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drid, 28049 Madrid, Spain

E-mail address: eugenio.hernandez@uam.es
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1. Introduction

Let (B, ‖ · ‖B) be a Banach (or quasi-Banach) space with a countable unconditional
basis B = {ej : j ∈ N}; that is, every x ∈ B can be uniquely represented as an
unconditionally convergent series x =

∑
j∈N sj ej, for some sequence of scalars {sj}.

Let ΣN denote the set of all elements y ∈ B with at most N non-null coefficients in the
basis representation y =

∑
j∈N sj ej . For x ∈ B, the N-term error of approximation

(with respect to B) is defined by

σN(x)B = inf
{
‖x− y‖B : y ∈ ΣN

}
. (1.1)

Two main questions in approximation theory concern the construction of efficient
algorithms for N -term approximation, and the characterization of the approximation
spaces

Aα
q (B) =

{
x ∈ B :

[∑
N≥1

(
NασN(x)B

)q 1

N

] 1
q
<∞

}
, (1.2)

when α > 0 and 0 < q ≤ ∞ (with the obvious modification when q =∞).
A computationally efficient method to produce N -term approximations, which has

been widely investigated in recent years, is the so called greedy algorithm. If
x =

∑
j∈N sj ej and we order the basis elements in such a way that

‖sj1 ej1‖B ≥ ‖sj2 ej2‖B ≥ ‖sj3 ej3‖B ≥ . . .

(handling ties arbitrarily), the greedy algorithm of step N is defined by the correspon-
dence

x =
∑
j∈N

sj ej ∈ B −→ GN(x) =
N∑

k=1

sjk
ejk
∈ ΣN . (1.3)

It is clear that σN(x)B ≤ ‖x−GN(x)‖B . A basis B is said to be greedy in (B, ‖ · ‖B)
if the converse inequality holds up to a constant, that is, for some c ≥ 1

1

c
‖x−GN(x)‖B ≤ σN(x)B , ∀ x ∈ B, N = 1, 2, . . .

Thus, for such bases the greedy algorithm produces an almost optimal N -term ap-
proximation, which leads often to a precise identification of the approximation spaces
Aα

q (B). A result of Konyagin and Temlyakov [19] characterizes greedy bases in a Ba-
nach space B as those which are unconditional and democratic, the latter meaning
that for some constant C > 0∥∥∥∑

γ∈Γ

eγ

‖eγ‖B

∥∥∥
B
≤ C

∥∥∥∑
γ∈Γ′

eγ

‖eγ‖B

∥∥∥
B
,

holds for all finite sets of indices Γ,Γ′ ⊂ N with the same cardinality.
Wavelet systems are well known examples of greedy bases for many function and

distribution spaces. Indeed, Temlyakov showed in [29] that the Haar basis (and any
wavelet system Lp-equivalent to it) is greedy in the Lebesgue spaces Lp(Rd) for 1 <
p < ∞. When wavelets have sufficient smoothness and decay, they are also greedy
bases for the more general Sobolev and Triebel-Lizorkin classes (see e.g. [14, 11]).

The purpose of this paper is to study the efficiency of wavelet greedy algorithms in
the class of Orlicz spaces LΦ(Rd). We recall that, as M. Soardi proved in [28], wavelet
bases are unconditional in every LΦ with non-trivial Boyd indices (see §2 below for
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definitions and precise statements). It may seem surprising that wavelet bases are not
democratic (hence not greedy) in a typical LΦ space.

Theorem 1.1 (Wojtaszczyk [31]). Let LΦ(Rd) be an Orlicz space with non trivial
Boyd indices. An admissible wavelet basis is democratic in LΦ(Rd) if and only if
LΦ(Rd) = Lp(Rd) for some 1 < p <∞.

This result makes interesting to understand how far wavelet bases are from being
democratic in general LΦ spaces. To quantify democracy of a basis B = {ej}j∈N we
shall study the following functions

hr(N) = sup
Card(Γ)=N

∥∥∥∑
γ∈Γ

eγ

‖eγ‖B

∥∥∥
B

and h`(N) = inf
Card(Γ)=N

∥∥∥∑
γ∈Γ

eγ

‖eγ‖B

∥∥∥
B
,

which we call right and left democracy functions of B (see also [9, 16]). Observe
that a basis is democratic if and only if these two quantities are comparable for all
N ≥ 1. Our main result gives a precise estimate for these functions in terms of
intrinsic properties of the space LΦ. Namely, let H+

ϕ (t) = sups>0 ϕ(ts)/ϕ(s) denote

the dilation function associated with the fundamental function ϕ of LΦ, and let H−
ϕ be

the same quantity with “sup” replaced by “inf” (see §2.1 for the precise definitions).

