Democracy functions of wavelet bases in general Lorentz spaces

Gustavo Garrigós, Eugenio Hernández, Maria de Natividade

Abstract

We compute the democracy functions associated with wavelet bases in general Lorentz spaces Λ_{w}^{q} and $\Lambda_{w}^{q, \infty}$, for general weights w and $0<q<\infty$.

1 Introduction

The Lorentz space $\Lambda_{w}^{q}\left(\mathbb{R}^{d}\right)$ is defined as the set of all measurable $f: \mathbb{R}^{d} \rightarrow \mathbb{C}$ such that

$$
\begin{equation*}
\|f\|_{\Lambda_{w}^{q}}:=\left[\int_{0}^{\infty}\left|f^{*}(t)\right|^{q} w(t) d t\right]^{1 / q}<\infty \tag{1.1}
\end{equation*}
$$

where f^{*} is the decreasing rearrangement of f (with respect to the Lebesgue measure) and w is a positive locally integrable function with the property $\int_{0}^{\infty} w(s) d s=\infty$. We shall assume $q \in(0, \infty)$.

Special examples include the classical $L^{p, q}\left(\mathbb{R}^{d}\right)$ spaces (corresponding to $w(t)=t^{\frac{q}{p}-1}$), and the so called Lorentz-Zygmund spaces $L^{p, q}(\log L)^{r}, r \in \mathbb{R}$, for which $w(t)=t^{\frac{q}{p}-1}(1+$ $|\log t|)^{r q}$ (see [1]). More general weights w give rise to larger families such as the LorentzKaramata spaces, and various other examples considered in the literature (see eg [7]).

In this note we shall be interested in the efficiency of the greedy algorithm [9] for the N-term wavelet approximation of functions in Λ_{w}^{q}. It is known that greedy algorithms with wavelet bases are never optimal in rearrangement invariant spaces, except for the L^{p} classes; see [10]. However, it is possible to quantify the efficiency of the algorithm in a space \mathbb{X} by computing the so called lower and upper democracy functions; that is,

$$
\begin{equation*}
h_{\ell}(N)=\inf _{\# \Gamma=N}\left\|\sum_{Q \in \Gamma} \frac{\psi_{Q}}{\left\|\psi_{Q}\right\|}\right\|_{\mathbb{X}} \quad \text { and } \quad h_{r}(N)=\sup _{\# \Gamma=N}\left\|\sum_{Q \in \Gamma} \frac{\psi_{Q}}{\left\|\psi_{Q}\right\|}\right\|_{\mathbb{X}} \tag{1.2}
\end{equation*}
$$

where $\left\{\psi_{Q}\right\}$ is a wavelet system indexed by the set \mathcal{D} of all dyadic cubes of \mathbb{R}^{d}. Indeed, a precise expression for h_{ℓ} and h_{r} gives rise to optimal inclusions for the approximation classes $A_{s}^{\alpha}(\mathbb{X})$ in terms of discrete Lorentz spaces (see [4]).

It is not always an easy matter to compute explicitly the democracy functions h_{ℓ} and h_{r} in non-democratic settings. We refer to [3] for the case of Orlicz spaces L^{Φ}, and more

[^0]recently to [5] for the Lorentz classes $L^{p, q}$. The objective of this note is to present the computation of h_{ℓ} and h_{r} for the larger family of general Lorentz spaces Λ_{w}^{q}.

As usual, using wavelet theory one can transfer the problem to the discrete setting. We define the space λ_{w}^{q} consisting of all sequences $\mathbf{s}=\left\{s_{Q}\right\}_{Q \in \mathcal{D}}$ such that

$$
\begin{equation*}
\|\mathbf{s}\|_{\lambda_{w}^{q}}:=\left\|\left(\sum_{Q \in \mathcal{D}}\left|s_{Q}\right|^{2} \frac{1}{|Q|} \chi_{Q}(\cdot)\right)^{1 / 2}\right\|_{\Lambda_{w}^{q}}<\infty \tag{1.3}
\end{equation*}
$$

It is known that sufficiently regular wavelet bases in \mathbb{R}^{d} give an isomorphism between Λ_{w}^{q} and λ_{w}^{q} (when the Boyd indices of Λ_{w}^{q} are strictly between 0 and 1 ; see [8]). Thus studying the democracy of wavelet bases in Λ_{w}^{q} is equivalent to determine

$$
h_{\ell}(N)=\inf _{\# \Gamma=N}\left\|\sum_{Q \in \Gamma} \frac{\mathbf{e}_{Q}}{\left\|\mathbf{e}_{Q}\right\|_{\lambda_{w}^{q}}}\right\|_{\lambda_{w}^{q}} \quad \text { and } \quad h_{r}(N)=\sup _{\# \Gamma=N}\left\|\sum_{Q \in \Gamma} \frac{\mathbf{e}_{Q}}{\left\|\mathbf{e}_{Q}\right\|_{\lambda_{w}^{q}}}\right\|_{\lambda_{w}^{q}}
$$

where $\left\{\mathbf{e}_{Q}\right\}$ denotes the canonical basis in λ_{w}^{q}. We shall assume in the rest of the paper that h_{ℓ} and h_{r} always refer to these quantities (which are comparable to the ones in (1.2) for $\mathbb{X}=\Lambda_{w}^{q}$, at least when the wavelet characterization holds).

To state our results we need some notation. We denote the primitive of w by

$$
W(t):=\int_{0}^{t} w(s) d s, \quad t \geq 0
$$

Recall that Λ_{w}^{q} is quasi-normed if and only if W is doubling (see e.g. [2, 2.2.13]), so we shall always assume to be in this situation. Observe also that for all measurable $E \subset \mathbb{R}^{d}$ we have

$$
\left\|\chi_{E}\right\|_{\Lambda_{w}^{q}}=W(|E|)^{1 / q}
$$

That is, $W(t)^{1 / q}$ is the fundamental function of the rearrangement invariant function space Λ_{w}^{q}. We shall denote by $H_{W}^{ \pm}(t)$ the dilation functions associated with W, that is

$$
H_{W}^{+}(t):=\sup _{s>0} \frac{W(t s)}{W(s)} \quad \text { and } \quad H_{W}^{-}(t):=\inf _{s>0} \frac{W(t s)}{W(s)}
$$

Since W is doubling these are finite functions. Observe also that $H^{-}(t)=1 / H^{+}(1 / t)$. Finally we denote by i_{W} the lower dilation index of W (see [6] or (2.14) for a precise definition), which we typically assume to be positive. Our results can be stated as follows.

