn by (5.18) (recall that m0 6= 0). So the left

hand side is also zero for a.e. ξ ∈ Rn when α ∈ Λ \ {0}. 2

Examples of orthonormal A-wavelets (that is, systems Ψ = {ψ1, . . . , ψL} ⊂ L2(Rn),

such that FA(Ψ) is an orthonormal basis of L2(Rn)) for expanding matrices on Rn can be

found in [13, 34, 14]. Here we show how Theorem 5.3 can be applied to obtain examples of

orthonormal A-wavelets for some dilation matrices A for which B = At satisfy Definition

5.1, but is not necessarily expanding on Rn.

In order to construct these examples, observe that if j ∈ Pk (see Theorem 5.7 for the

definition of the set Pk we use here), then B−jk = m ∈ Zn, so that if ψ` ∈ L2(Rn) and

(supp ψ̂`) ∩ (supp ψ̂`(· − m)) = ∅ (a.e) for all m ∈ Zn \ {0}, ` = 1, · · · , L, then all the

equations in (5.18) with k 6= 0 are trivially true. Since P0 = Z, we have the following:

Corollary 5.8. Assume the same set up as in Theorem 5.7, and suppose that (supp ψ̂`) ∩
(supp ψ̂`(· −m)) = ∅ (a.e) for all m ∈ Zn \ {0}, ` = 1, · · · , L. If

L∑
`=1

∑
j∈Z

|ψ̂`(B−jξ)|2 = 1 for a. e ξ ∈ Rn, (5.20)

then the system FA(Ψ) is a normalized tight frame for L2(Rn). If, in addition, ‖ψ`‖2 = 1

for all ` = 1, · · · , L, then Ψ = {ψ1, · · · , ψL} is an orthonormal A-wavelet for L2(Rn).

Example 6. For a ∈ R, a > 1, let

A =

(
a 0

0 1

)
,

as in Example 2. We construct a single function ψ ∈ L2(R2), with ‖ψ‖2 = 1, such that ψ is

an orthonormal A-wavelet. The vertical strips

V = {(x, y) ∈ R2 :
1
2a

≤ |x| < 1
2
}

are tiled by the sets

En = {(x, y) ∈ R2 :
1
2a

≤ |x| < 1
2
,
n

2
≤ |y| < n+ 1

2
} n = 0, 1, 2, . . .
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Figure 2: Example 6.

(see Figure 2). Define

Sn = A−nEn, n = 0, 1, 2, . . . and W =
∞⋃

n=0

Sn.

Observe that W is a disjoint union of the sets Sn . Thus, we have

|W | =
∞∑

n=0

4
1
2
(

1
2an

− 1
2an+1

) = (1− 1
a
)
∞∑

n=0

1
an

= 1 .

Define ψ ∈ L2(R2) by ψ̂ = χW . The above computation shows that ‖ψ‖2 = 1. Since⋃∞
n=0A

nSn =
⋃∞

n=0En = V , and {AjV : j ∈ Z} is a tiling of R2 by the vertical strips AjV ,

(5.20) follows. Finally, observe that horizontal and vertical translations of W by non zero

integers do not overlap. Hence, ψ is an orthonormal A-wavelet. (An example similar to this

one has been exhibited in [5] for the case a = 2.)

Remarks

(1) Applying Theorem 4.2 to the affine system FA(Ψ), it follows that FA(Ψ) is a nor-

malized tight frame for L2(Rn) if and only if it is a Bessel system with constant 1 and the

Calderón condition (5.20) holds. In particular, if FA(Ψ) is an orthonormal system, then

FA(Ψ) is complete if and only if (5.20) holds. See Remark (1) following Theorem 4.2 for

appropriate references to this result.
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(2) The ideas presented in this section apply to more general affine systems than (5.2).

For {ψ1, · · · , ψL} ∈ L2(Rn), A1, . . . , AL ∈ GLn(R) and N1, . . . NL ∈ GLn(R), consider the

affine systems

{Dj
A`
TN`k ψ

` : j ∈ Z, k ∈ Zn, ` = 1, . . . , L} . (5.21)

Since Dj
A`
TN`k ψ

`(x) = TA`
−jN`k

Dj
A`
ψ`(x), the system (5.21) can be described as a collec-

tion of the form (2.1) for appropriate choices of P, gp and Cp. Then Theorems 2.1 and 4.2

can be applied to characterize normalized tight frames for the affine systems given by (5.21).

Since the study of this case is very similar to Theorem 5.3, the details will be omitted. The

results one obtains in the case of expansive dilation matrices A1, . . . , AL ∈ GLn(R) can be

found in [24].

6 Affine systems and wavelets: special dilation matrices

In this section, we are going to analyze the forms that the characterization equations (5.18)

assume for different values of m ∈ Zn, depending on the dilation matrices A: for example,

a corollary of our work in this section is that, for affine systems in one dimension with

A = 2, the equations (5.18) in Theorem 5.7 are the equations (1.6) and (1.7) in the classical

Theorem 1.1.

Observe that the major difference between these two equations is that, in the first, we

encounter the sum over all j ∈ Z, while, in the second, the sum is over all j ≥ 0. In terms

of the notation used for the general case in (5.18), (1.6) and (1.7) represent the two types

of equations obtained when m = 0 (the Calderón condition we already discussed) and the

case when m 6= 0.

We will present different classes of dilation matrices where there are, in fact, three or more

types of equalities. We always have the case m = 0, which, in terms of the notation in

Theorem 5.7), gives P0 = Z and represents the Calderón condition

L∑
`=1

∑
j∈Z

|ψ̂`(B−jξ)|2 = 1 for a. e. ξ ∈ Rn . (6.1)

As we shall see, the case m 6= 0 can assume several different forms. In the simple example

A =

(
2 0

0 1

)
, there are two different types of equalities besides the case corresponding to

m = 0. If m =

(
0

m2

)
∈ Z2, m2 6= 0, we have Pm = Z since A−jk =

(
0

m2

)
∈ Z2 for all

j ∈ Z. On the other hand, if m is not of the above form, then one obtains an equation

similar to equation (1.7) (see Example 8 for details).
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To better understand how these cases arise, let us first consider the intersection I(B) =⋂
i∈Z B

i(Zn), where B = At ∈ GLn(R), and B is expanding on a subspace F of Rn.

If B is expanding on Rn, then I(B) = {0}. In general, I(B) ⊂ Zn. When I(B) is not empty

and m ∈ I(B), m 6= 0, then we have Pm = Z, and (5.18) is equivalent to

L∑
`=1

∑
j∈Z

ψ̂`(B−jξ) ψ̂`(B−j(ξ +m)) = 0 for a. e. ξ ∈ Rn . (6.2)

Observe that (6.2) is void for dilation matrices expanding on Rn. For the matrices of

Example 2, we have I(B) = {0}×Z. For the matrices of Example 3, we have I(B) = E∩Z2.

For the matrices of Example 4, the set I(B) depends on the angle of rotation θ. For the

matrices of Example 5, we have I(B) = {0} × Z× Z when b is an integer.

We describe further how equation(5.18) assumes different forms by selecting three types

of the dilation matrix B = At ∈ GLn(R).

6.1 Matrices of Type-I

Definition 6.1. A matrix M ∈ GLn(R) is of Type-I if

M j(Zn) ∩ Zn = I(M) =
⋂
i∈Z

M i(Zn) (6.3)

for all j ∈ Z \ {0}.

Examples of matrices of Type-I are the matrices M = aIn with a ∈ R such that aj /∈ Q
for all j ∈ Z \ {0}; in this case, I(M) = {0}. More generally, any diagonal matrix whose

diagonal entries aii are such that aj
ii /∈ Q for all j ∈ Z \ {0} is a matrix of Type-I. The

matrices of Example 2 are also of this type when a ∈ R is such that aj /∈ Q for all j ∈ Z\{0};
in this case I(M) = {0} × Z.

We now apply Theorem 5.7 to characterize the affine system FA(Ψ), given by (5.2),

where B = At is a matrix of Type-I that is expanding on a subspace of Rn.

Proposition 6.1. Let Ψ = {ψ1, · · · , ψL} ⊂ L2(Rn) and A ∈ GLn(R) be such that B = At

is a matrix of Type-I which is expanding on a subspace of Rn. Then the affine system

FA(Ψ), given by (5.2), is a normalized tight frame for L2(Rn) if and only if the following

conditions hold: (6.1), (6.2) and

L∑
`=1

ψ̂`(ξ) ψ̂`(ξ +m) = 0 for a.e. ξ ∈ Rn, (6.4)

and all m ∈ Zn \ I(B).
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Proof. We have already observed that (6.1) and (6.2) correspond to the cases m = 0

and m ∈ I(B) \ {0} of (5.18). Thus, we only need to consider the case m ∈ Zn \ I(B).

It is clear that the set Pm = {j ∈ Z : B−jm ∈ Zn} contains the element j = 0. We now

show that it does not contain any other element. If there exist j ∈ Z, with j 6= 0, such that

j ∈ Pm, then we must have B−jm ∈ Zn. Since −j 6= 0 we deduce from (6.3) that m ∈ I(B),

contrary to the properties of m. Hence, Pm = {0} and (5.18) gives

L∑
`=1

ψ̂`(ξ)ψ̂`(ξ +m) = 0 for a. e. ξ ∈ Rn,

which is what we wanted to prove. 2

Example 7. For the matrix A =

(
π 0

0 1

)
and a single ψ ∈ L2(R2), it follows from

Proposition 6.1 that the affine system FA(ψ), given by (5.2), is a normalized tight frame

for L2(R2) if and only if∑
j∈Z

| ψ̂(πjξ1, ξ2) |2= 1 for a.e. ξ1, ξ2 ∈ R,

∑
j∈Z

ψ̂(πjξ1, ξ2) ψ̂(πjξ1, ξ2 +m2) = 0 for a.e. ξ1, ξ2 ∈ R, and all m2 ∈ Z \ {0},

ψ̂(ξ1, ξ2) ψ̂(ξ1 +m1, ξ2 +m2) = 0 for a.e. ξ1, ξ2 ∈ R, and all m1 ∈ Z \ {0},m2 ∈ Z.

6.2 Matrices of Type-II

Definition 6.2. A matrix M ∈ GLn(R) is of Type-II if M(Zn) ⊂ Zn (equivalently, all the

entries of M are integers).

Before we describe the equations that characterize affine systems for dilation matrices

of Type-II that are expanding on a subspace of Rn, we make the following observation.

Lemma 6.2. Let M ∈ GLn(Z). If m ∈ Zn \ I(M), there exist unique d ∈ Z+ ∪ {0} and

r ∈ Zn \M(Zn) such that m = Mdr.

Proof. If m /∈ M(Zn), then write m = M0m and the result follows by taking d =

0, r = m. If m ∈M(Zn), write m = Mm1 with m1 ∈ Zn; while, if m1 /∈M(Zn), the result

follows by taking d = 1, r = m1. If m1 ∈ M(Zn), write m1 = Mm2 with m2 ∈ Zn. Thus,

m = M2m2. If m2 /∈ M(Zn), the result follows by taking d = 2, r = m2. Continue in this

way. This process stops. Otherwise, m = M jmj for all j ∈ Z+, with mj ∈ Zn. Since,

· · · ⊂M2(Zn) ⊂M(Zn) ⊂ Zn ⊂M−1(Zn) ⊂M−2(Zn) ⊂ · · · , (6.5)
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we deduce m ∈ I(M), contrary to our assumption.

To show uniqueness, suppose that Mdr = m = Md1m1 with d1 ≥ d and r, r1 ∈ Zn \M(Zn).

Then, r = Md1−dm1. Since r /∈M(Zn), we deduce from (6.5) that r /∈Md1−d(Zn) if d1 > d.

Hence, d1 = d and r = r1. 2

Proposition 6.3. Let Ψ = {ψ1, · · · , ψL} ⊂ L2(Rn) and let A ∈ GLn(R) be such that

B = At is a matrix of Type-II which is expanding on a subspace of Rn. Then the affine

system FA(Ψ), given by (5.2), is a normalized tight frame for L2(Rn) if and only if the

following conditions hold: (6.1), (6.2) and

L∑
`=1

∑
j≥0

ψ̂`(Bjξ) ψ̂`(Bj(ξ + r)) = 0 for a.e. ξ ∈ Rn, (6.6)

and all r ∈ Zn \B(Zn) (observe that r /∈ I(B)).

Proof. We have already observed that (6.1) and (6.2) are the cases m = 0 and m ∈
I(B) \ {0} of (5.18). Thus, we only need to consider the case m ∈ Zn \ I(B).

We want to examine Pm = {j ∈ Z : B−jm ∈ Zn}. If j ∈ Pm, we have B−jm = s ∈ Zn.

By Lemma 6.2, there exist unique d ∈ Z+ ∪ {0} and r ∈ Zn \ B(Zn) such that m = Bdr.

Hence, s = B−j+dr. We must have −j + d ≥ 0 (otherwise, with −j + d = −` < 0, we

deduce s = B−`r, and r = B`s ∈ B(Zn)).

Thus, for m = Bd r ∈ Zn \ I(B), (5.18) of Theorem 5.7 is equivalent to

L∑
`=1

∑
j≤d

ψ̂`(B−jξ) ψ̂`(B−j(ξ +Bd r)) = 0 for a.e. ξ ∈ Rn, (6.7)

with r ∈ Zn \ B(Zn). Replacing ξ by Bd η in the above expression and then changing the

index of summation to k = d− j we obtain (6.6). 2

Example 8. For the matrix A =

(
2 0

0 1

)
and a single ψ ∈ L2(R2), it follows from

Proposition 6.3 that the affine system FA(ψ), given by (5.2), is a normalized tight frame

for L2(R2) if and only if∑
j∈Z

|ψ̂(2jξ1, ξ2)|2 = 1 for a.e. ξ1, ξ2 ∈ R,

∑
j∈Z

ψ̂(2jξ1, ξ2) ψ̂(2jξ1, ξ2 +m2) = 0 for a.e. ξ1, ξ2 ∈ R, and all m2 ∈ Z \ {0},

∑
j≥0

ψ̂(2jξ1, ξ2) ψ̂(2j(ξ1 + q1), ξ2 +m2) = 0 for a.e. ξ1, ξ2 ∈ R, and all q1 ∈ Z \ 2Z,m2 ∈ Z.
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6.3 Matrices of Type-III

Definition 6.3. A matrix M ∈ GLn(R) is of Type-III if there exists δ ∈ N, δ > 1, such

that:

(i) M δ(Zn) ⊂ Zn,

and

(ii) M r(Zn) ∩ Zn = I(M) =
⋂
i∈Z

Bi(M) for all 0 < r < δ, r ∈ Z.

The following are examples of matrices of Type-III:

M1 =

(√
2 0

0
√

2

)
, M2 =


√

2 0 0

0 1 0

0 0 1

 , M3 =


√

2 0 0

0 1√
2

− 1√
2

0 1√
2

1√
2

 .

Observe that the lower-right 2×2 matrix of M3 is a rotation by π/4 radians. Since M2
1 ,M

2
2 ,

and M2
3 are matrices with integer entries, the matrices M1,M2 and M3 satisfy (i) of Defi-

nition 6.3. To verify condition (ii), notice that

I(M1) = {0}, I(M2) = {0} × Z× Z and I(M3) = {0} .

Obvious substitutions of
√

2 by other roots and of the rotation by π/4 by other rotations

give many more examples of matrices of this type.

Now we want to write down the form that equation (5.18) assumes for the affine system

FA(Ψ) when the dilation matrix is of Type-III. Besides (6.1) and (6.2), which correspond

to the cases m = 0 and m ∈ I(B)\{0}, we are led to consider the case m ∈ I(Bδ)\ I(B) (it

is easy to see that this set is non empty for the matrix M3). The details can be seen in the

proof of Proposition 6.5 below. Before we present this proposition, we state the following

lemma, which shows that, for matrices of Type-III, condition (ii) is true for any integer that

is not divisible by δ.

Lemma 6.4. Let M be a matrix of Type-III. If Zn ∩M s(Zn) ! I(M), then δ divides s.

Proof. If s = 0 the result is obviously true. If s < 0, from Zn ∩M s(Zn) ! I(M)

we deduce M−sZn ∩ Zn ! M−s(I(M)) = I(M). Hence, without loss of generality we can

assume s > 0. Write s = cδ + r, 0 ≤ r < δ, r ∈ Z, with c a non-negative integer. Choose

m ∈ Zn ∩M s(Zn) and m /∈ I(M). Using (i) of Definition 6.3 we obtain

m ∈M s(Zn) = M rM cδ(Zn) ⊂M r(Zn) .

Hence m ∈ Zn ∩M r(Zn). By (ii) of Definition 6.3, m ∈ I(M) if 0 < r < δ, contrary to our

assumption. We deduce that r must be zero, showing that s has to be a multiple of δ. 2
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Proposition 6.5. Let Ψ = {ψ1, · · · , ψL} ⊂ L2(Rn) and A ∈ GLn(R) be such that B = At

is a matrix of Type-III which is expanding on a subspace of Rn. Then the affine system

FA(Ψ), given by (5.2), is a normalized tight frame for L2(Rn) if and only if the following

conditions hold: (6.1), (6.2),

L∑
`=1

∑
j∈Z

ψ̂`(B−jδξ) ψ̂`(B−jδ(ξ +m)) = 0 for a.e. ξ ∈ Rn, (6.8)

and all m ∈ I(Bδ) \ I(B), and

L∑
`=1

∑
j≥0

ψ̂`(Bjδξ) ψ̂`(Bjδ(ξ + q)) = 0 for a.e. ξ ∈ Rn, (6.9)

and all q ∈ Zn \Bδ(Zn) (observe that q /∈ I(Bδ)).

Proof. The set Zn is the disjoint union of the sets

{0}, I(B) \ {0}, I(Bδ) \ I(B), and Zn \ I(Bδ).

For m ∈ I(B), condition (5.18) is equivalent to (6.1) if m = 0, and to (6.2) if m 6= 0.

Consider now

m ∈ I(Bδ) \ I(B). (6.10)

We claim that, for m as above, we have:

Pm = {j ∈ Z : B−jm ∈ Zn} = {iδ : i ∈ Z}. (6.11)

Since, for all i ∈ Z, B−iδm ∈ B−iδ(I(Bδ)) = I(Bδ), and I(Bδ) ⊂ Zn, it is clear that

the set in the right hand side of (6.11) is contained in Pαm Suppose now that j ∈ Pm and

j 6= iδ for each i ∈ Zn. We can then write j = cδ − s with 0 < s < δ. Therefore,

B−jm = BsB−cδm ∈ Bs(B−cδ(I(Bδ)) = Bs(I(Bδ)) ⊂ Bs(Zn).

Also, B−jm ∈ Zn since j ∈ Pm. Thus, B−jm ∈ Zn ∩Bs(Zn). Since B is of Type-III, by (ii)

of Definition 6.3, B−jm ∈ I(B), and, consequently, m ∈ Bj(I(B)) = I(B), contradicting

the choice of m. This establishes (6.11).

For m as in (6.10), the equality (6.11) shows that (5.18) in Theorem 5.7 is equivalent to

L∑
`=1

∑
i∈Z

ψ̂`(B−iδξ) ψ̂`(B−iδ(ξ +m)) = 0 for a.e. ξ ∈ Rn,

which is (6.8).
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Choose, finally,

m ∈ Zn \ I(Bδ). (6.12)

By Lemma 6.2 applied to M = Bδ, we deduce the existence of unique d ∈ Z+ ∪ {0} and

q ∈ Zn \Bδ(Zn) such that m = Bdδq. We claim that, for m as in (6.12), we have

Pm = {j ∈ Z : B−jα ∈ Zn} = {kδ : k ∈ Z, k ≤ d}. (6.13)

If j = kδ with k ∈ Z, k ≤ d, then we can use (i) of Definition 6.3 to obtain B−jm =

B−kδBdδq = B(d−k)δq ∈ Zn, since d − k ≥ 0 and q ∈ Zn. This shows that the set on the

right side of (6.13) is contained in Pm. Choose now j ∈ Pm so that B−jm = s ∈ Zn. Then,

s = B−jm = B−j+dδq. Hence, q = Bj−dδs ∈ Zn ∩ Bj−dδ(Zn). Also, q /∈ Bδ(Zn), which

implies q /∈ I(B). By Lemma 6.4 applied toM = B, we deduce j = kδ for some k ∈ Z. Then,

q = B(k−d)δs and k− d ≤ 0 (otherwise, if k− d = t > 0, then q = Bδts ∈ Bδt(Zn) ⊂ Bδ(Zn)

by (i) of Definition 6.3). This establishes (6.13).

For m as in (6.12), the equality (6.13) shows that (5.18) in Theorem 5.7 is equivalent to

L∑
`=1

∑
k∈Z, k≤d

ψ̂`(B−kδξ) ψ̂`(B−kδ(ξ +Bdδq)) = 0 for a.e. ξ ∈ Rn. (6.14)

The change of variables ξ = Bdδη shows that (6.14) is equivalent to

L∑
`=1

∑
k∈Z, k≤d

ψ̂`(B(d−k)δη) ψ̂`(B(d−k)δ(η + q)) = 0 for a.e. η ∈ Rn. (6.15)

Finally, the change of indices j = d − k in the summation shows that (6.15) is equivalent

to (5.18) in Theorem 5.7 for the values of m given by (6.12). This finishes the proof of the

Proposition. 2

Example 9. For the matrix A =

(√
2 0

0 1

)
and a single ψ ∈ L2(R2), it follows from

Proposition 6.5 that the affine system FA(ψ), given by (5.2), is a normalized tight frame

for L2(R2) if and only if∑
j∈Z

|ψ̂(2j/2ξ1, ξ2)|2 = 1 for a.e. ξ1, ξ2 ∈ R,

∑
j∈Z

ψ̂(2j/2ξ1, ξ2) ψ̂(2j/2ξ1, ξ2 +m2) = 0 for a.e. ξ1, ξ2 ∈ R, and all m2 ∈ Z \ {0},

∑
j≥0

ψ̂(2jξ1, ξ2) ψ̂(2j(ξ1 + q1), ξ2 +m2) = 0 for a.e. ξ1, ξ2 ∈ R, and all q1 ∈ Z \ 2Z,m2 ∈ Z.
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6.4 Matrices expanding on Rn

If the dilation matrix A ∈ GLn(R) is expanding (i.e., it is expanding on F = Rn), then

the form of the equalities (5.18) can be expressed in a way that is yet more similar to

the “classical” equalities (1.6) and (1.7). That is, one equality, corresponding to the case

q = 0 in (6.16), is the Calderón condition, while the others have a form that is a direct

generalization of (1.7).

Theorem 6.6. Let Ψ = {ψ1, · · · , ψL} ⊂ L2(Rn), B = At and A ∈ GLn(R) be expanding

on Rn. Then the system FA(Ψ), given by (5.2), is a normalized tight frame for L2(Rn) if

and only if
L∑

`=1

∑
j∈Pq

ψ̂`(B−jξ) ψ̂`(B−j(ξ + q)) = δq,0 for a.e. ξ ∈ Rn, (6.16)

and all q ∈ Zn \B(Zn), where Pq = {j ∈ Z : B−jq ∈ Zn}.

Proof. We must show the equivalence of (5.18) and (6.16) when B is expanding.

Let us first observe that, in this case,

I+(B) =
⋂
j≥0

Bj(Zn) = {0}.

This is an immediate consequence of inequality (5.6) in Lemma 5.2. Indeed, if x ∈ I+(B),

then, for each j ≥ 0, there exists mj ∈ Zn such that x = Bj mj . By (5.6), we then have

|mj | = |B−j x| ≤ 1
k γ

−j |x| and the last expression tends to zero as j → ∞ since γ > 1.

Hence, mj must be zero since the last expression must be strictly smaller than 1, the minimal

norm for a non-zero lattice point, for j large enough.

It is clear that (5.18) implies (6.16), and that the two expressions are the same when

q = m = 0. Therefore, we only have to show that equality (5.18), for m ∈ Zn \ {0}, is

equivalent to one of the equalities (6.16), for an appropriate q ∈ Zn \B(Zn). We first claim

that any such m ∈ Zn \ {0} can be written as m = Bd q for some d ≥ 0 and q ∈ Zn \B(Zn),

provided B is expanding. To prove this claim proceed as follows. If m /∈ B(Zn), then set

d = 0 and q = m; while, if m ∈ B(Zn), then set m = Bm1 and we reason for m1 as

we just did for m: either m1 /∈ B(Zn), and we are done with q = m1, or m1 ∈ B(Zn)

in which case m = Bm1 = B2m2 with m2 ∈ Zn. This process must stop after a finite

number of steps; otherwise, m = Bj mj for a mj ∈ Zn for all j ≥ 0. This would imply that

m ∈ I+(B) = ∩j≥0B
j(Zn) and we reach a contradiction. This establishes the last claim.

Thus, if (5.18) with m 6= 0 is true, then we can write m = Bd q for some d ≥ 0 and

q ∈ Zn \ B(Zn). Now, using the change of variables ξ = Bdη and the fact that j ∈ PBdq if
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and only if k = j − d ∈ Pq, we obtain

L∑
`=1

∑
j∈Pm

ψ̂`(B−jξ) ψ̂`(B−j(ξ +m)) =
L∑

`=1

∑
j∈P

Bdq

ψ̂`(B−jξ) ψ̂`(B−j(ξ +Bd q))

=
L∑

`=1

∑
j∈P

Bdq

ψ̂`(B−j+dη) ψ̂`(B−j+d(η + q)) =
L∑

`=1

∑
k∈Pq

ψ̂`(B−kη) ψ̂`(B−k(η + q)). 2

Remark. The types of matrices we have considered in this section do not cover all the

possible matrices that are expanding on subspaces of Rn. For example, the matrix

M =


√

2 0 0

0 2 0

0 0 1


does not belong to any of the above types. It is a significant problem to understand the

form that (5.8) in Theorem 5.3 assumes for all the dilation matrices expanding on subspaces

of Rn, in order to obtain expressions that do not involve the sets Λ and Pα, in the same

spirit as done in Propositions 6.1, 6.3, and 6.5. The problem has been completely solved in

[8] for dimension 1 (the matrix is a real number a, with a > 1), where they have considered

the sets

E1 = {a ∈ R : a > 1, and aj ∈ Z for some integer j > 0},

E2 = {a ∈ R : a > 1, and aj ∈ Q \ Z for some integer j > 0},

E3 = {a ∈ R : a > 1, and aj /∈ Q for all integer j > 0},

and they have given simpler expressions for the characterization equations in each one of

these cases. The general problem in dimension n > 1 remains open.

7 Quasi-affine systems

Let Ψ = {ψ1, . . . , ψL} ⊂ L2(Rn), and A ∈ GLn(R). The quasi-affine system generated

by Ψ, denoted as F̃A(Ψ), is defined by

F̃A(Ψ) =
{
ψ̃`

j,k : j ∈ Z, k ∈ Zn, ` = 1, . . . , L
}
, (7.1)

where

ψ̃`
j,k =

|detA|
j
2 Tk DAj ψ`, j < 0

DAj Tk ψ
`, j ≥ 0.
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The notion of quasi-affine system was introduced by A. Ron and Z. Shen in [28] under

the assumption that A ∈ GLn(Z). It is easy to verify that when the dilation matrix A

preserves the integer lattice (i.e., AZn ⊂ Zn), then the quasi-affine systems F̃A, unlike the

affine systems FA, are invariant under integer translations. Ron and Shen discovered that

there is some sort of equivalence between the affine systems FA(Ψ) and the corresponding

quasi-affine systems F̃A(Ψ). In particular, they obtained the following result (discovered

in [28] under a mild decay assumption on ψ, and proved in full generality in [9]):

Theorem 7.1 ([9]). Let A ∈ GLn(Z) be expanding. Then the quasi-affine system F̃A(Ψ) is

a normalized tight frame if and only the corresponding affine system FA(Ψ) is a normalized

tight frame.

More general notions of equivalence are also proved in [9], such as the fact that affine

and quasi-affine frames are equivalent. It follows from Theorem 7.1 that, once the quasi-

affine systems F̃A(Ψ) have been studied using techniques from the theory of shift-invariant

spaces, then the results can be transferred to the corresponding affine systems FA(Ψ) (cf.

[29, 3, 21] for an application of this approach to the characterization of affine tight and dual

frames).

The main result of this section is yet another application of Theorem 2.1, which gives

the following characterization of normalized quasi-affine tight frames.

Theorem 7.2. Let Ψ = {ψ1, · · ·ψL} ⊂ L2(Rn) and let A ∈ GLn(R) be such that the matrix

B = At is expanding on a subspace F of Rn. Then the quasi-affine system F̃A(Ψ), given by

(7.1), is a normalized tight frame for L2(Rn) if and only if

L∑
`=1

∑
j∈Z−∪Qm

ψ̂`(B−jξ) ψ̂`(B−j(ξ +m)) = δm,0 for a.e. ξ ∈ Rn, (7.2)

for all m ∈ Zn, and

L∑
`=1

∑
j∈Qα

ψ̂`(B−jξ) ψ̂`(B−j(ξ + α)) = 0 for a.e. ξ ∈ Rn, (7.3)

for all α ∈ Λq \ Zn, where Λq =
⋃

j∈Z+∪{0}B
j(Zn) and Qx = {j ∈ Z+ ∪ {0} : B−jx ∈ Zn}.

Remarks.

1. Our result is not restricted to integer-valued expanding matrices, as is the classical

result of A. Ron and Z. Shen, but is valid for real matrices expanding on subspaces, as
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defined in Section 5. As a corollary to our result, we will show the equivalence of affine and

quasi-affine systems may not hold if the matrix is not integer-valued (see Example 11).

2. The expressions (7.2) and (7.3) share some features with equation (5.7) in Theo-

rem 5.4. Observe that, if A ∈ GLn(Z) (hence, AZn ⊂ Zn), then Λq = Zn and equation (7.3)

is void. We will show in Proposition 8.2 that, in the case of integer-valued matrices, the

expressions (7.2) and (5.7) are equivalent, and this gives a new proof of Theorem 7.1.

3. If α = 0, then Z− ∪Q0 = Z, and (7.2) becomes the Calderón condition

L∑
`=1

∑
j∈Z

|ψ̂`(B−jξ)|2 = 1, for a.e. ξ ∈ Rn,

exactly as in the case of affine systems.

Proof of Theorem 7.2. Apply Theorem 2.1 with

P =
{
(j, `) : j ∈ Z, ` = 1, 2, . . . , L

}
,

gp ≡ g(j,l) =

|detA|
j
2 DAj ψ`, j < 0

DAj ψ`, j ≥ 0,
Cp ≡ C(j,`) =

I, j < 0, ` = 1, . . . , L

A−j , j ≥ 0, ` = 1, . . . , L.

With this choice for P, gp and Cp, using the relation TA−jk DAj ψ = DAj Tk ψ, it follows

that the system {TCp k gp : k ∈ Zn, p ∈ P} is the quasi-affine system F̃A(Ψ).

With the same choices, the set Λ, given by (2.2), is

Λ = Λq = (
⋃

j∈Z−
Ij Zn) ∪ (

⋃
j∈Z+∪{0}

Bj Zn) =
⋃

j∈Z+∪{0}

Bj Zn,

and the set Pα, given by (2.3), is

Pα ={(j, `) : j ∈ Z−, ` = 1, . . . , L : α ∈ Zn}∪

∪ {(j, `) : j ∈ Z+ ∪ {0}, ` = 1, . . . , L : B−jα ∈ Zn}.

Thus, if α = m ∈ Zn, then Pα = (Z− ∪ Qm) × {1, . . . , L}, and equation (7.2) follows

from (2.6) in Theorem 2.1. Similarly, if α ∈ Λq \ Zn, then Pα = Qα × {1, . . . , L}, and

equation (7.3) follows from (2.6) in Theorem 2.1.