Theorem 1.2. Let LΦ(Rd) be an Orlicz space with non trivial Boyd indices. Then,

hr(N) ' H+
ϕ (N) and h`(N) ' H−

ϕ (N)

where the involved constants are independent of N ≥ 1.

This result will have interesting applications in the study of greedy approximation in
Orlicz spaces. We take up this task in the last part of the paper, where we investigate
Jackson and Bernstein type estimates and corresponding inclusions for the N -term
approximation spaces. In the well-known Lp case, these estimates are naturally given
in terms of the class of discrete Lorentz spaces `τ,q (see e.g. [14, 12, 7, 17, 11]). In the
general Orlicz situation we shall need weighted Lorentz sequence spaces, defined by

Λq
η =

{
s : ‖s‖Λq

η
=
[∑

k≥1

(
ηk |s∗k|

)q 1

k

] 1
q
<∞

}
,

where {s∗k} is the non-increasing rearrangement of s and the weight η = {ηk} is
a fixed increasing and doubling sequence (see §6 below). In particular, Λq

η = `τ,q

when ηk = k1/τ . Weighted Lorentz spaces have already been used in the study of
approximation spaces associated with multivariate Haar systems (see e.g. [16]). To
state our result we use the notation

s(LΦ) =
{
f ∈ LΦ(Rd) :

{
〈f, ψQ〉‖ψQ‖LΦ

}
Q
∈ s
}
, (1.4)

for any fixed sequence space s, indexed on the set of dyadic cubes in Rd.

Theorem 1.3. Let LΦ(Rd) be an Orlicz space with Boyd indices 0 < π LΦ ≤ π LΦ < 1,
and let α > 0 and 0 < q ≤ ∞. Then

Λq
kαhr(k)(L

Φ) ↪→ Aα
q (LΦ) ↪→ Λq

kαh`(k)(L
Φ). (1.5)
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These embeddings are optimal, in the sense that the largest and smallest weighted
Lorentz spaces that one can place on the left and right hand side of (1.5) are respec-
tively Λq

kαhr(k) and Λq
kαh`(k). We point out that a necessary and sufficient condition

for these two spaces to be equal is that hr(N) ' h`(N), in which case the basis is
necessarily greedy and LΦ = Lp. Theorem 1.3 leads also to the following inclusions in
terms of classical Lorentz spaces.

Corollary 1.4. Under the same hypotheses of Theorem 1.3 we have:

(a) Aα
q (LΦ) ↪→ `τ,q1(LΦ), for all 1

τ
< α + π LΦ and q1 ∈ (0,∞].

(b) `τ,q1(LΦ) ↪→ Aα
q (LΦ), for all 1

τ
> α + π LΦ and q1 ∈ (0,∞].

Finally, we point out that some of these inclusions can be described in terms of
Besov spaces of generalized smoothness [22, 15], namely,

BΨ
q (Lτ ) =

{
f : {Ψ(2j)‖f ∗ ψj‖τ} ∈ `q(Z)

}
,

for suitable increasing functions Ψ(t). We refer to §6.4 below for precise statements
and explicit results in the particular case of the Zygmund classes Lp(logL)γ(Rd).

The organization of the paper is a follows. Section 2 contains definitions and results
concerning Orlicz spaces, wavelet bases and the greedy algorithm. Some examples of
Orlicz spaces with non-democratic wavelet bases are given in Section 3. Sections
4 and 5 are devoted to the proofs of Theorems 1.2 and 1.1 respectively. Jackson
and Bernstein type estimates, as well as the inclusions described in Theorem 1.3 and
Corollary 1.4 are given in Section 6.

Remark 1.5. In 2006, after the manuscript of this paper was completed, we dis-
covered an earlier preprint of P. Wojtaszczyk [31] where a more general result than
Theorem 1.1 is proved; namely, wavelet bases are actually not greedy in any rearrange-
ment invariant space distinct from Lp. Since our approach to this problem has been
independent and different from [31], we have included our original proof of Theorem
1.1, based on the stronger result stated in Theorem 1.2.

2. Preliminaries

2.1. Basics on Orlicz spaces. In this section we recall some basic facts about Orlicz
spaces, referring to [27] and [3] for a complete account on this topic.