THEOREM 1.4 Assume $i_{W}>0$. Then for all $N \in \mathbb{N}$ we have

$$
\begin{equation*}
h_{\ell}(N) \approx \inf \left\{\left(\sum_{j \in \mathbb{Z}} \frac{W\left(n_{j} 2^{j d}\right)}{W\left(2^{j d}\right)}\right)^{1 / q}: n_{j} \in \mathbb{N} \cup\{0\} \text { with } \sum_{j} n_{j}=N\right\} \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{r}(N) \approx \sup \left\{\left(\sum_{j \in \mathbb{Z}} \frac{W\left(n_{j} 2^{j d}\right)}{W\left(2^{j d}\right)}\right)^{1 / q}: \quad n_{j} \in \mathbb{N} \cup\{0\} \text { with } \sum_{j} n_{j}=N\right\} \tag{1.6}
\end{equation*}
$$

where the constants involved in " \approx " are independent of N.

Our second result gives a more explicit expression for weights which are monotonic near 0 and ∞, that is, in intervals $(0, a)$ and (b, ∞), for some $a \leq b$. Observe that most examples arising in practice do actually satisfy this property.

THEOREM 1.7 Assume that w is monotonic near 0 and ∞, and that $i_{W}>0$. Then for $\operatorname{all} N \in \mathbb{N}$

$$
\begin{equation*}
h_{\ell}(N) \approx \min \left\{N, H_{W}^{-}(N)\right\}^{1 / q} \quad \text { and } \quad h_{r}(N) \approx \max \left\{N, H_{W}^{+}(N)\right\}^{1 / q} \tag{1.8}
\end{equation*}
$$

In particular
(a) w increasing implies $\quad h_{\ell}(N) \approx N^{1 / q} \quad$ and $\quad h_{r}(N) \approx H_{W}^{+}(N)^{1 / q}$;
(b) w decreasing implies $\quad h_{\ell}(N) \approx H_{W}^{-}(N)^{1 / q} \quad$ and $\quad h_{r}(N) \approx N^{1 / q}$.

Finally, we consider the weak versions of the Lorentz spaces Λ_{w}^{q}. We write $\Lambda_{w}^{q, \infty}\left(\mathbb{R}^{d}\right)$ for the set of all f such that

$$
\begin{equation*}
\|f\|_{\Lambda_{w}^{q, \infty}}:=\sup _{t>0} t w\left\{f^{*}>t\right\}^{1 / q}=\sup _{s>0} f^{*}(s) W(s)^{1 / q}<\infty \tag{1.9}
\end{equation*}
$$

where $0<q<\infty$. The corresponding sequence space $\lambda_{w}^{q, \infty}$ is defined as in (1.3) with $\Lambda_{w}^{q, \infty}$ in place of Λ_{w}^{q}. Then we have the following

THEOREM 1.10 Assume $i_{W}>0$. Then for all $N \in \mathbb{N}$ we have

$$
h_{\ell}\left(N ; \lambda_{w}^{q, \infty}\right) \approx 1 \quad \text { and } \quad h_{r}\left(N ; \lambda_{w}^{q, \infty}\right) \approx H_{W}^{+}(N)^{1 / q}
$$

Section 2 contains some preliminaries about Λ_{w}^{q} spaces. The proofs of the theorems are presented, respectively, in sections 3,4 and 5 . Finally, section 6 contains some examples.

2 Preliminaries

We need a few elementary properties about the spaces Λ_{w}^{q}. First of all, it is well known that the (quasi) norm in Λ_{w}^{q} can also be written as

$$
\begin{equation*}
\|f\|_{\Lambda_{w}^{q}}=\left[\int_{0}^{\infty} q t^{q-1} W\left(\lambda_{f}(t)\right) d t\right]^{1 / q} \tag{2.1}
\end{equation*}
$$

where $\lambda_{f}(t)=$ meas $\left\{x \in \mathbb{R}^{d}:|f(x)| \geq t\right\}$ (see eg [2, Prop 2.2.5]). From here it is clear that

$$
\begin{equation*}
f \leq g \quad \Longrightarrow \quad\|f\|_{\Lambda_{w}^{q}} \leq\|g\|_{\Lambda_{w}^{q}} \tag{2.2}
\end{equation*}
$$

We also need discretized versions of (2.1). Let \mathbb{A} denote the collection of all sequences $\left\{a_{j}\right\}_{j=-\infty}^{\infty}$ of positive real numbers such that

$$
\begin{equation*}
\inf \frac{a_{j+1}}{a_{j}}>1 \quad \text { and } \quad \sup \frac{a_{j+1}}{a_{j}}<\infty \tag{2.3}
\end{equation*}
$$

Clearly $\left\{a^{j}\right\}_{j \in \mathbb{Z}}$ with $a>1$ satisfies these requirements, but we shall make use of more general examples later on. Observe that, in particular, the left condition in (2.3) implies

$$
\begin{equation*}
\lim _{j \rightarrow-\infty} a_{j}=0 \quad \text { and } \quad \lim _{j \rightarrow+\infty} a_{j}=+\infty \tag{2.4}
\end{equation*}
$$

LEMMA 2.5 Let $\left\{a_{j}\right\} \in \mathbb{A}$. Then

$$
\begin{equation*}
\|f\|_{\Lambda_{w}^{q}} \approx\left[\sum_{j \in \mathbb{Z}} a_{j}^{q} W\left(\lambda_{f}\left(a_{j}\right)\right)\right]^{1 / q} \tag{2.6}
\end{equation*}
$$

Proof: Call $m=\inf \frac{a_{j+1}}{a_{j}}$ and $M=\sup \frac{a_{j+1}}{a_{j}}$. Then, from (2.1) we obtain

$$
\begin{aligned}
\|f\|_{\Lambda_{w}^{q}}^{q} & =\sum_{j \in \mathbb{Z}} \int_{a_{j}}^{a_{j+1}} q t^{q-1} W\left(\lambda_{f}(t)\right) d t \leq \sum_{j \in \mathbb{Z}} \int_{a_{j}}^{a_{j+1}} q t^{q-1} d t W\left(\lambda_{f}\left(a_{j}\right)\right) \\
& =\sum_{j \in \mathbb{Z}}\left(a_{j+1}^{q}-a_{j}^{q}\right) W\left(\lambda_{f}\left(a_{j}\right)\right) \leq\left(M^{q}-1\right) \sum_{j \in \mathbb{Z}} a_{j}^{q} W\left(\lambda_{f}\left(a_{j}\right)\right)
\end{aligned}
$$

For the converse inequality one argues similarly

$$
\begin{aligned}
\|f\|_{\Lambda_{w}^{q}}^{q} & \geq \sum_{j \in \mathbb{Z}}\left(a_{j+1}^{q}-a_{j}^{q}\right) W\left(\lambda_{f}\left(a_{j+1}\right)\right) \\
& \geq\left(1-m^{-q}\right) \sum_{j \in \mathbb{Z}} a_{j+1}^{q} W\left(\lambda_{f}\left(a_{j+1}\right)\right) .
\end{aligned}
$$

In the next lemma we need to use the doubling property $W(2 t) \leq c W(t)$. Since W is increasing, this property is equivalent to the subadditivity of W (with the same constant c)

$$
W(s+t) \leq c(W(s)+W(t)), \quad \forall s, t>0
$$

Denote by D_{W} the smallest such constant, that is

$$
\begin{equation*}
D_{W}=\sup _{s, t>0} \frac{W(s+t)}{W(s)+W(t)} \tag{2.7}
\end{equation*}
$$

Also, for a fixed $m>1$, we shall denote by \mathbb{A}_{m} the subset of all sequences in \mathbb{A} with

$$
\begin{equation*}
\inf _{j \in \mathbb{Z}} \frac{a_{j+1}}{a_{j}} \geq m \tag{2.8}
\end{equation*}
$$

LEMMA 2.9 Let $\left\{a_{j}\right\} \in \mathbb{A}_{m}$ with $m>D_{W}^{1 / q}$. If $f \in \Lambda_{w}^{q}$ then

$$
\begin{equation*}
\|f\|_{\Lambda_{w}^{q}} \approx\left[\sum_{j \in \mathbb{Z}} a_{j}^{q} W\left(\lambda_{f}\left(a_{j}: a_{j+1}\right)\right)\right]^{1 / q} \tag{2.10}
\end{equation*}
$$

where $\lambda_{f}\left(a_{j}: a_{j+1}\right)=$ meas $\left\{x \in \mathbb{R}^{d}: a_{j} \leq|f(x)|<a_{j+1}\right\}$.
PROOF: Using $\lambda_{f}\left(a_{j}\right)=\lambda_{f}\left(a_{j}: a_{j+1}\right)+\lambda_{f}\left(a_{j+1}\right)$ and the subadditivity of W we obtain

$$
\begin{equation*}
W\left(\lambda_{f}\left(a_{j}\right)\right) \leq D_{W}\left[W\left(\lambda_{f}\left(a_{j}: a_{j+1}\right)\right)+W\left(\lambda_{f}\left(a_{j+1}\right)\right)\right] \tag{2.11}
\end{equation*}
$$

Call

$$
I=\left(\sum_{j \in \mathbb{Z}} a_{j}^{q} W\left(\lambda_{f}\left(a_{j}\right)\right)\right)^{\frac{1}{q}} \quad \text { and } \quad I I=\left(\sum_{j \in \mathbb{Z}} a_{j}^{q} W\left(\lambda_{f}\left(a_{j}: a_{j+1}\right)\right)\right)^{\frac{1}{q}}
$$

Clearly $I I \leq I$. For the converse, using (2.11) and $\inf a_{j+1} / a_{j} \geq m$, we see that

$$
\begin{aligned}
I^{q} & \leq D_{W} I I^{q}+D_{W} \sum_{j \in \mathbb{Z}} a_{j}^{q} W\left(\lambda_{f}\left(a_{j+1}\right)\right) \\
& \leq D_{W} I I^{q}+D_{W} \sum_{j \in \mathbb{Z}} \frac{a_{j+1}^{q}}{m^{q}} W\left(\lambda_{f}\left(a_{j+1}\right)\right)=D_{W} I I^{q}+\frac{D_{W}}{m^{q}} I^{q}
\end{aligned}
$$

Since we are assuming $m^{q}>D_{W}$ it follows that

$$
\left(1-\frac{D_{W}}{m^{q}}\right) I^{q} \leq D_{W} I I^{q}
$$

Thus $I \approx I I$ and the result follows from Lemma 2.5.

A similar argument gives
LEMMA 2.12 Let $\left\{a_{j}\right\} \in \mathbb{A}_{m}$ with $m>D_{W}^{1 / q}$. If $f \in \Lambda_{w}^{q, \infty}$ then

$$
\begin{equation*}
\|f\|_{\Lambda_{w}^{q, \infty}} \approx \sup _{j \in \mathbb{Z}} a_{j} W\left(\lambda_{f}\left(a_{j}: a_{j+1}\right)\right)^{1 / q} \tag{2.13}
\end{equation*}
$$

Recall from [6, p. 53] that the lower dilation index of W is defined by

$$
\begin{equation*}
i_{W}:=\sup _{0<t<1} \frac{\log H_{W}^{+}(t)}{\log t}=\lim _{t \rightarrow 0} \frac{\log H_{W}^{+}(t)}{\log t}=\lim _{u \rightarrow \infty} \frac{\log H_{W}^{-}(u)}{\log u} \tag{2.14}
\end{equation*}
$$

In the paper we will assume that $i_{W}>0$, which implies that for all $\epsilon>0$

$$
\begin{equation*}
W(s u) \geq C_{\epsilon} u^{i_{W}-\epsilon} W(s), \quad \forall s>0, \quad \forall u \geq 1 \tag{2.15}
\end{equation*}
$$

for some $C_{\epsilon}>0$. In $\S 3$ we shall be interested in applying Lemma 2.9 to the sequence $a_{j}=W\left(2^{-j d}\right)^{-1 / q}$. This sequence clearly satisfies (2.4) (since we assume $\int_{0}^{\infty} w(s) d s=\infty$), but the validity of (2.3) depends on the growth of W. We show below how to handle this under the assumption $i_{W}>0$.

PROPOSITION 2.16 Assume that $i_{W}>0$. Then the norm equivalences in (2.6), (2.10) and (2.13) hold for the sequence

$$
a_{j}=\frac{1}{W\left(2^{-j d}\right)^{1 / q}}, \quad j \in \mathbb{Z}
$$

The proposition will be an easy consequence of the following lemma.
LEMMA 2.17 Assume that $i_{W}>0$ and fix $m>D_{W}^{1 / q}$. Then there exists $L_{0} \in \mathbb{N}$ such that for every subsequence $\left\{k_{j}\right\}_{j \in \mathbb{Z}}$ with the property

$$
k_{j+1}=k_{j}+L_{0}, \quad \forall j \in \mathbb{Z}
$$

the sequence $\left\{W\left(2^{-k_{j} d}\right)^{-1 / q}\right\}_{j \in \mathbb{Z}}$ belongs to \mathbb{A}_{m}.

Proof: Call $b_{j}=W\left(2^{-k_{j} d}\right)^{-1 / q}$. By the monotonicity of W and (2.15) we see that

$$
\left(\frac{b_{j+1}}{b_{j}}\right)^{q}=\frac{W\left(2^{-k_{j} d}\right)}{W\left(2^{-d\left(k_{j}+L_{0}\right)}\right)} \geq C_{\epsilon}\left(2^{d L_{0}}\right)^{i_{W}-\epsilon} .
$$

It suffices to choose $\epsilon=i_{W} / 2$ and L_{0} large enough so that the right hand side is $\geq m^{q}$. The bound from above follows from the doubling property of W.

Proof of Proposition 2.16: We shall only prove (2.10), since the other cases are similar. Let L_{0} be as in the previous lemma. Then, for each $r \in\left\{0, \ldots, L_{0}-1\right\}$, the sequence $\mathbf{a}^{(r)}=\left\{a_{j L_{0}+r}=W\left(2^{-\left(j L_{0}+r\right) d}\right)^{-1 / q}\right\}_{j \in \mathbb{Z}}$ belongs to \mathbb{A}_{m}. Thus, for each such r Lemma 2.9 implies that

$$
\begin{equation*}
\|f\|_{\Lambda_{w}^{q}} \approx\left[\sum_{j \in \mathbb{Z}} a_{j L_{0}+r}^{q} W\left(\lambda_{f}\left(a_{j L_{0}+r}: a_{(j+1) L_{0}+r}\right)\right)\right]^{1 / q} \tag{2.18}
\end{equation*}
$$

for every $f \in \Lambda_{w}^{q}$. We first show the inequality " \lesssim " for which we choose $r=0$ in (2.18). By the subadditivity of W, there is a constant $C=C\left(W, L_{0}\right)$ such that

$$
W\left(\lambda_{f}\left(a_{j L_{0}}: a_{(j+1) L_{0}}\right)\right) \leq C \sum_{s=0}^{L_{0}-1} W\left(\lambda_{f}\left(a_{j L_{0}+s}: a_{j L_{0}+s+1}\right)\right) .
$$

Inserting this into (2.18) (with $r=0$) and using $a_{j L_{0}} \approx a_{j L_{0}+s}$ (by the doubling property of W) we easily obtain

$$
\|f\|_{\Lambda_{w}^{q}}^{q} \lesssim \sum_{s=0}^{L_{0}-1} \sum_{j \in \mathbb{Z}} a_{j L_{0}+s}^{q} W\left(\lambda_{f}\left(a_{j L_{0}+s}: a_{j L_{0}+s+1}\right)\right)=\sum_{k \in \mathbb{Z}} a_{k}^{q} W\left(\lambda_{f}\left(a_{k}: a_{k+1}\right)\right) .
$$

Conversely, since L_{0} is a finite constant (2.18) implies that

$$
\begin{aligned}
\|f\|_{\Lambda_{w}^{q}}^{q} & \approx \sum_{r=0}^{L_{0}-1} \sum_{j \in \mathbb{Z}} a_{j L_{0}+r}^{q} W\left(\lambda_{f}\left(a_{j L_{0}+r}: a_{(j+1) L_{0}+r}\right)\right) \\
& \gtrsim \sum_{r=0}^{L_{0}-1} \sum_{j \in \mathbb{Z}} a_{j L_{0}+r}^{q} W\left(\lambda_{f}\left(a_{j L_{0}+r}: a_{j L_{0}+r+1}\right)\right)=\sum_{k \in \mathbb{Z}} a_{k}^{q} W\left(\lambda_{f}\left(a_{k}: a_{k+1}\right)\right) .
\end{aligned}
$$

Finally we state a key "linearization" lemma which holds when $i_{W}>0$.
Lemma 2.19 Suppose $i_{W}>0$. For every finite collection $\Gamma \subset \mathcal{D}$, and every $x \in \cup_{Q \in \Gamma} Q$ it holds

$$
\begin{equation*}
\left(\sum_{Q \in \Gamma} \frac{\chi_{Q}(x)}{W(|Q|)^{\frac{2}{q}}}\right)^{1 / 2} \approx \frac{\chi_{Q_{x}}(x)}{W\left(\left|Q_{x}\right|\right)^{\frac{1}{q}}} \tag{2.20}
\end{equation*}
$$

where Q_{x} denotes the smallest cube in Γ containing x.
Such linearization arguments have been used by various authors in the context of N-term wavelet approximation. For an elementary proof and references see e.g. [3, §4.2.1].

3 Proof of Theorem 1.4

Let $\Gamma \subset \mathcal{D}$ with $\# \Gamma=N$. We use the notation

$$
1_{\Gamma}=\sum_{Q \in \Gamma} \frac{\mathbf{e}_{Q}}{\left\|\mathbf{e}_{Q}\right\|_{\lambda_{w}^{q}}} \quad \text { and } \quad S_{\Gamma}(x)=\left(\sum_{Q \in \Gamma} \frac{\chi_{Q}(x)}{W(|Q|)^{\frac{2}{q}}}\right)^{1 / 2}
$$

Observe from (1.3) that

$$
\left\|\mathbf{e}_{Q}\right\|_{\lambda_{w}^{q}}=|Q|^{-1 / 2}\left\|\chi_{Q}\right\|_{\Lambda_{w}^{q}}=|Q|^{-1 / 2} W(|Q|)^{1 / q}
$$

so we are led to estimate the expression

$$
\left\|1_{\Gamma}\right\|_{\lambda_{w}^{q}}=\left\|\left(\sum_{Q \in \Gamma} \frac{\chi_{Q}(x)}{W(|Q|)^{\frac{2}{q}}}\right)^{1 / 2}\right\|_{\Lambda_{w}^{q}}=\left\|S_{\Gamma}\right\|_{\Lambda_{w}^{q}}
$$

Using (2.6) we see that

$$
\left\|1_{\Gamma}\right\|_{\lambda_{w}^{q}} \approx\left[\sum_{j \in \mathbb{Z}} a_{j}^{q} W\left(\left|\left\{\left|S_{\Gamma}\right| \geq a_{j}\right\}\right|\right)\right]^{1 / q}
$$

We choose $a_{j}=W\left(2^{-j d}\right)^{-1 / q}$ and denote $\Gamma_{j}=\left\{Q \in \Gamma:|Q|=2^{-j d}\right\}, j \in \mathbb{Z}$. Clearly $S_{\Gamma}(x) \geq a_{j}$ for all $x \in \cup_{Q \in \Gamma_{j}} Q$, which implies

$$
\left\|1_{\Gamma}\right\|_{\lambda_{w}^{q}} \gtrsim\left[\sum_{j \in \mathbb{Z}} \frac{W\left(\left|\cup_{Q \in \Gamma_{j}} Q\right|\right)}{W\left(2^{-j d}\right)}\right]^{1 / q}=\left[\sum_{j \in \mathbb{Z}} \frac{W\left(2^{-j d} \# \Gamma_{j}\right)}{W\left(2^{-j d}\right)}\right]^{1 / q}
$$

For the estimate from above we use Lemma 2.19 and denote by $F_{\Gamma}(x)$ the function on right hand side of (2.20). Then (2.10) gives

$$
\left\|1_{\Gamma}\right\|_{\lambda_{w}^{q}} \approx\left\|F_{\Gamma}\right\|_{\Lambda_{w}^{q}} \approx\left[\sum_{j \in \mathbb{Z}} a_{j}^{q} W\left(\left|\left\{a_{j} \leq\left|F_{\Gamma}\right|<a_{j+1}\right\}\right|\right)\right]^{1 / q}
$$

where as before we set $a_{j}=W\left(2^{-j d}\right)^{-1 / q}$. Then the condition $a_{j} \leq F_{\Gamma}(x)<a_{j+1}$ implies that $x \in \cup_{Q \in \Gamma_{j}} Q$, and therefore

$$
\left\|1_{\Gamma}\right\|_{\lambda_{w}^{q}} \lesssim\left[\sum_{j \in \mathbb{Z}} \frac{W\left(2^{-j d} \# \Gamma_{j}\right)}{W\left(2^{-j d}\right)}\right]^{1 / q}
$$

We conclude that

$$
\begin{equation*}
\left\|1_{\Gamma}\right\|_{\lambda_{w}^{q}} \approx\left[\sum_{j \in \mathbb{Z}} \frac{W\left(2^{-j d} \# \Gamma_{j}\right)}{W\left(2^{-j d}\right)}\right]^{1 / q} \tag{3.1}
\end{equation*}
$$

and since $\sum \# \Gamma_{j}=\# \Gamma=N$, this clearly implies (1.6).

4 Proof of Theorem 1.10

The proof for the spaces $\Lambda_{w}^{q, \infty}$ is similar. First observe from the norm definitions that

$$
\left\|\mathbf{e}_{Q}\right\|_{\lambda_{w}^{q, \infty}}=|Q|^{-1 / 2}\left\|\chi_{Q}\right\|_{\Lambda_{w}^{q, \infty}}=|Q|^{-1 / 2} W(|Q|)^{1 / q}
$$

so we are led to estimate the expression

$$
\left\|1_{\Gamma}\right\|_{\lambda_{w}^{q, \infty}}=\left\|\left(\sum_{Q \in \Gamma} \frac{\chi_{Q}(x)}{W(|Q|)^{\frac{2}{q}}}\right)^{1 / 2}\right\|_{\Lambda_{w}^{q, \infty}}=\left\|S_{\Gamma}\right\|_{\Lambda_{w}^{q, \infty}} .
$$

The lower bound $h_{\ell}(N) \geq 1$ is trivial. To see the optimality, choose Γ formed by pairwise disjoint cubes all of different sizes. Using (2.13) with $a_{j}=W\left(2^{-j d}\right)^{-1 / q}$ we easily see that

$$
\left\|1_{\Gamma}\right\|_{\lambda_{w}^{q, \infty}} \approx \sup _{j \in \mathbb{Z}} a_{j} W\left(\left|\left\{a_{j} \leq S_{\Gamma}(x)<a_{j+1}\right\}\right|\right)^{1 / q}=1
$$

which proves the assertion.
To obtain bounds for $h_{r}(N)$, we use again (2.13) with $a_{j}=W\left(2^{-j d}\right)^{-1 / q}$, together with Lemma 2.19, so that

$$
\begin{aligned}
\left\|1_{\Gamma}\right\|_{\lambda_{w}^{q, \infty}} & \approx \sup _{j \in \mathbb{Z}} a_{j} W\left(\left|\left\{a_{j} \leq F_{\Gamma}(x)<a_{j+1}\right\}\right|\right)^{1 / q} \leq \sup _{j \in \mathbb{Z}}\left[\frac{W\left(2^{-j d} \# \Gamma_{j}\right)}{W\left(2^{-j d}\right)}\right]^{\frac{1}{q}} \\
& \leq \sup _{j \in \mathbb{Z}} H_{W}^{+}\left(\# \Gamma_{j}\right)^{1 / q} \leq H_{W}^{+}(N)^{1 / q}
\end{aligned}
$$

This proves that $h_{r}(N) \lesssim H_{W}^{+}(N)^{1 / q}$. For the converse, choose Γ consisting of N pairwise disjoint cubes all of the same size, say s_{0}. Then,

$$
\left\|1_{\Gamma}\right\|_{\lambda_{w}^{q, \infty}}=\left\|\frac{1}{W\left(s_{0}\right)^{1 / q}} \chi_{\cup_{Q \in \Gamma} Q}\right\|_{\Lambda_{w}^{q, \infty}}=\frac{W\left(N s_{0}\right)^{1 / q}}{W\left(s_{0}\right)^{1 / q}}
$$

We can select s_{0} so that the last quantity is comparable to $H_{W}^{+}(N)^{1 / q}$, concluding the proof.

5 Proof of Theorem 1.7

We say that W is of type (A) if for some $c \geq 0$ and $C>0$ it holds

$$
\left\{\begin{align*}
\frac{W\left(t_{0}\right)}{t_{0}} \leq C \frac{W\left(t_{1}\right)}{t_{1}}, & \text { for } \quad 0<t_{0}<t_{1} \leq 2 c \tag{1}\\
\frac{W\left(t_{1}\right)}{t_{1}} \leq C \frac{W\left(t_{0}\right)}{t_{0}}, & \text { for } \quad c / 2<t_{0}<t_{1}<\infty
\end{align*}\right.
$$

We say that W is of type (B) if for some $c \geq 0$ and $C>0$

$$
\left\{\begin{align*}
\frac{W\left(t_{1}\right)}{t_{1}} \leq C \frac{W\left(t_{0}\right)}{t_{0}}, & \text { for } \quad 0<t_{0}<t_{1} \leq 2 c \tag{1}\\
\frac{W\left(t_{0}\right)}{t_{0}} \leq C \frac{W\left(t_{1}\right)}{t_{1}}, & \text { for } \quad c / 2<t_{0}<t_{1}<\infty
\end{align*}\right.
$$

These conditions can easily be phrased in terms of convexity of W. Namely, when $c>0$ type (A) is the same as W being (quasi) convex for small t and (quasi) concave for large t. Similarly for type (B), with opposite convexities in W. Observe that the exact value of the constant $c>0$ is irrelevant, since we are assuming that W is doubling. By allowing the case $c=0$ we consider also the situations when W is everywhere quasi-concave (type A), or everywhere quasi-convex (type B) in the half line $(0, \infty)$.

LEMMA 5.1 If w is monotonic near 0 and ∞, then W is either of type (A) or of type (B) for some $c \geq 0$.

Proof: The proof is standard, using the inequalities

$$
\min \left\{\frac{x}{u}, \frac{y}{v}\right\} \leq \frac{x+y}{u+v} \leq \max \left\{\frac{x}{u}, \frac{y}{v}\right\}, \quad x, y, u, v>0
$$

Indeed, assume that w is increasing in ($0, a$). Then for $0<t_{0}<t_{1}<a$

$$
\begin{aligned}
\frac{W\left(t_{1}\right)}{t_{1}} & =\frac{\int_{0}^{t_{0}} w(s) d s+\int_{t_{0}}^{t_{1}} w(s) d s}{t_{0}+\left(t_{1}-t_{0}\right)} \\
& \geq \min \left\{\frac{1}{t_{0}} \int_{0}^{t_{0}} w(s) d s, \frac{1}{t_{1}-t_{0}} \int_{t_{0}}^{t_{1}} w(s) d s\right\}=\frac{W\left(t_{0}\right)}{t_{0}}
\end{aligned}
$$

where in the last step we use that, by the monotonicity of w,

$$
\frac{1}{t_{1}-t_{0}} \int_{t_{0}}^{t_{1}} w(s) d s \geq w\left(t_{0}\right) \geq \frac{1}{t_{0}} \int_{0}^{t_{0}} w(s) d s
$$

Similarly, if we assume w decreasing in (b, ∞) then for $t_{1}>t_{0}$

$$
\frac{W\left(t_{1}\right)}{t_{1}} \leq \max \left\{\frac{1}{t_{0}} \int_{0}^{t_{0}} w(s) d s, \frac{1}{t_{1}-t_{0}} \int_{t_{0}}^{t_{1}} w(s) d s\right\}
$$

so if we take $t_{0}>2 b$ the monotonicity of w gives

$$
\frac{1}{t_{1}-t_{0}} \int_{t_{0}}^{t_{1}} w(s) d s \leq w\left(t_{0}\right) \leq \frac{1}{t_{0}-b} \int_{b}^{t_{0}} w(s) d s \leq \frac{2}{t_{0}} \int_{0}^{t_{0}} w(s) d s=2 \frac{W\left(t_{0}\right)}{t_{0}}
$$

Using the doubling property of W, these inequalities can be extended respectively to the larger intervals $(0,4 b)$ and $(a / 4, \infty)$, perhaps with multiplicative constants, from which it follows that W is of type (A). The other cases are proved similarly.

The main result in this section is the following.
Proposition 5.2 Assume that W is of type (A) or (B) for some $c \geq 0$. Then for all N and $n_{j} \in \mathbb{N} \cup\{0\}$ such that $\sum_{j \in \mathbb{Z}} n_{j}=N$ we have

$$
\begin{equation*}
\min \left\{N, H_{W}^{-}(N)\right\} \lesssim \sum_{j \in \mathbb{Z}} \frac{W\left(n_{j} 2^{j d}\right)}{W\left(2^{j d}\right)} \lesssim \max \left\{N, H_{W}^{+}(N)\right\} \tag{5.3}
\end{equation*}
$$

with the involved constants independent on N and n_{j}.
Observe that the upper and lower bounds in (5.3) are best possible. Indeed, taking all $n_{j} \in\{0,1\}$ the middle expression is exactly equal to N. On the other hand, taking $n_{j_{0}}=N$ and $n_{j}=0$ for $j \neq j_{0}$, an appropriate choice of j_{0} makes the middle expression comparable to $H_{W}^{ \pm}(N)$. Thus, Theorem 1.7 is a consequence of Theorem 1.4 and Proposition 5.2 (see also Remarks 5.6 and 5.7 below).

5.1 Proof of Proposition 5.2

Assume first that W is of type (A) for some $c>0$. For simplicity, throughout the proof we shall write $\lambda_{j}=2^{j d}$. Define the sets of indices

$$
\begin{equation*}
J_{+}=\left\{j \in \mathbb{Z}: n_{j} \lambda_{j} \geq c / 2\right\} \quad \text { and } \quad J_{-}=\left\{j \in \mathbb{Z}: n_{j} \lambda_{j}<c / 2\right\} . \tag{5.4}
\end{equation*}
$$

Then using $\left(\mathrm{A}_{2}\right)$ in the first inequality

$$
C \sum_{j \in J_{+}} \frac{W\left(n_{j} \lambda_{j}\right)}{W\left(\lambda_{j}\right)} \geq \sum_{j \in J_{+}} \frac{n_{j} W\left(N \lambda_{j}\right)}{N W\left(\lambda_{j}\right)} \geq H^{-}(N) \sum_{j \in J_{+}} n_{j} / N
$$

Similarly, using $\left(\mathrm{A}_{1}\right)$ one obtains

$$
C \sum_{j \in J_{-}} \frac{W\left(n_{j} \lambda_{j}\right)}{W\left(\lambda_{j}\right)} \geq \sum_{j \in J_{-}} n_{j} .
$$

Since either $\sum_{j \in J_{+}} n_{j} \geq N / 2$ or $\sum_{j \in J_{-}} n_{j} \geq N / 2$, it follows that

$$
\sum_{j \in \mathbb{Z}} \frac{W\left(n_{j} \lambda_{j}\right)}{W\left(\lambda_{j}\right)} \geq \frac{1}{2 C} \min \left\{N, H^{-}(N)\right\}
$$

To prove the upper bounds we need three sets of indices

$$
\begin{equation*}
J_{a}=\left\{j: \quad \lambda_{j} \geq c\right\}, \quad J_{b}=\left\{j: \lambda_{j}<c / N\right\}, \quad J_{c}=\left\{j: c / N \leq \lambda_{j}<c\right\} . \tag{5.5}
\end{equation*}
$$

As before, using respectively $\left(\mathrm{A}_{2}\right)$ and $\left(\mathrm{A}_{1}\right)$ we see that

$$
\begin{aligned}
& \sum_{j \in J_{a}} \frac{W\left(n_{j} \lambda_{j}\right)}{W\left(\lambda_{j}\right)} \leq C \sum_{j \in J_{a}} n_{j} \quad \text { and } \\
& \sum_{j \in J_{b}} \frac{W\left(n_{j} \lambda_{j}\right)}{W\left(\lambda_{j}\right)} \leq C \sum_{j \in J_{b}} \frac{n_{j} W\left(N \lambda_{j}\right)}{N W\left(\lambda_{j}\right)} \leq C H^{+}(N) \sum_{j \in J_{b}} n_{j} / N .
\end{aligned}
$$

For indices $j \in J_{c}$ we use the cruder estimate

$$
\sup _{t>0} W(t) / t \leq C W(c) / c,
$$

which together with $\left(\mathrm{A}_{1}\right)$ in the second step leads to

$$
\sum_{j \in J_{c}} \frac{W\left(n_{j} \lambda_{j}\right)}{W\left(\lambda_{j}\right)} \leq C \sum_{j \in J_{c}} \frac{n_{j} \lambda_{j} W(c)}{c W\left(\lambda_{j}\right)} \leq C^{2} \sum_{j \in J_{c}} \frac{n_{j} W(c)}{N W(c / N)} \leq C^{2} H^{+}(N) \sum_{j \in J_{c}} n_{j} / N .
$$

Combining the three cases we see that

$$
\sum_{j \in \mathbb{Z}} \frac{W\left(n_{j} \lambda_{j}\right)}{W\left(\lambda_{j}\right)} \leq C^{2}\left(N+H^{+}(N)\right) \lesssim \max \left\{N, H^{+}(N)\right\} .
$$

Remark 5.6 The proof just given is also valid for W of type (A) with $c=0$. In fact, in this case the sets J_{-}, J_{b} and J_{c} are empty, so one actually obtains

$$
H^{-}(N) \lesssim \sum_{j \in \mathbb{Z}} \frac{W\left(n_{j} \lambda_{j}\right)}{W\left(\lambda_{j}\right)} \lesssim N
$$

This corresponds to the case w decreasing, as stated in (b) of Theorem 1.7.
We now turn to the case when W is of type (B), assuming for simplicity $c>0$. Using the same sets $J_{ \pm}$as in (5.4) together with $\left(\mathrm{B}_{2}\right)$ and $\left(\mathrm{B}_{1}\right)$, respectively, we obtain

$$
\begin{aligned}
\sum_{j \in J_{+}} \frac{W\left(n_{j} \lambda_{j}\right)}{W\left(\lambda_{j}\right)} & \leq C \sum_{j \in J_{+}} \frac{n_{j} W\left(N \lambda_{j}\right)}{N W\left(\lambda_{j}\right)} \leq C H^{+}(N) \sum_{j \in J_{+}} n_{j} / N \quad \text { and } \\
\sum_{j \in J_{-}} \frac{W\left(n_{j} \lambda_{j}\right)}{W\left(\lambda_{j}\right)} & \leq C \sum_{j \in J_{-}} n_{j}
\end{aligned}
$$

Summing up we get

$$
\sum_{j \in \mathbb{Z}} \frac{W\left(n_{j} \lambda_{j}\right)}{W\left(\lambda_{j}\right)} \leq 2 C \max \left\{N, H^{+}(N)\right\}
$$

We turn to the lower bound, for which we use the sets J_{a}, J_{b} and J_{c} in (5.5). As before, the first two sets are easily handled with $\left(\mathrm{B}_{2}\right)$ and $\left(\mathrm{B}_{1}\right)$

$$
\begin{aligned}
& C \sum_{j \in J_{a}} \frac{W\left(n_{j} \lambda_{j}\right)}{W\left(\lambda_{j}\right)} \geq \sum_{j \in J_{a}} n_{j} \quad \text { and } \\
& C \sum_{j \in J_{b}} \frac{W\left(n_{j} \lambda_{j}\right)}{W\left(\lambda_{j}\right)} \geq \sum_{j \in J_{b}} \frac{n_{j} W\left(N \lambda_{j}\right)}{N W\left(\lambda_{j}\right)} \geq H^{-}(N) \sum_{j \in J_{b}} n_{j} / N .
\end{aligned}
$$

For indices $j \in J_{c}$ we use

$$
C \inf _{t>0} W(t) / t \geq W(c) / c,
$$

which together with $\left(B_{1}\right)$ in the second step leads to

$$
C \sum_{j \in J_{c}} \frac{W\left(n_{j} \lambda_{j}\right)}{W\left(\lambda_{j}\right)} \geq \sum_{j \in J_{c}} \frac{n_{j} \lambda_{j} W(c)}{c W\left(\lambda_{j}\right)} \geq \frac{1}{C} \sum_{j \in J_{c}} \frac{n_{j} W(c)}{N W(c / N)} \geq \frac{1}{C} H^{-}(N) \sum_{j \in J_{c}} n_{j} / N .
$$

Now, since either $\sum_{j \in J_{a}} n_{j} \geq N / 2$ or $\sum_{j \in J_{b} \cup J_{c}} n_{j} \geq N / 2$, it follows that

$$
\sum_{j \in \mathbb{Z}} \frac{W\left(n_{j} \lambda_{j}\right)}{W\left(\lambda_{j}\right)} \geq \frac{1}{2 C^{2}} \min \left\{N, H^{-}(N)\right\}
$$

REMARK 5.7 As before, the proof is also valid for $c=0$, obtaining in this case

$$
N \lesssim \sum_{j \in \mathbb{Z}} \frac{W\left(n_{j} \lambda_{j}\right)}{W\left(\lambda_{j}\right)} \lesssim H^{+}(N)
$$

This corresponds to the situation of w increasing, as stated in (a) of Theorem 1.7.

6 Examples

We illustrate some examples of Lorentz weights to which the results of Theorem 1.7 can be applied. Consider the following general class of weights

$$
w(t)= \begin{cases}t^{\alpha_{0}-1}\left[\log \left(e+\frac{1}{t}\right)\right]^{\beta}, & 0<t \leq 1 \\ t^{\alpha_{1}-1}[\log (e+t)]^{\gamma}, & t \geq 1\end{cases}
$$

where $\alpha_{0}, \alpha_{1}>0$ and $\beta, \gamma \in \mathbb{R}$. These are typical examples of piecewise monotonic weights with different behavior near 0 and ∞. Observe that

$$
W(t) \approx \begin{cases}t^{\alpha_{0}}\left[\log \left(e+\frac{1}{t}\right)\right]^{\beta}, & 0<t \leq 1 \\ t^{\alpha_{1}}[\log (e+t)]^{\gamma}, & t \geq 1\end{cases}
$$

From this expression it is not difficult to compute $H_{W}^{ \pm}(N)$. Indeed, a straightforward (but slightly tedious) calculation gives
(a) if $a_{0}<\alpha_{1}$ then $\quad H^{-}(N) \approx N^{\alpha_{0}} /[\log (e+N)]^{\beta_{+}} \quad$ and $\quad H^{+}(N) \approx N^{\alpha_{1}}[\log (e+N)]^{\gamma_{+}}$
(b) if $a_{0}=\alpha_{1}$ then $H^{-}(N) \approx N^{\alpha_{0}} /[\log (e+N)]^{\beta_{+}+\gamma_{-}}$and $H^{+}(N) \approx N^{\alpha_{0}}[\log (e+N)]^{\beta_{-}+\gamma_{+}}$
(c) if $a_{0}>\alpha_{1}$ then $H^{-}(N) \approx N^{\alpha_{1}} /[\log (e+N)]^{\gamma_{-}} \quad$ and $\quad H^{+}(N) \approx N^{\alpha_{0}}[\log (e+N)]^{\beta_{-}}$
where for a real number x we denote

$$
x_{+}=\left\{\begin{array}{ll}
|x|, & \text { if } x \geq 0 \\
0, & \text { if } x<0
\end{array} \quad \text { and } \quad x_{-}= \begin{cases}0, & \text { if } x \geq 0 \\
|x|, & \text { if } x<0\end{cases}\right.
$$

See eg $[3, \S 3]$ for similar examples. In particular, setting $\alpha_{0}=\alpha_{1}=q / p$ and $\beta=\gamma=r q$ we obtain for the Lorentz-Zygmund spaces $L^{p, q}(\log L)^{r}$
$h_{\ell}(N) \approx \min \left\{N^{\frac{1}{q}}, N^{\frac{1}{p}}[\log (e+N)]^{-|r|}\right\} \quad$ and $\quad h_{r}(N) \approx \max \left\{N^{\frac{1}{q}}, N^{\frac{1}{p}}[\log (e+N)]^{|r|}\right\}$.
When $r=0$ we recover the results for the classical $L^{p, q}$ spaces from [5].
A second class of weights to which Theorem 1.7 is applicable is

$$
w(t)=t^{\alpha-1} \exp \left(|\ln t|^{\delta}\right), \quad \alpha>0 \quad \text { and } \quad \delta \in(0,1)
$$

Observe that the functions $\exp \left(|\ln t|^{\delta}\right)$ grow faster than $|\ln t|^{N}$ for all N but are smaller than any power t^{ε} (for t near ∞) or $1 / t^{\varepsilon}$ (for t near 0). It is not difficult to see that*

$$
\begin{equation*}
W(t) \approx t^{\alpha} \exp \left(|\ln t|^{\delta}\right) \tag{6.1}
\end{equation*}
$$

From here one easily computes

$$
H_{W}^{+}(t) \approx t^{\alpha} e^{|\ln t|^{\delta}} \quad \text { and } \quad H_{W}^{-}(t) \approx t^{\alpha} e^{-|\ln t|^{\delta}}, \quad t>0
$$

In particular, if $\alpha=q / p$ we obtain for the corresponding space Λ_{w}^{q}

$$
h_{\ell}(N) \approx \min \left\{N^{\frac{1}{q}}, N^{\frac{1}{p}} e^{-\frac{|\ln N|^{\delta}}{q}}\right\} \quad \text { and } \quad h_{r}(N) \approx \max \left\{N^{\frac{1}{q}}, N^{\frac{1}{p}} e^{\frac{|\ln N|^{\delta}}{q}}\right\} .
$$

Observe that these spaces Λ_{w}^{q} are contained in all the Lorentz-Zygmund spaces $L^{p, q}(\log L)^{r}$ for all $r>0$ (hence also in $L^{p, q}$).

[^1]
References

[1] C. Bennett and K. Rudnik, On Lorentz-Zygmund spaces. Dissertationes Math. 175 (1980).
[2] M. J. Carro, J. Raposo and J. Soria, Recent Developments in the Theory of Lorentz Spaces and Weighted Inequalities, Mem. Amer. Math. Soc. 187 (2007), no. 877.
[3] G. Garrigós, E. Hernández, and J.M. Martell, "Wavelets, Orlicz spaces and greedy bases", Appl. Compt. Harmon. Anal. 24 (2008), 70-93.
[4] G. Garrigós, E. Hernández, M. Natividade, "Democracy functions and optimal embeddings for approximation spaces". Submmitted; available in arxiv.org.
[5] E. Hernández, J.M. Martell, M. Natividade, "Quantifying Democracy of Wavelet Bases in Lorentz Spaces". Constr. Approx. (to appear); available in arxiv.org.
[6] S. Krein, J, Petunin and E. Semenov, Interpolation of Linear Operators, Translations Math. Monographs, vol. 55, Amer. Math. Soc., Providence, RI, (1992).
[7] B. Opic and L. Pick, "On generalized Lorentz-Zygmund spaces", Math. Inequal. Appl. 2, 391467 (1999).
[8] P. Soardi, "Wavelet bases in rearrangement invariant function spaces", Proc. Amer. Math. Soc. 125 no. 12 (1997), 3669-3973.
[9] V. N. Temlyakov, "Nonlinear methods of approximation", Found. Comp. Math. 3 (1) (2003), 33-107.
[10] P. Wojstaszczyk, "Greediness of the Haar system in rearrangement invariant spaces". Banach Center Publications, Warszawa, 72 (2006), 385-395.

G. Garrigós, E. Hernández, M. de Natividade
Dep. Matemáticas, Universidad Autónoma de Madrid. 28049 Madrid, Spain
eugenio.hernandez@uam.es, maria.denatividade@uam.es
G. Garrigós (current address)
Dep. Matemáticas, Universidad de Murcia. 30100 Espinardo (Murcia), Spain gustavo.garrigos@um.es

[^0]: Keywords: Lorentz spaces, greedy algorithm, democratic bases, wavelets. MSC: 41A17, 42C40, 46 E 30.
 Research supported by Grants MTM2007-60952 and MTM2010-16518, Spain. Third author supported by Instituto Nacional de Bolsas de Estudos de Angola, INABE.

[^1]: ${ }^{*}$ In fact, if $i_{W}>0$ it is always true that $W(t) \approx \int_{0}^{t} W(s) s^{-1} d s$; see eg [6, p. 57].