Therefore, all that is left to prove is that the hypothesis (2.6) is satisfied in this particular

case. Choose f ∈ DE , where DE is a dense subspace of L2(Rn) defined by (5.10), and E is a

complementary subspace to F as in Definition 5.1. Thus, we need to show that Lq(f) <∞
for f ∈ DE , where

Lq(f) =
L∑

`=1

∑
j∈Z−

∑
m∈Zn

∫
supp f̂

|f̂(ξ +m)|2 |detAj | |(Dj
Aψ

`)∧(ξ)|2 dξ+
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+
L∑

`=1

∑
j∈Z+∪{0}

∑
m∈Zn

∫
supp f̂

|f̂(ξ +Bjm)|2 |detAj | |(Dj
Aψ

`)∧(ξ)|2 dξ.

Since (Dj
Aψ)∧(ξ) = |detA|−1/2 ψ̂(B−jξ), then

Lq(f) =
L∑

`=1

∑
j∈Z−

∑
m∈Zn

∫
supp f̂

|f̂(ξ +m)|2 |ψ̂`(B−jξ)|2 dξ+

+
L∑

`=1

∑
j∈Z+∪{0}

∑
m∈Zn

∫
supp f̂

|f̂(ξ +Bjm)|2 |ψ̂`(B−jξ)|2 dξ.

Write Lq(f) = Lq
−(f) + Lq

+(f), where Lq
−(f) and Lq

+(f) denote the sums corresponding to

j ∈ Z− and j ∈ Z+ ∪ {0}, respectively.

Consider first the expression for Lq
−(f). Since f ∈ DE , there exists an R > 0 such that

supp f̂ ⊂ B(R). In order to have Lq(f) 6= 0, we must have |ξ| ≤ R and |ξ + m| ≤ R.

Therefore, |m| ≤ 2R, and the sum with respect to m in Lq
−(f) is finite, where the number

of m ∈ Zn is at most (2R)n. Furthermore, if the quasi-affine system F̃A(Ψ) is a normalized

tight frame for L2(Rn), then, by Proposition 4.1 applied to the quasi-affine system (7.1),

we deduce that
L∑

`=1

∑
j∈Z

|ψ̂`(B−jξ)|2 ≤ 1 for a.e. ξ ∈ Rn .

This inequality also holds if we assume (7.3) (take α = 0). Together with the bound for the

sum with respect to m, the last inequality shows that:

Lq
−(f) ≤ (2R)n |B(R)| ‖f̂‖2

∞. (7.4)

Finally, consider the expression for Lq
+(f). It is clear that

Lq
+(f) ≤ L(f) =

L∑
`=1

∑
j∈Z

∑
m∈Zn

∫
supp f̂

|f̂(ξ +Bjm)|2 |ψ̂`(B−jξ)|2 dξ,

and L(f) <∞, by Proposition 5.6. 2

A simple application of Theorem 4.2 to the quasi-affine systems F̃A yields another

characterization of quasi-affine normalized tight frames.

Theorem 7.3. Let Ψ = {ψ1, · · ·ψL} ⊂ L2(Rn) and A ∈ GLn(R) be such that the matrix

B = At is expanding on a subspace F of Rn. Then the quasi-affine system F̃A(Ψ), given

by (7.1), is a normalized tight frame for L2(Rn) if and only if it is a Bessel system with

constant 1 and the Calderón condition (6.1) holds.
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Proof. Apply Theorem 4.2 with P, gp and Cp as in the proof of Theorem 7.2. The fact

that condition (2.6) is satisfied for all f ∈ DE , where DE is a dense subspace of L2(Rn)

defined by (5.10), and E is a complementary subspace to F as in Definition 5.1, follows

from the same argument as in the proof of Theorem 7.2. 2

Using Theorem 7.3, we make the following observation.

Corollary 7.4. Let Ψ = {ψ1, · · ·ψL} ⊂ L2(Rn) and A ∈ GLn(R) be such that the ma-

trix B = At is expanding on a subspace F of Rn. If the quasi-affine system F̃A(Ψ) is a

normalized tight frame for L2(Rn), then the corresponding affine system FA(Ψ) is also a

normalized tight frame for L2(Rn).

In order to prove Corollary 7.4, we need the following Lemma, which is adapted from

[9, Theorem 2].

Lemma 7.5. Let Ψ = {ψ1, · · ·ψL} ⊂ L2(Rn) and A ∈ GLn(R). If the system F+
A (Ψ) =

{DAj Tk ψ
` : j ∈ Z+ ∪ {0}, k ∈ Zn, ` = 1, . . . , L} is a Bessel system with constant B, then

the affine system FA(Ψ), given by (5.1), has the same property.

Proof. Since F+
A (Ψ) is a Bessel system with constant B, then

L∑
`=1

∑
j≥0

∑
k∈Zn

|〈f,Dj
A Tk ψ

`〉|2 ≤ B ‖f‖2
2,

for all f ∈ L2(Rn). Thus, given N ∈ N and any g ∈ L2(Rn), from the last inequality with

f = DN
A g we deduce that

L∑
`=1

∑
j≥0

∑
k∈Zn

|〈DN
A g,Dj

A Tk ψ
`〉|2 ≤ B ‖DN

A g‖2
2 = B ‖g‖2

2, (7.5)

for all g ∈ L2(Rn) and N ∈ N. Since 〈DN
A g,Dj

A Tk ψ
`〉 = 〈g,Dj−N

A Tk ψ
`〉, then from (7.5)

we have that
L∑

`=1

∑
j≥0

∑
k∈Zn

|〈g,Dj−N
A Tk ψ

`〉|2 ≤ B ‖g‖2
2,

for all g ∈ L2(Rn) and N ∈ N. Thus, applying the change of indices i = j −N we obtain

L∑
`=1

∑
i≥−N

∑
k∈Zn

|〈g,Di
A Tk ψ

`〉|2 ≤ B ‖g‖2
2,

and the result then follows by taking the limit for N approaching infinity. 2
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Proof of Corollary 7.4. If the quasi-affine system F̃A(Ψ), given by (7.1), is a Bessel

system with constant 1, then so is the system F+
A (Ψ) = {DAj Tk ψ

` : j ∈ Z+ ∪ {0}, k ∈
Zn, ` = 1, . . . , L}, and so, by Lemma 7.5, is the corresponding affine system FA(Ψ). By the

item 3 of the Remarks after Theorem 7.2, the systems F̃A(Ψ) and FA(Ψ) satisfy the same

Calderón condition, and this completes the proof. 2

8 Quasi-affine systems: special dilation matrices

In this section, we are going to analyze, in the same spirit as in Section 6, the forms that

the characterization equations (7.2) and (7.3) assume corresponding to different values of

m ∈ Zn and α ∈ Λq. These differences will depend on the dilation matrix A, expanding on

subspaces of Rn, similarly to the situation we encountered in Section 6.

As a consequence of the results we discuss in this Section, we have that for A ∈ GLn(R)

of Type-II (i.e., A has integer entries), the affine system FA(Ψ) is a normalized tight frame

if and only if the corresponding quasi-affine system F̃A(Ψ) has the same property (see

Theorem 7.1 and the references given before its statement for this equivalence in the case of

expanding dilation matrices in GLn(R)). On the other hand, we give examples of matrices

A of Type-I for which FA(Ψ) is a normalized tight frame, but the corresponding quasi-affine

system F̃A(Ψ) does not have the same property.

If we take m = 0 in (7.2), we have Qm = Z+ ∪ {0} (the set Qm is defined in Theorem

7.2). Then (7.2) is the Calderón condition

L∑
`=1

∑
j∈Z

|ψ̂`(B−jξ)|2 = 1 for a. e. ξ ∈ Rn . (8.1)

If m 6= 0 and m ∈ Iq(B) =
⋂
{i∈Z, i≥0} B

i(Zn), we have Qm = Z+ ∪ {0}, and (7.2) is

equivalent to

L∑
`=1

∑
j∈Z

ψ̂`(B−jξ) ψ̂`(B−j(ξ +m)) = 0 for a. e. ξ ∈ Rn . (8.2)

The set Iq(B) is contained in Zn. If B is an expanding matrix on Rn we have Iq(B) = {0}
and, consequently, condition (8.2) is not present. For the matrices of Example 2 in Section

5, we have Iq(B) = {0} × Z. For the matrices of Example 3 in Section 5, we have Iq(B) =

E ∩ Z2. For the matrices of Example 4 in Section 5, the set Iq(B) depends on the angle of

rotation θ. For the matrices of Example 5 in Section 5, we have Iq(B) = {0}×Z×Z when

b is an integer.
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For other values of α ∈ Λ, the form that (7.2) and (7.3) assume depends on the dilation

matrix B = At ∈ GLn(R). As special applications of Theorem 7.2 we treat below matrices of

Type-I and Type-II, as defined in Section 6. In order to avoid excessive technical discussions,

we leave to the reader the exploration of how dilation matrices of Type-III are involved in

the quasi-affine case.

8.1 Matrices of Type-I

Recall that B ∈ GLn(R) is a matrix of Type-I if Bj(Zn) ∩ Zn = I(B) =
⋂

i∈Z B
i(Zn) for

all j ∈ Z \ {0}, according to Definition 6.1. Then, in this situation, Iq(B) ⊂ B(Zn) ∩ Zn =

I(B) ⊂ Iq(B), so that we have

Iq(B) = I(B). (8.3)

In view of this equality, condition (6.2) for affine systems and condition (8.2) for quasi-affine

systems range over the same values of m.

We can now give the form that the equations that appear in Theorem 7.2 assume in

this situation.

Proposition 8.1. Let Ψ = {ψ1, · · · , ψL} ⊂ L2(Rn) and A ∈ GLn(R) be such that B = At

is a matrix of Type-I which is expanding on a subspace of Rn. Then the quasi-affine system

F̃A(Ψ), given by (7.1), is a normalized tight frame for L2(Rn) if and only if the following

conditions hold: the Calderón condition (8.1), (8.2),

L∑
`=1

ψ̂`(ξ) ψ̂`(ξ +m) = 0 for a.e. ξ ∈ Rn, (8.4)

and all m ∈ Zn \ Iq(B), and

L∑
`=1

∑
j≥1

ψ̂`(Bjξ) ψ̂`(Bj(ξ +m)) = 0 for a.e. ξ ∈ Rn, (8.5)

and all m ∈ Zn \ Iq(B).

Proof. We apply Theorem 7.2. We have already observed that (8.1) and (8.2) are

the cases m = 0 and m ∈ Iq(B) \ {0} of (7.2). We now need to consider the cases of

m ∈ Zn \ Iq(B) and α ∈ Λq \ Iq(B).

For m ∈ Zn \ Iq(B), since B is of Type-I, we obtain Qm = {0}. In this case, (7.2) is

equivalent to

L∑
`=1

∑
j≤0

ψ̂`(B−jξ) ψ̂`(B−j(ξ +m)) = 0 for a.e. ξ ∈ Rn. (8.6)
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For α ∈ Λq \ Zn, write α = Bj0m for some j0 ∈ Z+ and m ∈ Zn \ Iq(B). Then, j ∈ Qα if

and only if j ∈ Z+ ∪ {0} and B−jα = B−j+j0m ∈ Zn. Since B is of Type-I, we deduce that

j = j0, so that Qα = {j0}. In this case,

L∑
`=1

ψ̂`(B−j0ξ) ψ̂`(B−j0(ξ +Bj0m)) = 0 for a.e. ξ ∈ Rn.

Change B−j0ξ to η to obtain (8.4). Finally, observe that the terms with j = 0 in (8.6) add

up to zero by the just proved equation (8.4), so that (8.6) becomes (8.5) after changing j

to −j, 2

Example 10. If a ∈ R, a > 1, with aj /∈ Q for all j ∈ Z+, and a single ψ ∈ L2(R),

it follows from Proposition 8.1 that the quasi-affine system F̃A(ψ), given by (7.1), is a

normalized tight frame for L2(R) if and only if∑
j∈Z

| ψ̂(ajξ) |2= 1 for a.e. ξ ∈ R, (8.7)

ψ̂(ξ)ψ̂(ξ +m) = 0 for a.e. ξ ∈ R, and all m ∈ Z \ {0}, (8.8)

and ∑
j≥1

ψ̂(ajξ)ψ̂(aj(ξ +m)) = 0 for a.e. ξ ∈ R, and all m ∈ Z \ {0}. (8.9)

Remark. Comparing Propositions 6.1 and 8.1, it is clear that, for matrices of Type-I

expanding on subspaces of Rn, if the quasi-affine frame is a normalized tight frame for

L2(Rn), then also the corresponding affine frame is a normalized tight frame for L2(Rn). Of

course, this is in agreement with Corollary 7.4. On the other hand, (8.5) does not appear in

Proposition 6.1: this fact will allow us to exhibit affine normalized tight frames for L2(Rn),

for which the corresponding quasi-affine system is not a normalized tight frame for L2(Rn).

This is presented in the following example.

Example 11. We carry out the construction in dimension n = 1. Let a ∈ R, a > 1,

and a /∈ N. Let r ∈ N be such that r − 1 < a < r. Assume r − (1/2) ≤ a < r (the case

r−1 < a < r−(1/2) requires only minor modifications from the example we present below).

Choose β ∈ R such that r − 1 < a < β < r, and let ε = r − β > 0.

Write J = (r − 1
2 , β), and I = (β, a(r − 1

2), so that J ∪ I = (r − 1
2 , a(r −

1
2)). Observe

that a(r − 1
2) > (r − 1

2)2 = r2 − r + 1
4 > β, since r ≥ 2. Choose j0 to be a positive integer

large enough so that
a(r − 1

2)
aj0

< min{ε, β − a}. (8.10)
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Let K = 1
aj0
I, and consider Wa = (±K) ∪ (±J). Define ψa by

ψ̂a = χWa
.

Since aj0K ∪ J = (±I) ∪ (±J) = ±(r − 1
2 , a(r −

1
2)), (8.7) holds for ψa. By (8.10), Wa ∩

(Wa +m) = ∅ for all m ∈ Z \ {0}. Hence (8.8) is true.

If we choose a ∈ R, a > 1, such that aj /∈ Q for all j ∈ Z+, from Example 10 we deduce

that the affine system Fa(ψa) is a normalized tight frame L2(Rn). Moreover, by (8.10), if

ξ ∈ a−1K,

ψ̂a(aξ) ψ̂a(aξ + a) = 1, (since K + a ⊂ J),

and for j ∈ Z+, ψ̂a(ajξ) ψ̂a(ajξ + aj) = 0, since ψ̂a(ajξ) = 0. Thus, (8.9) does not hold for

m = 1 and, consequently, the quasi-affine system F̃a(ψa) is not a normalized tight frame

for L2(R).

8.2 Matrices of Type-II

Recall that B ∈ GLn(R) is a matrix of Type-II if B(Zn) ⊂ Zn, according to Definition 6.2.

Then, in this situation,

· · · ⊂ B2(Zn) ⊂ B(Zn) ⊂ Zn ⊂ B−1(Zn) ⊂ B−2(Zn) ⊂ · · ·

and, consequently,

Iq(B) =
⋂

{i∈Z, i≥0}

Bi(Zn) =
⋂
i∈Z

Bi(Zn) = I(B) . (8.11)

In view of this equality, condition (6.2) for affine systems and condition (8.2) for quasi-affine

systems range over the same values of m.

We can now give the form that the equations that appear in Theorem 7.2 assume in

this situation.

Proposition 8.2. Let Ψ = {ψ1, · · · , ψL} ⊂ L2(Rn) and A ∈ GLn(R) be such that B = At

is a matrix of Type-II which is expanding on a subspace of Rn. Then the quasi-affine system

F̃A(Ψ), given by (7.1), is a normalized tight frame for L2(Rn) if and only if the following

conditions hold: the Calderón condition (8.1), (8.2), and

L∑
`=1

∑
j≥0

ψ̂`(Bjξ) ψ̂`(Bj(ξ + q)) = 0 for a.e. ξ ∈ Rn, (8.12)

and all q ∈ Zn \B(Zn).
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Proof. We apply Theorem 7.2. We have already observed that (8.1) and (8.2) are the

cases m = 0 and m ∈ Iq(B) \ {0} of (7.2).

For matrices of Type-II, Λq =
⋃

j∈Z+∪{0}B
j(Zn) = Zn by the inclusions that precede (8.11),

and (7.3) is void. Thus, we only need to consider the case m ∈ Zn \ Iq(B). Observe that,

since Iq(B) = I(B), by (8.11), we can apply Lemma 6.2 to deduce the existence of unique

d ∈ Z + ∪{0} and q ∈ Zn \B(Zn) such that m = Bdq.

We want to examine Qm = {j ∈ Z+ ∪ {0} : B−jm ∈ Zn}. If j ∈ Qm, then B−jBdq =

B−jm ∈ Zn. We must have −j + d ≥ 0 (otherwise, with −j + d = −` < 0, we deduce

B−`q ∈ Zn, which implies q ∈ B`(Zn) ⊂ B(Zn), contrary to our choice of q).

Also, if 0 ≤ j ≤ d, then j ∈ Qm; in fact, since −j + d ≥ 0 and B is of Type-II, we obtain

B−jm = B−j+dq ∈ Zn. Thus, Qm = {0, 1, 2, · · · , d}, and (7.2) is equivalent to

L∑
`=1

∑
j<0

ψ̂`(B−jξ) ψ̂`(B−j(ξ +Bdq)) +
L∑

`=1

d∑
j=0

ψ̂`(B−jξ) ψ̂`(B−j(ξ +Bdq)) = 0

for a.e. ξ ∈ Rn. Collecting the two sums with j ranging from −∞ to d, doing the change of

variables ξ = Bdη, and changing the index of summation to k = −j + d, we obtain (8.12).

This finishes the proof of the Proposition. 2

Remarks.

(1) Comparing Propositions 6.3 and 8.2, and taking into account the equality (8.11),

it is clear that for matrices of Type-II (i.e. matrices with integer entries), expanding on

subspaces of Rn, the quasi-affine frame is a normalized tight frame for L2(Rn) if and only

if the affine frame is a normalized tight frame for L2(Rn). This generalizes Theorem 7.1 to

the case of matrices which are not just expanding, but expanding on subspaces of Rn.

(2) We have proved in Example 7 that the equivalence stated in the above remark

does not carry over to matrices of Type-I. On the other hand, recently M. Bownik [4]

has modified the quasi-affine system (7.1) to obtain this equivalence for rational dilation

matrices expanding on Rn (that is, matrices with rational entries).

9 Dual systems

In this section, we consider the case of systems satisfying a reproducing formula of the form

v =
∑
α∈A

〈v, eα〉 ηα, v ∈ H

where the “analyzing” family {ηα}α∈A differs from the “synthetizing” family {eα}α∈A. Since

the results that we shall present in this section follow for the most part by simple adaptations
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of the arguments used in the tight frame case, in order to avoid repetitions, we will omit or

simply sketch some of the proofs.

Let e = {eα}α∈A and η = {ηα}α∈A be Bessel systems for H. Then {ηα}α∈A is called a

dual system to {eα}α∈A, if

Ke,η(v, w) =
∑
α∈A

〈v, eα〉 〈ηα, w〉 = 〈v, w〉, for all v, w ∈ H. (9.13)

If this is the case, then we have:

v =
∑
α∈A

〈v, ηα〉 eα =
∑
α∈A

〈v, eα〉 ηα, for all v ∈ H,

with convergence in H. Note that, by the polarization identity for sesquilinear forms, we

have Ke,η(v, w) = 1
4

∑3
n=0 i

nKe,η(v + inw, v + inw). Therefore, (9.13) holds if and only if

it holds for all v = w ∈ H. Also, it is enough to prove (9.13) for v = w in a dense subspace

of H (cf. [15]).

We have the following general result, which characterizes a class of dual systems for the

collections of the form {TCpk gp : p ∈ P, k ∈ Zn}.

Theorem 9.1. Let {TCpk gp : p ∈ P, k ∈ Zn} and {TCpk γp : p ∈ P, k ∈ Zn} be Bessel

systems for L2(Rn), where P is countable, {gp}p∈P , {γp}p∈P , are collections of functions in

L2(Rn) and {Cp}p∈P ⊂ GLn(R). Suppose that∑
p∈P

∑
m∈Zn

∫
supp f̂

|f̂(ξ + CI
pm)|2 1

|detCp|
|ĝp(ξ)|2 dξ <∞. (9.14)

and ∑
p∈P

∑
m∈Zn

∫
supp f̂

|f̂(ξ + CI
pm)|2 1

|detCp|
|γ̂p(ξ)|2 dξ <∞. (9.15)

for all f ∈ D, where CI
p = (Ct

p)
−1. Then {TCpk γp : p ∈ P, k ∈ Zn} is a dual frame to

{TCpk gp : p ∈ P, k ∈ Zn} in L2(Rn) if and only if∑
p∈Pα

1
|detCp|

ĝp(ξ) γ̂p(ξ + α) = δα,0 for a.e. ξ ∈ Rn, (9.16)

for each α ∈ Λ, where δ is the Kronecker delta for Rn, and Λ, Pα are defined by (2.2) and

(2.3).

In order to prove Theorem 9.1, we need the following Lemmas, whose proofs can be

easily adapted from those of Lemmas 2.2 and 2.3 (see also [21, Sec.4]). Recall that the

dense subspace D ⊂ L2(Rn) is defined in Section 2.
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Lemma 9.2. Let C ∈ GLn(R) and CI = (Ct)−1. If f ∈ D and g, γ ∈ L2(Rn), then∑
k∈Zn

〈f, TCk g〉 〈TCk γ, f〉 =
1

|detC|

∫
CITn

[f̂ , ĝ](ξ;CI) [γ̂, f̂ ](ξ;CI) d ξ, (9.17)

where Tn = [0, 1)n.

Lemma 9.3. Let C ∈ GLn(R) and CI = (Ct)−1. For each f ∈ D and g, γ ∈ L2(Rn), the

function

K(x) =
∑
k∈Zn

〈Tx f, TCk g〉 〈TCk γ, Tx f〉 (9.18)

is the trigonometric polynomial

K(x) =
∑

m∈Zn

K̂(m) e2πi(CIm)·x,

where

K̂(m) =
1

|detC|

∫
Rn

f̂(ξ) f̂(ξ + CIm) ĝ(ξ) γ̂(ξ + CIm) dξ, (9.19)

and only a finite number of these expressions is non-zero.

The following Proposition is the principal result that we shall use to establish Theorem

9.1. The proof is very similar to the proof of Proposition 2.4 and will be omitted. Observe

that, unlike Proposition 2.4 where only condition (9.14) was needed, in this case we need

both (9.14) and (9.15) in order to show that the generalized Fourier series (9.20) converges

absolutely.

Proposition 9.4. Let P be a countable indexing set, {gp}p∈P , {γp}p∈P be collections of

functions in L2(Rn), {Cp}p∈P ⊂ GLn(R), and let CI
p = (Ct

p)
−1. Assume that, for f ∈ D,

the conditions (9.14) and (9.15) hold. Then, the function

w(x) =
∑
p∈P

∑
k∈Zn

〈Txf, TCpk gp〉 〈TCpk γp, Txf〉

is a continuous function that coincides pointwise with its absolutely convergent (almost

periodic) Fourier series ∑
α∈Λ

ŵ(α) e2πiα·x , (9.20)

where

ŵ(α) =
∫

Rn

f̂(ξ) f̂(ξ + α)
∑

p∈Pα

1
|detCp|

ĝp(ξ) γ̂p(ξ + α) dξ, (9.21)

and the integral in (9.21) converges absolutely.
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Remark. As in Proposition 2.4, the series for w(x) given in Proposition 9.4 is an almost

periodic function since these are characterized as uniform limits of generalized trigonometric

polynomials (see [1]).

We can now prove Theorem 9.1.

Proof of Theorem 9.1. By the observation at the beginning of this section, it suffices

to prove that ∑
p∈P

∑
k∈Zn

〈f, TCpk gp〉 〈TCpk γp, f〉 = ‖f‖2, (9.22)

for f in a dense subset of L2(Rn). Let us assume that conditions (9.14) and (9.15) hold for

all f ∈ D, where D is given in Section 2, and that (9.16) is true. By Proposition 9.4,

w(x) =
∑
p∈P

∑
m∈Zn

〈Tx f, TCpm gp〉 〈TCpm γp, Tx f〉 =
∑
α∈Λ

ŵ(α) e2πiα·x,

where the last series converges absolutely (thus, w(x) is continuous) and, by (9.16),

ŵ(α) =
(∫

Rn

f̂(ξ) f̂(ξ + α) dξ
)
δα,0

for each f ∈ D. Then equation (9.22) follows by letting x = 0.

Now let us assume that equation (9.22) holds for all f ∈ L2(Rn). By Proposition 9.4,

if f ∈ D, then the function z(x) = w(x) − ‖f‖2 is continuous and equals an absolutely

convergent (generalized) trigonometric series whose coefficients are

ẑ(0) = ŵ(0)− ‖f‖2, and ẑ(α) = ŵ(α), α 6= 0.

Since z(x) = 0, it follows from Lemma 2.5 that all coefficients ẑ(α) must be 0. Thus for

α ∈ Λ and f ∈ D∫
Rn

f̂(ξ) f̂(ξ + α)
(∑

p∈Pα

1
|detCp|

ĝp(ξ) γ̂p(ξ + α)
)
dξ = δα,0 ‖f‖2, (9.23)

Consider the case α = 0 and let

s0(ξ) =
∑
p∈P

1
|detCp|

ĝp(ξ) γ̂p(ξ).

By (9.14) and (9.15), s0 is locally integrable. Choose ξ0 to be a point of differentiability of

the integral of this function. Letting B(ε) denote the ball of radius ε > 0 about the origin,

define fε by

f̂ε(ξ) =
1√
|B(ε)|

χB(ε)(ξ − ξ0) .
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Then ‖fε‖2 = 1 and fε ∈ D. By (9.23) with f = fε we have

1 = lim
ε→0

∫
|ξ−ξ0|≤ε

1
|B(ε)|

s0(ξ) dξ = s0(ξ0).

This shows that s0(ξ) = 1, a.e. ξ ∈ Rn, and (9.16) is satisfied for α = 0.

When α 6= 0, let

sα(ξ) =
∑

p∈P(α)

1
|detCp|

ĝp(ξ) γ̂p(ξ + α).

By the polarization of (9.23), we have∫
Rn

f̂(ξ) ĥ(ξ + α) sα(ξ) dξ = 0 (9.24)

for all f, h ∈ D. By Schwarz’s inequality and conditions (9.14), (9.15), we have that sα is

locally integrable. We can choose, again, a point of differentiability ξ0 of the integral of sα,

and choose fε and hε such that

f̂ε(ξ) =
1√
|B(ε)|

χB(ε)(ξ − ξ0), ĥε(ξ) =
1√
|B(ε)|

χB(ε)(ξ − ξ0 − α).

Hence ‖fε‖2 = ‖gε‖2 = 1, fε , gε ∈ D and by (9.24),

0 = lim
ε→0

∫
|ξ−ξ0|≤ε

1
|B(ε)|

sα(ξ) dξ = sα(ξ0).

Hence sα(ξ) = 0, a.e. ξ ∈ Rn, and (9.16) is satisfied for α 6= 0. 2

The application of Theorem 9.1 to the Gabor systems GB,C(G), defined by (3.2), yields

the following characterization of Gabor dual frames, known as the Wexler-Raz theorem

(cf. [20, 30, 21]). Our proof, which is adapted from [21], will only be sketched.

Theorem 9.5 (Wexler-Raz). Let G = {g1, · · · , gL}, Γ = {γ1, · · · , γL} ⊂ L2(Rn), B, C ∈
GLn(R), and assume that GB,C(G) and GB,C(Γ) are Bessel systems for L2(Rn). Then the

system GB,C(Γ) is a dual system to GB,C(G) if and only if

L∑
`=1

〈g`, TBIv MCIu γ
`〉 = |detB| | detC| δu,0 δv,0 (9.25)

for each u, v ∈ Zn, where δ is the product Kronecker delta in Zn, BI = (Bt)−1 and

CI = (Ct)−1 .

Proof. We apply Theorem 9.1 with gp = MBp g, γp = MBp γ, p ∈ P = Zn and Cp = C.

An argument similar to the proof of Theorem 3.2 shows that, if GB,C(G) and GB,C(Γ) are

Bessel systems for L2(Rn), then

L∑
`=1

∑
k,m∈Zn

〈f, TCk MBm g`〉〈TCk MBm γ`, h〉 = 〈f, h〉 for all f, h ∈ L2(Rn)
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if and only if

F (ξ) =
L∑

`=1

∑
k∈Zn

1
|detC|

ĝ`(ξ −Bk) γ̂`(ξ −Bk + CIm) = δm,0

for a.e. ξ ∈ Rn, all m ∈ Zn.

The proof then follows by expanding the BZn- periodic function F (ξ) into a Fourier

series, as in the argument used in [21, theorem 6.1]. 2.

The application of Theorem 9.1 to the affine systems FA(Ψ), defined by (5.2), yields

the following characterization of affine dual systems, whose proof is similar to the proof of

Theorem 2.1. This theorem generalizes previous results about affine dual systems, such as

those in [15, 2, 7].

Theorem 9.6. Let Ψ = {ψ1, · · · , ψL},Φ = {φ1, · · · , φL} ⊂ L2(Rn) and A ∈ GLn(R) such

that the matrix B = At is expanding for a subspace F of Rn. Assume that the systems

FA(Ψ) and FA(Φ) are Bessel systems for L2(Rn). Then the system FA(Φ) is a dual system

to FA(Ψ) if and only if

L∑
`=1

∑
j∈Pα

ψ̂`(B−jξ) φ̂`(B−j(ξ + α)) = δα,0 for a.e. ξ ∈ Rn, (9.26)

and all α ∈ Λ =
⋃

j∈ZB
j(Zn), where, for α ∈ Λ, Pα = {j ∈ Z : B−jα ∈ Zn}.

Proof. Recall that Dj
A Tk ψ

` = TA−jk D
j
A ψ

` . We are going to apply Theorem 9.1 with

P =
{
(j, `) : j ∈ Z, ` = 1, 2, . . . , L

}
,

gp ≡ g(j,l) = Dj
A ψ

`, γp ≡ γ(j,l) = Dj
A φ

`, and Cp ≡ C(j,`) = A−j for all ` = 1, . . . , L.

Since we have that ĝp(ξ) =(Dj
Aψ

`)∧(ξ) = |detB|−j/2ψ̂`(B−j ξ), and γ̂p(ξ) = (Dj
Aφ

`)∧(ξ) =

|detB|−j/2φ̂`(B−j ξ), then (9.26) follows from (9.16) in Theorem 9.1, provided the condi-

tions (9.14) and (9.15) in this Theorem are satisfied. Therefore, all that it is left to prove

is that (9.14) and (9.15) are satisfied in this particular case. Thus, we need to show that:

L(f) =
L∑

`=1

∑
j∈Z

∑
m∈Zn

∫
supp f̂

|f̂(ξ +Bjm)|2 |ψ̂`(B−jξ)|2 dξ <∞ (9.27)

and

J(f) =
L∑

`=1

∑
j∈Z

∑
m∈Zn

∫
supp f̂

|f̂(ξ +Bjm)|2 |φ̂`(B−jξ)|2 dξ <∞, (9.28)
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for f in an appropriate dense set of L2(Rn). Like in the proof of Theorem 2.1, the dense set

we choose is

DE = {f ∈ D : (supp f̂) ∩ E = ∅}

where D = {f ∈ L2(Rn) : f̂ ∈ L∞(Rn) and supp f̂ is compact}, and E is a complementary

subset to F as in Definition 5.1. The proof that L(f) <∞ and J(f) <∞ now follows from

Proposition 5.6. 2
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