A Young function is a convex non-decreasing function Φ : [0,∞) → [0,∞] so that
limt→0+ Φ(t) = 0 and limt→+∞ Φ(t) =∞. Throughout this paper we shall assume that
Φ is strictly increasing and everywhere finite1, so that it is a continuous bijection of
[0,∞). Given such Φ, the Orlicz space LΦ(Rd) is the set of all measurable functions
f : Rd −→ C so that Φ(|f(x)|/λ) ∈ L1(Rd) for some λ > 0. It is well-known that
LΦ(Rd) becomes a rearrangement invariant Banach function space when endowed with
the Luxemburg norm

‖f‖LΦ(Rd) = inf
{
λ > 0 :

∫
Rd

Φ

(
|f(x)|
λ

)
dx ≤ 1

}
(2.1)

(see e.g. [3, p. 269]). The fundamental function of a rearrangement invariant space X
in Rd is defined by ϕ(t) = ‖χA‖X, where A ⊂ Rd is any measurable set with Lebesgue

1This restriction avoids a few pathological cases which fall outside the scope of this paper.
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measure |A| = t. In the particular case of Orlicz spaces X = LΦ(Rd), the fundamental
function can be computed explicitly in terms of Φ, by means of the formula

ϕ(t) =
1

Φ−1(1/t)
, t > 0 (2.2)

(see [3, p. 276]). Observe that ϕ is a continuous strictly increasing bijection of [0,∞).
Moreover, it can be shown that ϕ is a quasi-concave function, that is, ϕ(t)/t is non-
increasing [3, p. 67].

The Boyd indices, πX , πX of a rearrangement invariant function space X are usually
defined in terms of the norms of the so-called “dilation operators” [3, p. 149]. However,
in the special case of Orlicz spaces X = LΦ, the Boyd indices can be computed directly
from the fundamental function ϕ. More precisely, if we denote the dilation function
associated with ϕ by

H+
ϕ (t) = sup

s>0

ϕ(st)

ϕ(s)
, t > 0, (2.3)

then the lower and upper Boyd indices of LΦ(Rd) are given by

π LΦ = iϕ = lim
t→0+

logH+
ϕ (t)

log t
= sup

0<t<1

logH+
ϕ (t)

log t

π LΦ = Iϕ = lim
t→∞

logH+
ϕ (t)

log t
= inf

1<t<∞

logH+
ϕ (t)

log t

(2.4)

(see [3, p. 277], [20, p. 54]). In particular, 0 ≤ iϕ ≤ Iϕ ≤ 1. Assuming further that
iϕ > 0 it follows that

ϕ(st) ≤ Cε max{siϕ−ε , sIϕ+ε}ϕ(t) , s, t > 0; (2.5)

and
ϕ(st) ≥ Cε min{siϕ−ε , sIϕ+ε}ϕ(t) , s, t > 0 (2.6)

for every ε > 0 and some constant Cε > 0 (see e.g. [18, p. 3]).
In our applications we shall only consider Orlicz spaces with non-trivial Boyd in-

dices, that is, 0 < π LΦ ≤ π LΦ < 1. In this case, from (2.5) and (2.6) we see that

lim
s→0+

ϕ(s)

s
= lim

t→∞

Φ(t)

t
=∞ and lim

s→∞

ϕ(s)

s
= lim

t→0+

Φ(t)

t
= 0.

Thus, with the terminology of [27], Φ will be anN-function (or “nice” Young function).
Finally we shall denote by ∆2 the set of all non negative functions h(t) in [0,∞)

which are doubling, i.e., 0 ≤ h(2 t) ≤ C h(t) for some constant C > 0 and all t > 0. It
is not difficult to see from (2.2)–(2.6) that π LΦ > 0 is actually equivalent to Φ ∈ ∆2.
In fact, if (Φ,Ψ) is a pair of complementary Young functions (see e.g. [27, p. 6] for
the precise definition), then Φ,Ψ ∈ ∆2 is equivalent to say that (LΦ, LΨ) is a pair of
reflexive Orlicz spaces with 0 < π LΦ ≤ π LΦ < 1. Some of these properties will be
used below without further mention.

Example 2.1. When Φ(t) = tp, 1 ≤ p <∞, then LΦ(Rd) = Lp(Rd) and ϕ(t) = t1/p.
Hence, H+

ϕ (t) = t1/p, which implies π LΦ = π LΦ = 1/p.

Example 2.2. When Φ(t) = tp
[
log(e + t)

]α
, with α > 0 and 1 ≤ p < ∞, then LΦ

is the classical Zygmund space Lp (logL)α. In this case, ϕ(t) ' t1/p (1 + log+ 1/t)α/p

and H+
ϕ (t) ' t1/p (1 + log+ 1/t)α/p, which implies π LΦ = π LΦ = 1/p.
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Example 2.3. Let Φ(t) ' tp
[
log(e+ t)

]α
, with α < 0 and 1 < p <∞. Then ϕ(t) '

t1/p (1+log+ 1/t)α/p and H+
ϕ (t) ' t1/p/(1+log+ t)α/p, which implies π LΦ = π LΦ = 1/p.

Example 2.4. Consider the Young function

Φ(t) =

{
t2 if 0 ≤ t ≤ 1
t4 if t ≥ 1.

In this case one has LΦ = L2 ∩ L4 with equivalence of norms: ‖f‖LΦ ' ‖f‖L2∩L4 =
max{‖f‖L2 , ‖f‖L4}. Moreover, it is not difficult to see from this identity and the
definition of fundamental function that ϕ(t) = H+

ϕ (t) = t1/4χ[0,1)(t) + t1/2χ[1,∞)(t).
Therefore π LΦ = 1/4, π LΦ = 1/2.

Example 2.5. Consider now the Young function

Φ(t) =

{
t4 if 0 ≤ t ≤ 1
(2 t− 1)2 if t ≥ 1

'
{
t4 if 0 ≤ t ≤ 1
t2 if t ≥ 1

Then LΦ = L2 + L4 with equivalence of norms: ‖f‖LΦ ' ‖f‖L2+L4 = inf{‖g‖L2 +
‖h‖L4}, where the infimum is taken over all decompositions f = g + h with g ∈ L2

and h ∈ L4. The fundamental function is given by ϕ(t) ' t1/2χ[0,1)(t) + t1/4χ[1,∞)(t),
while H+

ϕ (t) is comparable to the one given in the previous example. Thus we obtain
again π LΦ = 1/4, π LΦ = 1/2.

Remark 2.6. In the last two examples the exponents 2 and 4 can be replaced by any
p, q ∈ [1,∞), leading to the Orlicz spaces Lp∩Lq and Lp +Lq, which satisfy analogous
properties after obvious modifications.

2.2. Wavelet bases and Orlicz spaces. Let D = {Qj,k = 2−j([0, 1)d + k) : j ∈
Z, k ∈ Zd } denote the set of all dyadic cubes in Rd. We say that a finite collection of
functions {ψ1, . . . , ψL} ⊂ L2(Rd) is an orthonormal wavelet family if the system{

ψ`
Qj,k

(x) = 2jd/2ψ`(2jx− k) : j ∈ Z, k ∈ Zd, ` = 1, . . . , L
}

(2.7)

forms an orthonormal basis of L2(Rd) .We will say that the wavelet family is admissible
if in addition the system in (2.7) is an unconditional basis of Lp(Rd) for all 1 < p <
∞. The reader can consult [23, 13] for constructions, examples and properties of
orthonormal wavelets. Admissible wavelets include the d-dimensional Haar system,
wavelets arising from r-regular multiresolution analyses (see [23, p. 22]), wavelets
belonging to the regularity class R0 (as defined in [13, p. 64] for d = 1), and actually
any orthonormal wavelet in L2(Rd) with very mild decay conditions (see [30, 26]).

M. Soardi proved in [28] that an admissible wavelet basis {ψ`
Q}Q∈D, `=1,...,L is also

an unconditional basis for any Orlicz space LΦ(Rd) with non-trivial Boyd indices
0 < π LΦ ≤ π LΦ < 1. That is, every function f ∈ LΦ(Rd) can be written in the form

f =
L∑

`=1

∑
Q∈D

〈f , ψ`
Q〉ψ`

Q , (2.8)

with unconditional convergence in LΦ(Rd), and moreover

‖f‖LΦ(Rd) '

∥∥∥∥∥∥
(

L∑
`=1

∑
Q∈D

|〈f , ψ`
Q〉|2|Q|−1χQ(·)

)1/2
∥∥∥∥∥∥

LΦ(Rd)

(2.9)
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This result was derived from the corresponding wavelet characterization of Lebesgue
spaces Lp(Rd), 1 < p < ∞, by applying Boyd’s interpolation theorem for sublinear
operators.

In view of (2.9), we will denote by fΦ the space of all sequences of complex numbers
s = {s`

Q}Q∈D,`=1,...,L such that

‖s‖fΦ =
∥∥∥( L∑

`=1

∑
Q∈D

|s`
Q|2|Q|−1χQ(·)

)1/2∥∥∥
LΦ(Rd)

<∞. (2.10)

Thus, the correspondence f 7−→ {s`
Q} = {〈f, ψ`

Q〉}Q∈D,`=1,...,L defines an isomorphism

from LΦ onto fΦ. As usual, this will reduce our research about N -term approximation
in Orlicz spaces to prove the corresponding results on the sequence spaces fΦ (see §6
below).

Remark 2.7. For the sake of simplicity, we shall assume throughout the paper that
the number L = 1. Our theorems will remain valid for any L ≥ 1, since the finite sum
appearing in the definition of fΦ is completely harmless in our computations.

2.3. Greedy bases and democracy. We defined in the introduction the notion
of greedy basis in a quasi-normed Banach space (B, ‖ ‖B). We also mentioned the
result of Konyagin and Temlyakov [19] characterizing greedy bases as those which are
unconditional and democratic. For simplicity, given a basis B = {ej}j≥1 in B we shall
denote the normalized characteristic function of a set of indices Γ ⊂ N by

1̃Γ = 1̃
(B,B)
Γ =

∑
j∈Γ

ej

‖ej‖B
.

Thus, B is democratic in B if there exists C ≥ 1 such that∥∥1̃Γ

∥∥
B ≤ C

∥∥1̃Γ′
∥∥

B (2.11)

for all finite sets of indices Γ,Γ′ ⊂ N with Card Γ = Card Γ′. Quite often one can
show democracy by finding a function h : N −→ R+ for which

1
C
h(Card Γ) ≤

∥∥1̃Γ

∥∥
B ≤ C h(Card Γ), ∀ Γ ⊂ D. (2.12)

In the case of wavelet bases, many classical function and distribution spaces satisfy
(2.12) with h(N) = N1/p. Indeed, this is the situation for Lebesgue spaces Lp(Rd)
when 1 < p < ∞ (see [29]); for Hardy spaces Hp(Rd), 0 < p ≤ 1 and Sobolev spaces
Ẇ s,p(Rd), 1 < p <∞ (see [14]); and more generally for the family of Triebel-Lizorkin
spaces Ḟ s

p,r(Rd) with 0 < p < ∞, s ∈ R, 0 < r ≤ ∞ (under the usual decay and
smoothness assumptions, and with the standard modification of the basis in the case
of inhomogeneous spaces; see [11]). Thus, wavelet bases are democratic and hence
greedy in all these spaces.

Wavelet bases, however, are not democratic in other classical spaces, such as BMO,
the Besov classes Ḃα

p,q with p 6= q, and as we shall see below, Orlicz spaces LΦ distinct
from Lp. To deal with these cases the following notion will be useful:

Definition 2.8. Let B be an unconditional basis in a quasi-Banach space B. The
right-democracy function associated with B is defined by

hr(N) = sup
Card(Γ)=N

∥∥1̃Γ

∥∥
B, N = 1, 2, . . .
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Analogously, the left-democracy function associated with B is defined by

h`(N) = inf
Card(Γ)=N

∥∥1̃Γ

∥∥
B, N = 1, 2, . . .

Observe that B is democratic in B if and only if hr(N) ≤ C h`(N) for all N ≥ 1 and
some C > 0. Also, if the ρ-triangle inequality holds in B and B is an unconditional
basis we have

c ≤ hl(N) ≤ hr(N) ≤ N1/ρ, ∀ N ≥ 1,

for some c > 0 (we thank an anonymous referee for pointing out this fact).

3. Examples

We show with a few examples that, in general, admissible wavelet bases are not
democratic in Orlicz spaces. In order to do so one needs to estimate

∥∥1̃Γ

∥∥
LΦ in terms

of Card Γ. This can be easily done when Γ is a collection of pairwise disjoint dyadic
cubes of equal size.

Lemma 3.1. Let LΦ(Rd) be an Orlicz space with 0 < π LΦ ≤ π LΦ < 1, and let
B = {ψQ : Q ∈ D} be an admissible wavelet basis. If Γ = {Q1, Q2, . . . , QN} ⊂ D is a
pairwise disjoint family then∥∥1̃Γ

∥∥
LΦ(Rd)

'
∥∥∥∥∑

Q∈Γ

χQ(·)
ϕ(|Q|)

∥∥∥∥
LΦ(Rd)

. (3.1)

If we further assume that all the cubes in Γ are of the same size, say |Q| = 2k d for all
Q ∈ Γ and some k ∈ Z, then ∥∥1̃Γ

∥∥
LΦ(Rd)

' ϕ(N 2k d)

ϕ(2k d)
. (3.2)

Proof. For a single element ψQ of the basis B we have, by (2.9),

∥∥ψQ

∥∥
LΦ(Rd)

'
∥∥∥(χQ(·)
|Q|

)1/2∥∥∥
LΦ(Rd)

=
ϕ(|Q|)
|Q|1/2

. (3.3)

Thus, using again the expression of the norm in (2.9) it follows that∥∥1̃Γ

∥∥
LΦ(Rd)

=
∥∥∥∑

Q∈Γ

ψQ

‖ψQ‖LΦ(Rd)

∥∥∥
LΦ(Rd)

'
∥∥∥∥(∑

Q∈Γ

1

||ψQ||2LΦ(Rd)

χQ(·)
|Q|

)1/2∥∥∥∥
LΦ(Rd)

'
∥∥∥∥(∑

Q∈Γ

χQ(·)
ϕ(|Q|)2

)1/2∥∥∥∥
LΦ(Rd)

=

∥∥∥∥∑
Q∈Γ

χQ(·)
ϕ(|Q|)

∥∥∥∥
LΦ(Rd)

,

where in the last equality we have used that the cubes in Γ are pairwise disjoint.
Assuming further that |Q| = 2k d for every Q ∈ Γ, we obtain∥∥1̃Γ

∥∥
LΦ(Rd)

' 1

ϕ(2kd)

∥∥∥∥∑
Q∈Γ

χQ(·)
∥∥∥∥

LΦ(Rd)

=
1

ϕ(2kd)
ϕ
(∣∣ ⋃

Q∈Γ

Q
∣∣) =

ϕ(N2kd)

ϕ(2kd)
.

�
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Remark 3.2. Defining

h+
ϕ (t) = sup

k∈Z

ϕ(t2kd)

ϕ(2kd)
, h−ϕ (t) = inf

k∈Z

ϕ(t2kd)

ϕ(2kd)
, (3.4)

it follows from Lemma 3.1 that if Γ is a family of disjoint cubes of the same size then

h−ϕ (Card Γ) . ‖1̃Γ

∥∥
LΦ(Rd)

. h+
ϕ (Card Γ). (3.5)

Moreover, this estimate is sharp in the sense that we can find families Γ for which
‖1̃Γ

∥∥
LΦ(Rd)

is comparable to either h−ϕ (Card Γ) or h+
ϕ (Card Γ). Thus, if h+

ϕ (N) and

h−ϕ (N) are not comparable for N ≥ 1 it follows that admissible wavelet bases are not
democratic in Orlicz spaces.

Proposition 3.3. For the Orlicz spaces L2∩L4 and L2+L4 given in Examples 2.4 and
2.5 we have that h−ϕ (N) ' N1/4 and h+

ϕ (N) ' N1/2 when N ∈ N. Thus, admissible
wavelet bases are not democratic for these spaces.

Recall that in the previous examples we have π LΦ 6= π LΦ . We also show that
there are Orlicz spaces with π LΦ = π LΦ for which admissible wavelet bases are not
democratic.

Proposition 3.4. Let α ∈ R and 1 < p < ∞. Then, the Orlicz space Lp(logL)α

satisfies h−ϕ (N) ' N1/p(1 + logN)−α/p and h+
ϕ (N) ' N1/p when α ≥ 0 and h−ϕ (N) '

N1/p and h+
ϕ (N) ' N1/p (1 + logN)−α/p when α < 0. Thus, admissible wavelet bases

are neither democratic nor greedy for Lp(logL)α with α 6= 0.

We conclude this section with the simple proof of the previous two propositions.

Proof of Proposition 3.3. We first obtain the desired estimates for h−ϕ and h+
ϕ . Let

us observe that these expressions are not comparable. Thus, by Remark 3.2, in both
cases, we can conclude that admissible wavelet bases are not democratic

We do the case LΦ = L2 ∩ L4 where Φ is given in Example 2.4 as the other case
can be proved similarly. For N ∈ N, we have

ϕ(Ns)

ϕ(s)
=

 N1/4 if s ≤ 1/N
N1/2 s1/4 if 1/N < s ≤ 1
N1/2 if s > 1 .

Hence,

h+
ϕ (N) = sup

k∈Z

ϕ(N2kd)

ϕ(2kd)
= N1/2 and h−ϕ (N) = inf

k∈Z

ϕ(N2kd)

ϕ(2kd)
= N1/4 .

�

Proof of Proposition 3.4. We do the case α ≥ 0 as the other case can be proved
similarly. As before it suffices to get the desired estimates for h−ϕ and h+

ϕ . Recall from
Example 2.2 that the fundamental function associated with Lp (logL)α is given by
ϕ(t) ' t1/p (1 + log+ 1/t)α/p. Then,

ϕ(Ns)

ϕ(s)
'


N1/p

( 1+log 1
Ns

1+log 1/s

)α/p
if s ≤ 1/N

N1/p
(
1 + log 1/s

)−α/p
if 1/N < s ≤ 1

N1/p if s > 1 .

(3.6)
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Thus, h−ϕ (N) ' N1/p (1 + logN)−α/p and h+
ϕ (N) ' N1/p. �

4. Left and right democracy functions for Orlicz spaces

We saw in (3.5) that for any Γ ⊂ D consisting of disjoint cubes of the same size we
have

h−ϕ (Card Γ) . ‖1̃Γ

∥∥
LΦ(Rd)

. h+
ϕ (Card Γ).

Our main theorem in this section shows that these inequalities remain true for
arbitrary Γ ⊂ Q. We state this result in a slightly different way than Theorem 1.2 in
the Introduction.

Theorem 4.1. Let LΦ(Rd) be an Orlicz space with indices 0 < π LΦ ≤ π LΦ < 1 and
let B = {ψQ : Q ∈ D} be an admissible wavelet basis. Then

h−ϕ (Card Γ) .
∥∥1̃Γ

∥∥
LΦ(Rd)

. h+
ϕ (Card Γ), ∀ Γ ⊂ D. (4.1)

In particular, the left and right democracy functions associated with B in LΦ(Rd)
satisfy h` ' h−ϕ and hr ' h+

ϕ .

Remark 4.2. As mentioned in Remark 3.2, the estimates in (4.1) are best possible,
as one can obtain comparable quantities on the left or right hand sides by considering
sets Γ consisting only of disjoint cubes of the same size.

The rest of this section is devoted to prove Theorem 4.1. We first present a very
simple argument for the case of pairwise disjoint cubes. The general case is more
technical and will require a linearization argument and some combinatorics about
dyadic intervals.

4.1. Proof of Theorem 4.1: The case of disjoint cubes. Assume first that Γ =
{Q1, . . . , QN} consists of pairwise disjoint cubes. Let λ = h+

ϕ (N), so that ϕ(N |Q|) ≤
λϕ(|Q|), for all Q ∈ Γ . Therefore, since the elements of Γ are disjoint and Φ is
increasing∫

Rd

Φ

∑Q∈Γ
χQ(x)

ϕ(|Q|)

λ

 dx =
∑
Q∈Γ

Φ

(
1

λϕ(|Q|)

)
|Q| ≤

∑
Q∈Γ

Φ

(
1

ϕ(N |Q|)

)
|Q|

=
∑
Q∈Γ

Φ

(
Φ−1

(
1

N |Q|

))
|Q| = 1 .

Thus, by (3.1) and (2.1) we have∥∥1̃Γ

∥∥
LΦ(Rd)

'
∥∥∥∥∑

Q∈Γ

χQ(·)
ϕ(|Q|)

∥∥∥∥
LΦ(Rd)

≤ h+
ϕ (N) .

The lower estimate is obtained in a similar way: take now λ < h−ϕ (N) so that
ϕ(N |Q|) > λϕ(|Q|) for all Q ∈ Γ . Then, reasoning as above∫

Rd

Φ

∑Q∈Γ
χQ(x)

ϕ(|Q|)

λ

 dx =
∑
Q∈Γ

Φ

(
1

λϕ(|Q|)

)
|Q| >

∑
Q∈Γ

Φ

(
1

ϕ(N |Q|)

)
|Q|
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=
∑
Q∈Γ

Φ

(
Φ−1

(
1

N |Q|

))
|Q| = 1 .

Thus, (3.1)) and (2.1)) yield∥∥1̃Γ

∥∥
LΦ(Rd)

'
∥∥∥∥∑

Q∈Γ

χQ(·)
ϕ(|Q|)

∥∥∥∥
LΦ(Rd)

≥ h−ϕ (N) .

4.2. Proof of Theorem 4.1: The general case. In the case of disjoint cubes just
considered we have two important features. First, Lemma 3.1 allows us to “linearize”
the square function in (2.9). Second, for the estimates obtained in the previous ar-
gument it is crucial that the sets involved are disjoint. For general families of cubes
we are going to follow the same scheme. First we “linearize” the square function and
then we dominate this by an expression involving only disjoint subsets from Γ. This
last argument is the most subtle, since it requires a careful selection procedure on
dyadic cubes.

4.2.1. Linearization of the square function. Given a finite set Γ ⊂ D, we shall denote

SΓ(x) =

(∑
Q∈Γ

χQ(x)

ϕ(|Q|)2

)1/2

, (4.2)

so that, by (2.9) and (3.3), we have ‖1̃Γ‖LΦ(Rd) ' ‖SΓ‖LΦ(Rd).
For every x ∈

⋃
Q∈ΓQ, we define Qx as the smallest (hence unique) cube in Γ

containing x. It is clear that

SΓ(x) ≥ χQx(x)

ϕ(|Qx|)
, ∀ x ∈

⋃
Q∈Γ

Q, (4.3)

since the left hand side contains at least the cube Qx (and possibly more). We now
show that the reverse inequality holds with some universal constant. Indeed, if we
enlarge the sum to include all dyadic cubes containing Qx we have

SΓ(x)2 =
∑
Q∈Γ

χQ(x)

ϕ(|Q|)2
≤
∑

Q⊃Qx
Q∈D

1

ϕ(|Q|)2
=

∞∑
j=0

1

ϕ(2jd|Qx|)2
.

Since we are working in an Orlicz space with iϕ > 0, by (2.6) we can choose 0 < ε < iϕ
and find Cε > 0 such that ϕ(2jd|Qx|) ≥ Cε2

jd(iϕ−ε)ϕ(|Qx|) . Therefore,

SΓ(x)2 ≤ C

∞∑
j=0

1

22jd(iϕ−ε)ϕ(|Qx|)2
= C

χQx(x)

ϕ(|Qx|)2
.

This and (4.3) show that

SΓ(x) ' χQx(x)

ϕ(|Qx|)
. (4.4)

This linearization procedure has been used by other authors in the context of N -term
approximation (see e.g. [14, 6, 11]).
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Observe from (4.4) that SΓ(x) ' SΓmin
(x), where Γmin denotes the family of minimal

cubes in Γ, that is,

Γmin =
{
Qx : x ∈

⋃
Q∈Γ

Q
}
.

Moreover, as we shall see below, the cardinalities of Γ and Γmin are comparable, so
that for our purposes only the cubes in Γmin will be relevant. However, we still need
a finer selection, since the cubes in Γmin are not necessarily pairwise disjoint.

4.2.2. Shaded and lighted cubes. We start with an example. Suppose we have a family
Γ of 10 cubes which have been arranged by generations as in Figure 1.

Q1

Q2

Q3 Q4

Q5 Q6

Q7 Q8

Q9 Q10

Light
? ? ? ?

Q1

Q2

Q3 Q4

Q5 Q6

Q7 Q8

Q9 Q10

Figure 1: Γ = {Q1, . . . , Q10} Figure 2: Shade & Light

Projecting a beam of light as shown in Figure 2, some parts of a cube Qi receive
light: we call these parts Light(Qi). Some other portion of the cube Qi is shaded:
we call this portion Shade(Qi). The shaded parts of the cubes given in Figure 1 are
represented with thicker lines in Figure 2. Observe that the minimal cubes are those
with some portion of light, as x ∈ Light(Qi) if and only if Qx = Qi. In this example,
Γmin = Γ \ {Q6}. Notice also that {Light(Q) : Q ∈ Γmin} is a disjoint collection.

Now we give precise definitions: given a fixed Γ ⊂ D, for any Q ∈ Γ we define the
Shade of Q as the union of all cubes from Γ strictly contained in Q

Shade(Q) =
⋃{

R : R ∈ Γ , R ( Q
}
.

We define the Light of Q as

Light(Q) = Q \ Shade(Q).

As mentioned above it is clear that Q ∈ Γmin if and only if Light(Q) 6= ∅, and moreover⋃
Q∈Γ

Q =
⋃

Q∈Γmin

Light(Q),

where the sets in the last union are pairwise disjoint. Therefore, by (4.4) we can write

SΓ(x) '
∑

Q∈Γmin

χLight(Q)(x)

ϕ(|Q|)
, (4.5)

where in the last sum there is at most one non-zero term.
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Next we classify the cubes as shaded if the shade is a big portion of the cube
or lighted if this does not happen. Precisely, a cube Q ∈ Γ is called shaded if

|Shade(Q)| > 2d−1
2d |Q| , and we write ΓS for the collection of cubes from Γ which are

shaded. A cube Q from Γ is called lighted if it is not shaded, that is, if |Light(Q)| ≥
1
2d |Q|. We write ΓL for the collection of all cubes from Γ that are lighted. Observe
that ΓL ⊂ Γmin.

Lemma 4.3. With the above definitions we have

2d − 1

2d
Card(Γ) ≤ Card(ΓL) ≤ Card(Γmin) ≤ Card(Γ) , ∀ Γ ⊂ D.

Proof. Clearly, as we have observed before Card(ΓL) ≤ Card(Γmin) ≤ Card(Γ). Thus,
we need to prove the lefthand side inequality. Given Q ∈ D, we write Qk, k =
1, 2, . . . , 2d for the 2d dyadic cubes contained in Q of size 2−d |Q|. For Q ∈ ΓS and
k = 1, 2, . . . 2d, let Qk

] be a biggest cube from Γ with Qk
] ⊂ Qk. Notice that the cubes

Qk
] exist for every Q ∈ ΓS: otherwise, if for some k0 ∈ {1, 2, . . . , 2d} there is no cube

from Γ contained in Qk0 we have that Qk0 ⊂ Light(Q) and then

|Shade(Q)| ≤ |Q \Qk0 | = (1− 2−d) |Q| = 2d − 1

2d
|Q| ,

contradicting the definition of ΓS .
The procedure just described assigns 2d different cubes from Γ to each Q ∈ ΓS,

namely Q1
] , Q

2
] , . . . , Q

2d

] , and neither of them coincides with Q.

We claim that if Q,R ∈ ΓS and Q 6= R, then we necessarily have Qk
] 6= R`

] for

all 1 ≤ k, ` ≤ 2d. This is trivially true if Q ∩ R = ∅ . Without loss of generality
we may assume Q ( R and also Q ⊂ R1 . It follows from here that Qk

] 6= R`
] for

all k = 1, 2, . . . , 2d and all ` = 2, 3, . . . , 2d since Qk
] ⊂ R1 while R`

] ⊂ R` for ` 6= 1.

Moreover, as R1
] is the biggest cube in Γ contained in R1 and Q ⊂ R1 we have that

Q ⊂ R1
] ⊂ R1. Hence, for all k = 1, . . . , 2d we have Qk

] ( Q ