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1. Introduction

Cyclic subspaces generated by integer translations of a single function ψ ∈ L2(R)
have attracted attention as building blocks for more general translation invariant
subspaces of L2(R). Also, they play a key role in the theory of Multiresolution Analysis
(MRA) where the scaling spaces V0 and the zero resolution wavelet space W0 are both
principal invariant subspaces of L2(R).

For ψ ∈ L2(R), let < ψ > be the closure in L2(R) of the finite linear combinations of
the integer translations Tkψ(x) = ψ(x−k). Properties of the collection {Tkψ : k ∈ Z}
in < ψ > can be studied using the “periodization” function

Pψ(ξ) =
∑
l∈Z

|ψ̂(ξ + l)|2.

For example, {Tkψ : k ∈ Z} is an orthonormal basis for < ψ > if and only if Pψ(ξ) = 1
a.e. (see [9], Proposition 1.11, Chapter 1.) More properties of the collection {Tkψ :
k ∈ Z} and its relation to the function Pψ(ξ) is the subject of [10]. The present paper
includes the results of [10] and many more.

Now consider integer translations Tkψ(x) = ψ(x − k), x ∈ R and integer modula-
tions Mlψ(x) = e2πikxψ(x) of a single function ψ ∈ L2(R). We obtain the collection
{TkMlψ : k, l ∈ Z} in L2(R), known as Gabor system, that can be studied using the
Zak transform

Zψ(x, ξ) =
∑
l∈Z

ψ(x+ l)e2πilξ,

as the analog of Pψ. For example, {TkMlψ : k, l ∈ Z} is an orthonormal basis of
L2(R) if and only if |Zψ(x, ξ)| = 1 a.e. (see [8], Theorem 4.3.3 and the references
given there.)

We show that these results are particular cases of a more general theory involving
representations of locally compact abelian groups. Suppose that G is a locally compact
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supported by the MZOS grant 037-0372790-2799 of the Republic of Croatia.

1
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abelian (LCA) group and g −→ Tg is a unitary representation of G on a Hilbert space
H. This representation is said to be dual integrable if there exist a function

[·, ·] : H ×H −→ L1(Ĝ, dα)

such that

< ϕ, Tgψ >=

∫
Ĝ

[ϕ, ψ]α(g) dα , for all ϕ, ψ ∈ H .

We prove that properties of the collection {Tg : g ∈ G} correspond to properties
of the collection of “exponentials” {eg(α) = α(g) : g ∈ G} in the weighted space

L2(Ĝ, [ψ, ψ](α) dα). For example, if G is discrete, {Tg : g ∈ G} is an orthonormal

basis for < ψ > if and only if [ψ, ψ](α) = 1 a.e. α ∈ Ĝ. Precise conditions on [ψ, ψ]
are derived that characterize when the collection {Tg : g ∈ G} is a Riesz basis, a
frame, or has an associated biorthogonal system in < ψ > .

This results not only apply to translations and modulations in dimension 1, but
works in any dimension, and for systems of general, not necessarily isotropic, dilations
in Rn.

Notation, definitions, simple examples, and elementary properties are given in sec-
tion 2. In particular, the central notion of dual integrable unitary representation
is given here. We show that this notion is equivalent to other regularity definitions
concerning unitary representations appearing in the literature. Section 3 contains the
main results of this paper showing the isometric isomorphism that allows us to study
properties of {Tg : g ∈ G} in < ψ > by looking at the corresponding properties of

{eg(α) = α(g) : g ∈ G} in the weighted space L2(Ĝ, [ψ, ψ](α) dα). The translation and
the translation-dilation systems in Rn are carefully studied in section 4 as important
special cases of our more general situation. Detailed results relating properties of the

collection {Tg : g ∈ G} in < ψ > to the function [ψ, ψ] in Ĝ are described in sections
5 and 6. Finally, section 7 shows that our theory can be used to describe properties
of cyclic subspaces generated by general dilations and shear matrices.

2. Notation, definitions, examples, and properties.

2.1. Notation, definitions and examples. Let G be a locally compact abelian
(LCA) group. We shall use aditive notation for G. A character of G is a continuous
map α : G −→ C for which

|α(g)| = 1 for all g ∈ G (2.1)

and

α(g1 + g2) = α(g1) · α(g2) for all g1, g2 ∈ G. (2.2)

The character group of G is the multiplicative group of all characters. For theo-

retical purpose, we take the dual group Ĝ to be the character group; for applications,

we take Ĝ to be an abelian group parametrizing the character group. Thus, Zn and
T = Rn/Zn are dual to each other in the sense that for eξ(k) = ek(ξ) = e2πiξ·k,
{eξ : ξ ∈ T} is the character group of Zn and {ek : k ∈ Zn} is the character group of
Tn.

The basic facts about Fourier Analysis in LCA groups, including the definition of
the Fourier Transform and its properties, can be found in [15] or [2].
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A representation of a LCA group G on a Hilbert space H is a strongly continuous
map g −→ Tg from G into the group L(H,H) of bounded linear operators on H with
bounded inverses, such that Tg ◦Th = Tg+h for all g, h ∈ G. We say that a representa-
tion T is unitary if all the operators Tg are unitary, that is < Tgϕ, Tgψ >=< ϕ,ψ >
for all g ∈ G and ϕ, ψ ∈ H, or equivalently ‖Tg‖H→H = 1 for all g ∈ G.

Fix a Haar meeasure on Ĝ. A unitary representation T of a LCA group G on a
Hilbert space H is said to be dual integrable if there exists a function, which we
shall call bracket,

[·, ·] : H ×H −→ L1(Ĝ, dα) (2.3)

such that

< ϕ, Tgψ >H=

∫
Ĝ

[ϕ, ψ](α)α(g) dα , for all ϕ, ψ ∈ H and all g ∈ G , (2.4)

A closed linear subspace S of the Hilbert space H is said to be T -invariant if
Tg(S) ⊂ S for all g ∈ G. Given ψ ∈ H \ {0}, define the closed linear subspace of H
generated by ψ to be

< ψ >= span {Tgψ : g ∈ G}
H

(2.5)

The subspace < ψ > is T -invariant and it is called the cyclic T -invariant subspace of
H generated by ψ.

Example 2.1. The map g −→Mg where Mg : L2(Ĝ, dα) −→ L2(Ĝ, dα) is given
by (Mgϕ)(α) = α(g)ϕ(α) is a unitary representation of a LCA group G on the Hilbert

space L2(Ĝ, dα). This is called the modulation representation of G on L2(Ĝ, dα).

This representation is dual integrable: since for ϕ, ψ ∈ L2(Ĝ, dα) we have

< ϕ,Mgψ >=

∫
Ĝ

ϕ(α)ψ(α)α(g) da ,

we can set [ϕ, ψ](α) = ϕ(α)ψ(α), which satisfies the conditions of dual integrability.

Example 2.2. For h ∈ G, the map h −→ Rh where Rh : L2(G, dg) −→ L2(G, dg)
is defined by (Rhϕ)(g) = ϕ(g + h) is a unitary representation of the LCA group G
on the Hilbert space L2(G, dg), since dg is translation invariant. This is called the
regular representation of G on L2(G, dg). To see that it is dual integrable use the

Fourier transform FGψ = ψ̂ on L2(G, dg) to deduce

(Rhψ)̂(α) =

∫
G

ψ(g + h)α(g) dg =

∫
G

ψ(g + h)α(g + h)α(h) dg = α(h) ψ̂(α).

Thus, for ϕ, ψ ∈ L2(G, dg) and h ∈ G, we use Plancherel’s theorem to obtain

< ϕ,Rhψ >=

∫
G

ϕ(g)Rhψ(g) dg =

∫
Ĝ

ϕ̂(α)R̂h(ψ)(α) dα =

∫
Ĝ

ϕ̂(α) ψ̂(α)α(g) dα .

Thus, we can let [ϕ, ψ](α) = ϕ̂(α)ψ̂(α), which satisfies the conditions of dual integra-
bility.
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Remark 2.1. The unitary representation h −→ Rh of G on L2(G, dg) given in Ex-

ample 2.2 is equivalent to the unitary representation g −→ Mg of G on L2(Ĝ, dα)
of Example 2.1 via de Fourier map FG. To see this observe that

FGRhψ(α) =

∫
G

ψ(g + h)α(g) dg = α(h)

∫
G

ψ(g + h)α(g + h) dg =MhFGψ(α).

2.2. Properties of the bracket. In order to deduce some properties of the bracket
we recall the following theorem (see [13], page 147 or Theorem 4.44 in [2], page 105).

Theorem 2.2. Let T be a unitary representation of a LCA group G on a Hilbert
space H.

i) There is a regular measure P on Ĝ with values in the set of self-adjoint projection
operators on H such that

Tg =

∫
Ĝ

α(g) dP (α) , for all g ∈ G .

ii) For each ϕ, ψ ∈ H, the function µϕ,ψ(S) =< P (S)ϕ, ψ >=< ϕ,P (S)ψ >=<

P (S)ϕ, P (S)ψ > defines a complex measure on Ĝ such that

< T−gϕ, ψ >=< ϕ, Tgψ >=

∫
Ĝ

α(g) dµϕ,ψ(α) , for all g ∈ G .

Corollary 2.3. Let T be a unitary representation of a LCA group G on a Hilbert
space H. The following are equivalent:

i) T is dual integrable.
ii) For each ϕ, ψ ∈ H, the measure µϕ,ψ defined in Theorem 2.2 is absolutely con-

tinuous with respect to dα.
In this situation, the bracket [ϕ, ψ] is the Radon-Nikodym derivative of µϕ,ψ.

Proof. ii)⇒ i). If µϕ,ψ is absolutely continuous with respect to dα we write dµϕ,ψ(α) =
[ϕ, ψ](α) dα. The result follows from part ii) of Theorem 2.2.
i)⇒ ii). Let dνϕ,ψ(α) = dµϕ,ψ(α)− [ϕ, ψ](α) dα. It follows that νϕ,ψ is a bounded

regular measure whose Fourier transform satisfies

FĜ(νϕ,ψ(g) =

∫
Ĝ

α(g) dµϕ,ψ(α) dα−
∫
Ĝ

α(g) [ϕ, ψ](α) dα

= < ϕ, Tgψ > − < ϕ, Tgψ >= 0

for all g ∈ G. By the uniqueness theorem for the Fourier transform (see, for example,
page 103 of [2]) we conclude that νϕ,ψ = 0 showing that µϕ,ψ is absolutely continuous
with respect to dα. �

Corollary 2.4. Suppose T is a dual integrable unitary representation of a LCA group

G on a Hilbert space H. Then [ϕ, ψ] : H × H → L1(Ĝ, dα) is a sesquilinear form,
hermitian symmetric map, with the following properties:

i) Positivity: [ϕ, ϕ](α) ≥ 0 a.e. α ∈ Ĝ for all ϕ ∈ H.

ii)(Cauchy-Schwartz): |[ϕ, ψ](α)| ≤ ([ϕ, ϕ](α))1/2 ([ψ, ψ](α))1/2 a.e. α ∈ Ĝ for all
ϕ, ψ ∈ H.

iii) ‖[ϕ, ψ]‖L1(Ĝ) ≤ ‖ϕ‖H ‖ψ‖H , for all ϕ, ψ ∈ H.
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Proof. For each measurable set S ∈ Ĝ, µϕ,ψ(S) is linear in ϕ, conjugate-linear in ψ,

and µϕ,ψ(S) = µψ,ϕ(S). It follows that [ϕ, ψ] has the same properties.
To prove i) observe that µϕ,ϕ(S) =< P (S)ϕ, P (S)ϕ >= ‖P (S)ϕ‖2 ≥ 0 by ii) of

Theorem 2.2. Thus, [ϕ, ϕ](α) ≥ 0 a.e. α ∈ Ĝ.
Again by ii) of Theorem 2.2, and the Cauchy-Schwartz inequality of the Hilbert

space H, for a measurable set S ∈ Ĝ we have |µϕ,ψ(S)| = | < P (S)ϕ, P (S)ψ > | ≤
‖P (S)ϕ‖‖P (S)ψ‖ = (µϕ,ϕ(S))(1/2) (µψ,ψ(S))(1/2). Part ii) follows immediately.

Part iii) follows from part ii) together with the Cauchy-Schwartz inequality for

functions in L2(Ĝ) and the fact that
∫
Ĝ

[ϕ, ϕ](α) dα = ‖ϕ‖2 (Notice that this last
equality follows from (2.4) with g = 0 and ψ = ϕ.) �

Corollary 2.5. Suppose T is a dual integrable unitary representation of a LCA group
G on a Hilbert space H.

i) For g ∈ G and ϕ, ψ ∈ H we have

[Tgϕ, ψ](α) = α(g)[ϕ, ψ](α) = [ϕ, T−gψ](α) a.e. Ĝ.

ii) Let Γ be a finite subset of G and ϕ, ψ ∈ H. For PΓ(α) =
∑

g∈Γ agα(g) a

trigonometric polynomial on Ĝ and PΓ(T ) =
∑

g∈Γ agTg we have

[PΓ(T )ϕ, ψ](α) = PΓ(α)[ϕ, ψ] = [ϕ, PΓ(T )ψ](α) a.e. Ĝ ,

and
[PΓ(T )ψ, PΓ(T )ψ](α) = |PΓ(α)|2[ψ, ψ](α) a.e. Ĝ.

Proof. For g, k ∈ G, using (2.4) we obtain

< Tgϕ, Tkψ >=< ϕ, Tk−gψ >=

∫
Ĝ

[ϕ, ψ](α)α(k − g) dα = α(g)

∫
Ĝ

[ϕ, ψ](α)α(k) dα .

Also using (2.4) we deduce

< Tgϕ, Tkψ >=

∫
Ĝ

[Tgϕ, ψ](α)α(k) dα .

By the uniqueness theorem for the Fourier transform on Ĝ we obtain [Tgϕ, ψ](α) =
α(g) [ϕ, ψ](α) a.e. α ∈ G. The rest of the properties follow from the linearity and the
sesquilinearity of the bracket. �

Lemma 2.6. Let ϕ, ψ ∈ H. Then, ϕ ⊥< ψ > if and only if [ϕ, ψ](α) = 0 a.e. α ∈ Ĝ.

Proof. The perpendicularity of ϕ and < ψ > is equivalent to < ϕ, Tgψ >= 0 for

all g ∈ G. By (2.4) this is equivalent to
∫
Ĝ

[ϕ, ψ](α)α(g) dα = 0 for all g ∈ G.
The uniqueness theorem for the Fourier transform shows that this is equivalent to

[ϕ, ψ] = 0 in L2(Ĝ, dα). �

Lemma 2.7. Let Ωψ = {α ∈ Ĝ : [ψ, ψ](α) > 0} (well defined a.e. α ∈ Ĝ). If
ϕ, ψ ∈ H, then [ϕ, ψ](α) = 0 a.e. α ∈ Ωc

ψ.

Proof. By ii) of Corollary 2.4

0 ≤
∫

Ωcψ

| [ϕ, ψ](α)| dα ≤
∫

Ωcψ

([ϕ, ϕ](α))1/2 ([ψ, ψ](α))1/2 dα = 0 ,

since [ψ, ψ](α) = 0 a.e. on Ωc
ψ. �
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Remark 2.8. There are equivalent characterizations of dual integrability. This follows
from Theorem 3.2 below. Let T be an unitary representation of a LCA group G on a
separable Hilbert space H. Then, the following are equivalent:

i) T is dual integrable as defined in Section 2.1.
ii) T is unitarily equivalent to a subrepresentation of countably many copies of the

regular representation R of G on L2(G).
iii) T is square integrable in the sense that for each ψ ∈ H \ {0}, there exist

ψ0 ∈< ψ > with < ψ0 >=< ψ > for which the map (Wψ0ϕ)(g) =< ϕ, Tgψ0 > defines
an isometry from < ψ > into L2(G, dg).

In practice, it is very difficult to check directly whether or not a given unitary
representation T of G is either square integrable or a subrepresentation of countably
many copies of the regular representation R. As we shall see in sections 4 and 7 for
concrete representations T on L2 spaces, there is a natural way to check integrability
of T by introducing appropriate bracket functions. In the special case when G is a
countable group we can use the brackets to read off properties of the generating sets
{Tgψ : g ∈ G} inside < ψ > (see Sections 5 and 6).

3. An isometric isomorphism

This section is dedicated to show that there is a linear one-to-one isometry from

the space < ψ > onto the weighted space L2(Ĝ, [ψ, ψ](α) dα).

Theorem 3.1. Let g −→ Tg be a dual integrable unitary representation of a LCA

group G on a Hilbert space H. For ψ ∈ H \ {0} define Ωψ = {α ∈ Ĝ : [ψ, ψ](α) > 0}
(well defined a.e. α ∈ Ĝ).

i) The map

Sψ(ϕ) = 1Ωψ

[ϕ, ψ]

[ψ, ψ]
, ϕ ∈ H ,

is a linear one-to-one isometry from < ψ >= span{Tgψ : g ∈ G}H onto the weighted

space L2(Ĝ, [ψ, ψ](α) dα).
ii) For g ∈ G and ϕ, ψ ∈ H

Sψ(Tgϕ)(α) = α(g)Sψ(ϕ)(α) a.e. α ∈ Ĝ .

Proof. i) For ϕ ∈ H using the definition of Sψ and ii) of Corollary 2.4 we have,∫
Ĝ

|Sψ(ϕ)(α)|2 [ψ, ψ](α) dα =

∫
Ωψ

∣∣∣∣ [ϕ, ψ](α)

[ψ, ψ](α)

∣∣∣∣2 [ψ, ψ](α) dα

≤
∫

Ωψ

[ϕ, ϕ](α) [ψ, ψ](α)

([ψ, ψ](α))2
[ψ, ψ](α) dα =

∫
Ωψ

[ϕ, ϕ](α) dα

≤
∫
Ĝ

[ϕ, ϕ](α) dα =< ϕ,ϕ >H= ‖ϕ‖2
H , (3.1)

where the next to the last equality is due to the definition of the bracket given in

(2.4). This shows that Sψ maps H into L2(Ĝ, [ψ, ψ](α) dα).
We now show that Sψ is an isometry when defined in < ψ > (then the one-to-one

property follows). For ϕ =
∑

h∈Γ ahThψ, Γ ⊂ G finite, by part ii) of Corollary 2.5 we
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deduce ∫
Ĝ

|Sψ(ϕ)(α)|2 [ψ, ψ](α) dα =

∫
Ĝ

|
∑
h∈Γ

ah α(h)|2 [ψ, ψ](α) dα

=

∫
Ĝ

[ϕ, ϕ](α) dα = ‖ϕ‖2
H , (3.2)

where the last equality follows from (2.4). For a general ϕ ∈< ψ >, take ε > 0 and
choose ϕε =

∑
h∈Γε

ahThψ, Γε ⊂ G finite, such that ‖ϕ− ϕε‖H ≤ ε . Then we have

‖ϕ‖H ≤ ‖ϕ− ϕε‖H + ‖ϕε‖H ≤ ε+ ‖ϕε‖H . (3.3)

Also, by (3.2) and the triangle inequality we obtain

‖ϕε‖H = (

∫
Ĝ

|Sψ(ϕε)(α)|2 [ψ, ψ](α) dα)1/2

≤ (

∫
Ĝ

|Sψ(ϕε − ϕ)(α)|2 [ψ, ψ](α) dα)1/2 + (

∫
Ĝ

|Sψ(ϕ)(α)|2 [ψ, ψ](α) dα)1/2

≤ ‖ϕε − ϕ‖H + (

∫
Ĝ

|Sψ(ϕ)(α)|2 [ψ, ψ](α) dα)1/2 ,

where the last inequality is due to (3.1). Use (3.3) to deduce

(

∫
Ĝ

|Sψ(ϕ)(α)|2 [ψ, ψ](α) dα)1/2 ≥ ‖ϕε‖H − ε ≥ ‖ϕ‖H − 2ε .

Letting ε → 0 we obtain ‖Sψ(ϕ)‖L2(Ĝ,[ψ,ψ](α) dα) ≥ ‖ϕ‖H , while the reverse inequality

is proved in (3.1).
It remains to show that the map Sψ is onto. Suppose that we have the strict

inclusion Sψ(< ψ >)  L2(Ĝ, [ψ, ψ](α) dα), so that we can choose m 6= 0, m ∈
L2(Ĝ, [ψ, ψ](α) dα) such that m ⊥ Sψ(< ψ >) on L2(Ĝ, [ψ, ψ](α) dα). Thus, for all
h ∈ G, 0 =

∫
Ĝ
m(α)Sψ(Thψ)(α) [ψ, ψ](α) dα . By part i) of Corollary 2.5

Sψ(Thψ)(α) = 1Ωψ(α)
[Thψ, ψ](α)

[ψ, ψ](α)
= 1Ωψ(α)α(h) .

Thus, 0 =
∫
Ĝ
m(α)α(h) [ψ, ψ](α) dα for all h ∈ G. By the uniqueness theorem for

the Fourier transform, m(α) [ψ, ψ](α) = 0 a.e. α ∈ Ĝ. This implies m = 0 in

L2(Ĝ, [ψ, ψ](α) dα) , contradicting our assumption.
ii) This property follows from part i) of Corollary 2.5. �

Another way to write this theorem without using the space L2(Ĝ, [ψ, ψ](α) dα) is
the following. Its proof is similar to the proof of Theorem 3.1.

Theorem 3.2. Let g −→ Tg be a dual integrable unitary representation of a LCA

group G on a Hilbert space H. For ψ ∈ H \ {0} define Ωψ = {α ∈ Ĝ : [ψ, ψ](α) > 0}
(well defined for a.e. α ∈ Ĝ).

i) The map

Jψ(ϕ) = 1Ωψ

[ϕ, ψ]

([ψ, ψ])1/2
, ϕ ∈ H ,

is a linear one-to-one isometry from < ψ >= span{Tgψ : g ∈ G}H onto the space

L2(Ωψ, dα) ⊂ L2(Ĝ, dα).
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ii) For g ∈ G and ϕ, ψ ∈ H

Jψ(Tgϕ)(α) = α(g) Jψ(ϕ)(α) (a.e.)α ∈ Ĝ .

We illustrate Theorem 3.1 in the particular cases of Examples 2.1 and 2.2. For
Example 2.1 the map Sψ of Theorem (3.1) is given by

Sψ(ϕ) = 1Ωψ

ϕψ

ψ ψ
= 1Ωψ

ϕ

ψ
, ϕ, ψ ∈ L2(Ĝ, dα) ,

where Ωψ = {α : Ĝ : |ψ(α)| > 0}. This map is a linear one-to-one isometry from

< ψ >= span{Mgψ : g ∈ G}
L2(Ĝ,dα)

onto the weighted space L2(Ĝ, |ψ(α)|2 dα).
It is easy to compute the inverse map which is given by S−1

ψ (m) = mψ, m ∈
L2(Ĝ, |ψ(α)|2 dα).

For Example 2.2 the map Sψ of Theorem (3.1) is given by

Sψ(ϕ) = 1Ωψ

ϕ̂ ψ̂

ψ̂ ψ̂
= 1Ωψ

ϕ̂

ψ̂
, ϕ, ψ ∈ L2(G, dg) ,

where Ωψ = {α : Ĝ : |ψ̂(α)| > 0}. This map is a linear one-to-one isometry from

< ψ >= span{Rgψ : g ∈ G}
L2(G,dg)

onto the weighted space L2(Ĝ, |ψ̂(α)|2 dα). It

is easy to compute the inverse map which is given by S−1
ψ (m) = (mψ̂)∨, m ∈

L2(Ĝ, |ψ̂(α)|2 dα).

4. Translations and Gabor systems in L2(Rn)

4.1. Integer translations in L2(Rn). The map k −→ Tk given by Tkf(x) = f(x+k)
is a unitary representation of the LCA group (Zn,+) on the Hilbert space L2(Rn).
We will show in this section that this unitary representation is dual integrable. To see
this choose ϕ , ψ ∈ L2(Rn) and use that {[0, 1]n + ` : ` ∈ Zn} is an almost everywhere
partition of Rn to deduce

< ϕ, Tkψ >L2(Rn) =

∫
Rn
ϕ(x)ψ(x+ k) dx =

∫
Rn
ϕ̂(ξ) ψ̂(ξ)e−2πik·ξ dξ

=
∑
`∈Zn

∫
[0,1]n+`

ϕ̂(ξ) ψ̂(ξ)e−2πik·ξ dξ

=

∫
[0,1]n

{∑
`∈Zn

ϕ̂(ξ + `) ψ̂(ξ + `)

}
e−2πik·ξ dξ . (4.1)

Comparing (4.1) with (2.4) of the definition of dual integrability we must choose

[ϕ, ψ](ξ) =
∑
`∈Zn

ϕ̂(ξ + `) ψ̂(ξ + `) , ξ ∈ Rn , ϕ , ψ ∈ L2(Rn) . (4.2)

The function [ψ, ψ](ξ) is the function Pψ used in [10] in the case n = 1.

Remark 4.1. Cyclic subspaces of this representation are usually called principal shift
invariant subspaces of L2(Rn).
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In this case we can describe the inverse of the linear isometry Sψ, ψ ∈ L2(Rn), from
< ψ > onto L2([0, 1]n, [ψ, ψ](ξ) dξ) (We have identified the dual of Zn with [0, 1]n). In
fact, if m ∈ L2([0, 1]n, [ψ, ψ](ξ) dξ) we have

[(mψ̂)∨ , ψ](ξ) =
∑
`∈Zn

m(ξ + `) ψ̂(ξ + `) ψ̂(ξ + `) = m(ξ) [ψ, ψ](ξ) , ξ ∈ Rn . (4.3)

Thus, if we want to find ϕ ∈ L2(Rn) such that Sψ(ϕ) = m we must have (see the

definition of Sψ given in Theorem 3.1) [ϕ, ψ](ξ) = [ψ, ψ](ξ)m(ξ) = [(mψ̂)∨ , ψ](ξ) for

all ξ ∈ [0, 1](by (4.3)). Thus S−1
ψ (m) = (mψ̂)∨ is the inverse map. This is the map

Jψ used in [10] in the case n = 1.

4.2. Gabor systems in L2(Rn). The Gabor representation of the (discrete) LCA
group (Zn × Zn,+) on L2(Rn) is given by

(k, l) −→ TkM` f(x) = f(x− k) e2πi`·x , x ∈ Rn , f ∈ L2(Rn) . (4.4)

Observe that since k, ` ∈ Zn the translations Tk and the modulations M` commute.
It is clear that this is a unitary representation. We will show in this section that this
representation is dual integrable in the sense defined in section 2. For f, g ∈ L2(Rn),
periodizing Rn with the integer translates of [0, 1]n, we obtain

< f, g >L2(Rn)=

∫
Rn
f(x) g(x) dx =

∫
[0,1]n
{
∑
`∈Zn

f(x+ `) g(x+ `)} dx .

Since {e2πikξ : k ∈ Zn} is an orthonormal system of L2([0, 1]n) we obtain

< f, g >L2(Rn) =

∫
[0,1]n

∑
`∈Zn

∑
k∈Zn

f(x+ `) g(x+ k)

(∫
[0,1]n

e2πi(`−k)ξ dξ

)
dx

=

∫
[0,1]n

∫
[0,1]n

{∑
`∈Zn

f(x+ `) e2πi`ξ

} {∑
k∈Zn

g(x+ k) e2πikξ

}
dx dξ

=

∫
[0,1]n

∫
[0,1]n

Zf(x, ξ)Zg(x, ξ) dx dξ . (4.5)

where

Zf(x, ξ) =
∑
k∈Zn

f(x+ k) e2πik·ξ (4.6)

is the Zak transform of the function f ∈ L2(Rn). The Zak transform has been used
in several articles. It was studied by J. Zak in connection with solid state physics
([19]). Some of the most recent results about the Zak transform have been obtained
by A.J.E.M. Janssen ([11]). A detailed study of the Zak transform and its properties
can be found in [12] and Chapter 8 of [4].

Notice that (4.5) shows that the Zak transform is an isometry from L2(Rn) into
L2([0, 1]n × [0, 1]n).

If k, ` ∈ Zn, and ψ ∈ L2(Rn) we have

Z(TkMlψ)(x, ξ) =
∑
j∈Zn

TkMlψ(x+ j) e2πijξ
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=
∑
j∈Zn

e2πi`xψ(x+ j − k) e2πij ξ

= e2πi`x e2πik ξ Zψ(x, ξ) . (4.7)

From (4.5) and (4.7) applied to ϕ, ψ ∈ L2(Rn) we deduce

< ϕ, TkMlψ >L2(Rn) =

∫
[0,1]n

∫
[0,1]n

Zϕ(x, ξ)Z(TkMlψ)(x, ξ) dx dξ

=

∫
[0,1]n

∫
[0,1]n

Zϕ(x, ξ)Zψ(x, ξ) e−2πi`x e−2πikξ dx dξ (4.8)

obtaining

[ϕ, ψ](x, ξ) = Zϕ(x, ξ)Zψ(x, ξ) . (4.9)

Property (2.3) of the bracket follows from the fact that Z is an isometry on L2(Rn)
(see (4.5)).

Remark 4.2. The expression (4.6) is a formal definition. It is obviously well defined
for f continuous with compact support. To see that it is defined for every function
f ∈ L2(Rn) we observe that the collection {TkM` 1[0,1]n : k, ` ∈ Zn} is an orthonormal
basis of L2(Rn) and that

Z(TkM` 1[0,1]n)(x, ξ) = e2πik·ξ e2π`·x

is an orthonormal basis of L2([0, 1]n × [0, 1]n). If follows from this observation that
the Zak transform Z is well defined in L2(Rn). Using (4.8) it is easy to see that the
closed subspace < ψ > generated by the collection {TkM` ψ : k, ` ∈ Zn} coincides
with L2(Rn) if and only if | Zψ(x, ξ)| > 0 a. e. (x, ξ) ∈ [0, 1]n × [0, 1]n.

Remark 4.3. The Zak transform is Zn-periodic in the variable ξ ∈ Rn. But, for
` ∈ Zn we have

Zf(x+ `, ξ) =
∑
k∈Zn

f(x+ `+ k) e2πik·ξ =
∑
s∈Zn

f(x+ s) e2πi(s−`)·ξ = e−2πi`·ξ Zf(x, ξ) .

Thus, although Zf is not Zn × Zn-periodic, the function [ϕ, ψ] = Zϕ · Zψ defined in
(4.9) is Zn × Zn-periodic.

In the case under consideration we can find the inverse of the map Sψ given in
Theorem 3.1. In fact, the computations

Sψϕ(x, ξ) = 1Ωψ(x, ξ)
[ϕ, ψ](x, ξ)

[ϕ, ψ](x, ξ)
= 1Ωψ(x, ξ)

Zϕ(x, ξ)

Zψ(x, ξ)
= m(x, ξ)

tells us that for m ∈ L2([0, 1]n × [0, 1]n, |Zψ|2) we have S−1
ψ (m) = Z−1(mZψ),

which is a linear isometry from L2([0, 1]n× [0, 1]n, |Zψ|2) onto the space L2(Rn) when
|Zψ(x, ξ)| > 0 a.e. (x, ξ) ∈ [0, 1]n × [0, 1]n.
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5. Properties of the set of generators

In this section we consider a countable abelian group (G,+) equipped with the dis-
crete topology and a dual integrable unitary representation k → Tk of G on a Hilbert
spacesH. For ψ ∈ H\{0} the cyclic T-invariant subspace < ψ >= span{Tkψ : k ∈ G}
has, by definition, the countable set {Tkψ : k ∈ G} as a set of generators. We seek to
find characterizations of properties of this set in terms of the bracket [·, ·] defined in
section 2.

One of these properties is the orthonormality, meaning that < Tkψ, T`ψ >= δk,`
for all k, ` ∈ G. Since each Tk is a unitary operator, this is equivalent to < T, Tkψ >=
δk for all k ∈ G. If this is the case, property (2.4) of the definition of integrability

implies that all the Fourier coefficients of the bracket [ψ, ψ], as a function in L1(Ĝ, dα) ,

are zero, except the one corresponding to k = 0. Hence, [ψ, ψ](α) = 1 a.e. in Ĝ.

Conversely, if [ψ, ψ](α) = 1 a.e. in Ĝ we have < ψ, Tkψ >=
∫
Ĝ
α(k) dα = δk for all

k ∈ G (for the last equality see [15], Chapter 1.)
We have proved:

Proposition 5.1. Let (G,+) be a countable abelian group and let k → Tk be a dual
integrable unitary representation of G on a Hilbert space H. Let ψ ∈ H \ {0}. The
collection {Tkψ : k ∈ G} is an orthonormal basis for < ψ > if and only if [ψ, ψ](α) = 1

a.e. α ∈ Ĝ.

Notice that by ii) of Theorem 3.1

Sψ(Tkψ) = 1Ωψ

[Tkψ, ψ]

[ψ, ψ]
= 1Ωψ ek , k ∈ G , (5.1)

where ek(α) = α(k) for all α ∈ Ĝ. Thus, the properties of the collection {Tkψ : k ∈ G}
inside < ψ >⊂ H can be read from the properties of the collection {1Ωψ ek : k ∈ G}
inside L2(Ĝ, [ψ, ψ](α) dα). Furthermore, the properties of this collection are tied to

the behaviour of the bracket [ψ, ψ], defined in Ĝ. We take this point of view in the
next propositions.

Proposition 5.2. Let (G,+) be a countable abelian group and let k → Tk be a dual
integrable unitary representation of G on a Hilbert space H. Let ψ ∈ H \ {0}. The
collection {Tkψ : k ∈ G} is a Riesz basis for < ψ > with constants A > 0 and B <∞
if and only if

A ≤ [ψ, ψ](α) ≤ B a.e. α ∈ Ĝ .

Proof. Recall that the collection {Tkψ : k ∈ G} is a Riesz basis for < ψ > with
constants A and B if is a basis and if for all sequences {ak : k ∈ G} ∈ `2(G) we have

A
∑
k∈G

|ak|2 ≤ ‖
∑
k∈G

ak Tkψ‖2
H ≤ B

∑
k∈G

|ak|2 . (5.2)

Suppose A ≤ [ψ, ψ](α) ≤ B a.e. α ∈ Ĝ. Then L2(Ĝ, [ψ, ψ](α) dα) ≈ L2(Ĝ, dα). Since

{ek : k ∈ G} is an orthonormal basis for L2(Ĝ, dα), by (5.1) and the fact that Sψ is
an isometric isomorphism we conclude that {Tkψ : k ∈ G} is a basis for < ψ >.
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To prove (5.2) take {ak : k ∈ G} ∈ `2(G) and use Theorem 3.1 together with (5.1)
to obtain

‖
∑
k∈G

ak Tkψ‖2
H = ‖Sψ(

∑
k∈G

ak Tkψ)‖2
L2(Ĝ,[ψ,ψ](α) dα)

= ‖
∑
k∈G

ak ek‖2
L2(Ĝ,[ψ,ψ](α) dα)

(5.3)

since Ωψ = Ĝ a.e. by our assumption. Since L2(Ĝ, [ψ, ψ](α) dα) ≈ L2(Ĝ, dα) in our

situation, use that {ek : k ∈ G} is an orthonormal basis of L2(Ĝ, dα) to deduce

‖
∑
k∈G

ak Tkψ‖2
H ≈

∫
Ĝ

|
∑
k∈G

ak ek(α)|2 dα =
∑
k∈G

|ak|2 ,

where the equivalence in the above expressions is up to the Riesz basis constants A
and B.

Suppose now that {Tkψ : k ∈ G} is a Riesz basis for < ψ > with constants A > 0
and B <∞. Use (5.1) and Theorem 3.1 to obtain (as in the proof of (5.3)):

‖
∑
k∈G

ak Tkψ‖2
H =

∫
Ĝ

|
∑
k∈G

ak 1Ωψ(α) ek(α)|2 [ψ, ψ](α) dα . (5.4)

By (5.2) we have

A
∑
k∈G

|ak|2 ≤
∫
Ĝ

|
∑
k∈G

ak 1Ωψ(α)ek(α)|2 [ψ, ψ](α) dα ≤ B
∑
k∈G

|ak|2 (5.5)

Suppose, contrary to what we want to prove, that [ψ, ψ](α) < A on a set E ⊂ Ĝ

with 0 <
∫
Ĝ

1E(α) dα < ∞. Since 1E ∈ L2(Ĝ, dα) we have 1E =
∑

k∈G ak ek with∫
Ĝ
|1E|2 =

∑
k∈G |ak|2. Then,∫
Ĝ

|
∑
k∈G

ak 1Ω(α) ek(α)|2 [ψ, ψ](α) dα =

∫
Ĝ

|1E(α)|2 [ψ, ψ](α) dα

=

∫
E

[ψ, ψ](α) dα < A

∫
Ĝ

|1E(α)|2 dα = A
∑
k∈G

|ak|2 ,

contrary to (5.5). This proves the left hand side inequality of (5.2). To prove the right
hand side inequality proceed similarly by assuming [ψ, ψ](α) > B on a set of finite
positive measure, to obtain a contradiction. �

Remark 5.3. Following Chapter 2, section 11, of [16] we say that the collection
{Tkψ : k ∈ G} has the Besselian property if, when

∑
k∈G ak Tkψ converges in < ψ >,

then
∑

k∈G |ak|2 <∞ . Theorem 11.1 in [16] shows that this property is equivalent to
the existence of a constant A > 0 such that

A
∑
k∈G

|ak|2 ≤ ‖
∑
k∈G

ak Tkψ‖2
H

for all finite sequences {ak : k ∈ G}. Arguing as in the proof of Proposition 5.2 it
can be shown that {Tkψ : k ∈ G} has the Besselian property in < ψ > if and only if

[ψ, ψ](α) ≥ A a.e. α ∈ Ĝ .

Remark 5.4. Also according to Chapter 2, section 11, of [16] we say that the col-
lection {Tkψ : k ∈ G} has the Hilbertian property if, when

∑
k∈G |ak|2 < ∞, then
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k∈G ak Tkψ converges in < ψ >. Theorem 11.1 in [16] shows that this property is

equivalent to the existence of a constant B <∞ such that

‖
∑
k∈G

ak Tkψ‖2
H ≤ B

∑
k∈G

|ak|2

for all finite sequences {ak : k ∈ G}. Arguing as in the proof of Proposition 5.2 it
can be shown that {Tkψ : k ∈ G} has the Hilbertian property in < ψ > if and only if

[ψ, ψ](α) ≤ B a.e. α ∈ Ĝ .

Proposition 5.5. Let (G,+) be a countable abelian group and let k → Tk be a dual
integrable unitary representation of G on a Hilbert space H. Let ψ ∈ H \ {0}. The
collection {Tkψ : k ∈ G} is a frame for < ψ > with constants A > 0 and B < ∞ if
and only if

A ≤ [ψ, ψ](α) ≤ B a.e. α ∈ Ωψ ,

where Ωψ = {α : Ĝ : [ψ, ψ](α) > 0}

Proof. Recall that {Tkψ : k ∈ G} is a frame for < ψ > with constants A > 0 and
B <∞ if for every ϕ ∈< ψ > we have

A‖ϕ‖2
H ≤

∑
k∈G

| < ϕ, Tkψ > |2 ≤ B‖ϕ‖2
H . (5.6)

Suppose A ≤ [ψ, ψ](α) ≤ B a.e. α ∈ Ωψ. Then, by Theorem 3.1 and (5.1) we obtain∑
k∈G

| < ϕ, Tkψ > |2 =
∑
k∈G

| < Sψ(ϕ), Sψ(Tkψ) >L2(Ĝ,[ψ,ψ](α) dα) |
2

=
∑
k∈G

| < Sψ(ϕ),1Ωψ ek >L2(Ĝ,[ψ,ψ](α) dα) |
2

=
∑
k∈G

∣∣∣∣∫
Ĝ

Sψ(ϕ)(α) 1Ωψ(α) ek(α) [ψ, ψ](α) dα

∣∣∣∣2 .
Since {ek : k ∈ G} is an orthonormal basis of Ĝ, by Plancherel’s Theorem we can
write ∑

k∈G

| < ϕ, Tkψ > |2 =

∫
Ĝ

|Sψ(ϕ)(α) |2 1Ωψ(α) ([ψ, ψ](α))2 dα . (5.7)

Use the hypothesis and Theorem 3.1 to conclude∑
k∈G

| < ϕ, Tkψ > |2 ≈
∫
Ĝ

|Sψ(ϕ)(α) |2 [ψ, ψ](α) dα = ‖ϕ‖2
H ,

where the equivalence is up to the constants A and B. This proves (5.6).
Suppose now that {Tkψ : k ∈ G} is a frame for < ψ >, so that (5.6) hold for all

ϕ ∈< ψ >. To argue by contradiction, suppose that [ψ, ψ](α) < A on a set E ⊂ Ωψ

with
∫
Ĝ

1E(α) dα > 0 . Observe that 1E ∈ L2(Ĝ, [ψ, ψ](α) dα) since [ψ, ψ] ∈ L1(Ĝ, dα)
by definition of the bracket. Since Sψ is onto, we can choose ϕE ∈< ψ > such that
Sψ(ϕE) = 1E, and the isometry property of Sψ gives

‖1E‖L2(Ĝ,[ψ,ψ](α) dα) = ‖ϕE‖H . (5.8)
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A calculation similar to the one leading to (5.7) with ϕ replaced by ϕE gives∑
k∈G

| < ϕE, Tkψ > |2 =

∫
Ĝ

1E(α) ([ψ, ψ](α))2 dα .

Since [ψ, ψ](α) < A on the set E, the last expression is smaller than A
∫
E

[ψ, ψ](α) dα =
A‖ϕE‖2

H , where the last equality is due to (5.8). Hence, the left hand side of (5.6) does
not hold for ϕ = ϕE. This shows that [ψ, ψ](α) ≥ A a.e. Ωψ. A similar argument,
supposing [ψ, ψ](α) > B on a set F ⊂ Ωψ with

∫
Ĝ

1F (α) dα > 0 gives, again, a
contradiction. Hence A ≤ [ψ, ψ] ≤ B a.e. on Ωψ. �

Remark 5.6. When propositions 5.1, 5.2 and 5.5 are specified for the system of
integer translations in Rn described in section 4.1 we obtain the results in [10] for

n = 1. Recall that in this case [ψ, ψ](ξ) = Pψ(ξ) =
∑

`∈Zn |ψ̂(ξ + `)|2 , ξ ∈ [0, 1] .

Remark 5.7. When propositions 5.1, 5.2 and 5.5 are specified for the Gabor unitary
representation on Rn given in section 4.2 we obtain the results stated in [8] (Theorem
4.3.3) and [7] (Theorem 2.8). Recall that in this case the bracket is related to the Zak
transform [ψ, ψ](x, ξ) = |Zψ(x, ξ)|2, (x, ξ) ∈ [0, 1]n × [0, 1]n .

6. Biorthogonality and minimality

In this section we consider a countable abelian group (G,+) equipped with the
discrete topology and a dual integrable unitary representation k → Tk of G on a
Hilbert spaces H.

Given ψ, ψ̃ ∈ H \ {0}, the collections {Tkψ : k ∈ G} and {Tkψ̃ : k ∈ G} are said to

be biorthogonal if < Tkψ, T`ψ̃ >= δk,` for all k, ` ∈ G .
Given ψ ∈ H \ {0}, the collection {Tkψ : k ∈ G} is said to be minimal for < ψ >

if it does not exists k0 ∈ G such that Tk0ψ /∈ {Tkψ : k ∈ G, k 6= k0}
H

. Since each Tk
is unitary in H it can be shown that {Tkψ : k ∈ G} is minimal for < ψ > if and only

if ψ /∈ {Tkψ : k ∈ G, k 6= 0}
H
.

Proposition 6.1. Let (G,+) be a countable abelian group and let k → Tk be a dual
integrable unitary representation of G on a Hilbert space H. Let ψ ∈ H \ {0}.

a) Suppose that associated with ψ there exists ψ̃ ∈< ψ > such that G = {Tkψ : k ∈
G} and G̃ = {Tkψ̃ : k ∈ G} are biorthogonal. Then, G is minimal.

b) Conversely, if G = {Tkψ : k ∈ G} is minimal, there exits ψ̃ ∈< ψ > such that

G = {Tkψ : k ∈ G} and G̃ = {Tkψ̃ : k ∈ G} are biorthogonal.

Proof. a) If G and G̃ are biorthogonal we have < Tkψ, ψ̃ >= 0 for all k ∈ G, k 6= 0.

Thus, ψ̃ ⊥ span {Tkψ : k ∈ G, k 6= 0}
H

. Since < ψ, ψ̃ >= 1 we must have ψ /∈
span {Tkψ : k ∈ G, k 6= 0}

H
. Thus, G is minimal.

b) Assume that G is minimal. Then {Tkψ : k ∈ G, k 6= 0}  < ψ >. Thus, there

exists ψ̃ ∈< ψ >, ψ̃ 6= 0 such that

ψ̃ ⊥ {Tkψ : k ∈ G, k 6= 0} . (6.1)

Clearly, < ψ, ψ̃ >6= 0, so that we can assume < ψ, ψ̃ >= 1. Then we conclude

< Tkψ, Tkψ̃ >=< ψ, ψ̃ >= 1 and if k 6= `, < Tkψ, T`ψ̃ >=< Tk−lψ, ψ̃ >= 0 by
(6.1). �
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Proposition 6.2. Let (G,+) be a countable abelian group and let k → Tk be a dual
integrable unitary representation of G on a Hilbert space H. Let ψ ∈ H \ {0}. The

collection G = {Tkψ : k ∈ G} is biorthogonal to G̃ = {Tkψ̃ : k ∈ G} with ψ̃ ∈< ψ > if
and only if

1

[ψ, ψ]
∈ L1(Ĝ, dα) .

Proof. Suppose G and G̃ are biorthogonal with ψ̃ ∈< ψ >. By Theorem 3.1 Sψ(ψ̃) ∈
L2(Ĝ, [ψ, ψ](α)dα) and ‖Sψ(ψ̃)‖L2(Ĝ,[ψ,ψ](α)dα) = ‖ψ̃‖H . By Hölder’s inequality it fol-

lows that Sψ(ψ̃) [ψ, ψ] ∈ L1(Ĝ, dα):∫
Ĝ

|Sψ(ψ̃)(α)| [ψ, ψ](α)dα ≤
(∫

Ĝ

|Sψ(ψ̃)(α)|2 [ψ, ψ](α)dα

)1/2(∫
Ĝ

[ψ, ψ](α)dα

)1/2

= ‖ψ̃‖H ‖ψ‖H <∞ ,

where the equality (
∫
Ĝ

[ψ, ψ](α)dα)1/2 = ‖ψ‖H is due to condition (2.4) of the definition
of dual integrability. Moreover, by (5.1), Theorem 3.1, and the biorthogonality we
deduce, for k ∈ G,∫

Ĝ

Sψ(ψ̃)(α) [ψ, ψ](α)α(k) dα =

∫
Ĝ

Sψ(ψ̃)(α)Sψ(Tkψ)(α) [ψ, ψ](α) dα

=< Sψ(ψ̃), Sψ(Tkψ) >L2(Ĝ,[ψ,ψ](α)dα)=< ψ̃, Tkψ >H= δk,0 .

Thus, the Fourier coefficients of the L1(Ĝ, dα) function Sψ(ψ̃) [ψ, ψ] are all zero except

the one corresponding to k = 0, which is 1. By uniqueness, Sψ(ψ̃)(α) [ψ, ψ](α) = 1

a.e. α ∈ Ĝ. Thus, [ψ, ψ] > 0 a.e. Writing |Sψ(ψ̃)|2 [ψ, ψ] = 1
[ψ,ψ]

and using Theorem

3.1 we dedude ∫
Ĝ

1

[ψ, ψ]
dα =

∫
Ĝ

|Sψ(ψ̃)|2 [ψ, ψ] dα = ‖ψ̃‖H ,

showing the desired result.

Suppose now that 1
[ψ,ψ]
∈ L1(Ĝ, dα). Then 1

[ψ,ψ]
∈ L2(Ĝ, [ψ, ψ](α) dα). By Theorem

3.1 we can consider ψ̃ ≡ S−1
ψ ( 1

[ψ,ψ]
) ∈< ψ >. Moreover, by Theorem 3.1, equality

(5.1), and the fact that Ωψ = Ĝ in our situation, for k ∈ G we have

< Tkψ, ψ̃ >H = < Tkψ, S
−1
ψ (

1

[ψ, ψ]
) >H=< Sψ(Tkψ),

1

[ψ, ψ]
>L2(Ĝ,[ψ,ψ](α)dα)

=

∫
Ĝ

α(k)
1

[ψ, ψ](α)
[ψ, ψ](α) dα =

∫
Ĝ

ek(α) dα = δk

by the orthogonality of {ek : k ∈ G} in L2(Ĝ, dα) . This shows that G̃ = {Tkψ̃ : k ∈ G},
with ψ̃ defined as above, is biorthogonal to G. �

Remark 6.3. It is not necessary to assume that G̃ is generated by a single element

ψ̃. One could start with a general system G̃ = {ϕk : k ∈ G} with ϕk ∈< ψ > and

biorthogonal to G = {Tkψ : k ∈ G} and show that G̃ has to be generated by a single
function.

From Propositions 6.1 and 6.2 we deduce:
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Corollary 6.4. Let (G,+) be a countable abelian group and let k → Tk be a dual
integrable unitary representation of G on a Hilbert space H. Let ψ ∈ H \ {0}. The
collection G = {Tkψ : k ∈ G} is minimal if and only if

1

[ψ, ψ]
∈ L1(Ĝ, dα) .

7. A general framework for representations on L2(Rn)

We have shown in Example 2.2 (section 2) and in section 4.1 that our theory can
be applied to translations. These are the kind of operators used in the definition
of the scaling spaces V0 of a Multiresolution Analysis ([14]) or more general Frame
Multiresolution Analysis ([1]). All of these spaces are translation invariant. In the
theory of wavelets the resolution spaces Wj are not translation invariant, but invariant
under dyadic dilations (or invariant under more general expansive dilations matrices).
Also, in the theory of wavelets with composite dilations some of the spaces involved
are invariant under operations with shear matrices ([6]). We describe in this section a
general framework based on the action of a discrete countable abelian group on Rn
that includes all the above examples.

Assume that (G,+) is a discrete countable abelian group that acts on a σ-finite
measure space M by (k, x) −→ k • x. Thus we have a mapping from G ×M to M
which we assume to have the following properties:

1. k • (` • x) = (k + `) • x , for all k, ` ∈ G , x ∈M ,
2. 0 • x = x , for all x ∈M ,
3. dλ(k • x) = J(k, x) dλ(x) , J(k, x) > 0 , for all k ∈ G , x ∈ M, , where dλ

denotes the element of Lebesgue measure on M and J(k, x), called the Jacobian, is
a real function defined on G×M, and

4. There exists a measurable set C ⊂M such that {k • C : k ∈ G} is an almost
everywhere partition of M .

Simple examples of actions of a group in Rn are the following:
A. Translations by elements of Zn: in this case J(k, x) = 1 for all k ∈ Zn , x ∈ Rn ,

and C = [0, 1]n.
B. Dilations by 2j , j ∈ Z, that is j • x = 2jx for j ∈ Z and x ∈ Rn: in this case

J(j, x) = 2j for all j ∈ Z , x ∈ Rn , and C = ([0, 1]n \ [−1/2, 1/2]n).

C. Multiplication by the shear matrix

(
1 0
k 1

)
, k ∈ Z. That is

(
1 0
k 1

)(
x
y

)
=(

x
kx+ y

)
: in this case the abelian group G is

{
K =

(
1 0
k 1

)
: k ∈ Z

}
with multi-

plication by matrices, J(K, x) = 1 , K ∈ G , x ∈ R2, and C = {(x, y) ∈ R2 : 0 ≤ y <
x} ∪ {(x, y) ∈ R2 : x < y ≤ 0}.

Lemma 7.1. The Jacobian of the action • of a group G on a σ-finite measures space
M satisfies J(k + `, x) = J(k, ` • x) J(`, x)

Proof. On the one hand, dλ(k • (`•x)) = dλ(k+ `)•x) = J(k+ `, x) dλ(x), by 1 and 3
of the definition of the action. On the other hand, dλ(k•(`•x)) = J(k, `•x) dλ(l•x) =
J(k, `•x) J(`, x) dλ(x), by 3 of the definition of the action. This proves the result. �



UNITARY REPRESENTATIONS AND GENERALIZED ZAK TRANSFORM 17

For f ∈ L2(M) and k ∈ G define

(Dk f)(x) = J(k, x)1/2 f(k • x) , x ∈M . (7.1)

This gives a representation of the abelian group G on L2(M). To see this choose
k, ` ∈ G and use property 3 of the definition of an action and Lemma 7.1 to obtain

DkD` f(x) = J(k, x)1/2D` f(k • x) = J(k, x)1/2 J(`, k • x)1/2 f(` • k • x)

= J(k + `, x)1/2 f((k + `) • x) = Dk+` f(x) .

Changing variables we observe that this representation is unitary in L2(M).

Lemma 7.2. Let • define an action of a countable abelian group G on σ-finite measure
space M. For f ∈ L2(M) we have ‖f‖2

2 =
∑

k∈G
∫
C
|(Dk f)(x)|2 dλ(x) , where Dk is

defined in (7.1) and C is the set that appears in property 4 of the definition of the
action.

Proof. Use that M coincides a.e. with the almost everywhere disjoint union of the
sets k • C , k ∈ G, and the obvious change of variables to obtain

‖f‖2
2 =

∫
⋃
k∈G k•C

|f(x)|2 dλ(x) =
∑
k∈G

∫
k•C
|f(x)|2 dλ(x)

=
∑
k∈G

∫
C

|f(k • y)|2 J(k, y) dλ(y) =
∑
k∈G

∫
C

|(Dk f)(x)|2 dλ(y) .

�

We want to prove the dual integrability of the unitary representation given by (7.1).
For f, g ∈ L2(M) and C as in property 4. of the definition of the action we obtain

< f, g >L2(M)=

∫
M
f(x) g(x) dλ(x) =

∫
C

{
∑
k∈G

f(k • x) g(k • x) J(k, x)} dλ(x) .

Use that {ek : k ∈ G} is an orthonormal system of L2(Ĝ) to obtain

< f, g >L2(M) =

∫
C

∑
k∈G

∑
`∈G

f(k • x) g(` • x) J(k, x)1/2 J(`, x)1/2 dλ(x)

(∫
Ĝ

e`−k(α) dα

)

=

∫
Ĝ

∫
C

{∑
k∈G

(Dkf)(x)α(k)

} {∑
`∈G

(Dlg)(y)α(`)

}
dλ(x) dα

=

∫
Ĝ

∫
C

Zf(x, α)Zg(x, α) dλ(x) dα , (7.2)

where, for ψ ∈ L2(M),

(Zψ)(y, α) =
∑
l∈G

(Dlψ)(y)α(l) , y ∈M , α ∈ Ĝ . (7.3)

If j ∈ Zn and ψ ∈ L2(M) we have

Z(Djψ)(x, α) =
∑
k∈G

DkDjψ(x)α(k) =
∑
k∈G

Dk+jψ(x)α(k)



18 EUGENIO HERNÁNDEZ, HRVOJE ŠIKIĆ, GUIDO WEISS, AND EDWARD WILSON

=
∑
m∈G

Dmψ(x)α(m− j) = α(j)Zψ(x, α) . (7.4)

From (7.2) and (7.4) applied to ϕ, ψ ∈ L2(M) we deduce

< ϕ,Djψ >L2(M) =

∫
Ĝ

∫
C

Zϕ(x, α)Z(Djψ)(x, α) dλ(x) dα

=

∫
Ĝ

∫
C

Zϕ(x, α)Zψ(x, α) α(j) dλ(x) dα (7.5)

obtaining

[ϕ, ψ](α) =

∫
C

Zϕ(x, α)Zψ(x, α) dλ(x) .

This shows (2.4) of the definition of dual integrability. To show (2.3) notice that (7.2)

shows that Z is an isometry from L2(M) into the space L2(C × Ĝ) .
The object defined in (7.3) is a generalization of the Zak transform adapted to our

situation. It coincides with the Zak transform when Zn acts on Rn by translations.
When the action is dilation by 2 in the real line, the object defined in (7.3) is called
the multiplicative Zak transform in [3]. It also appears in the work [17] and more
generaly in [18] and [5]. We thank Professor Wojtek Czaja for pointing out some of
these references to us.
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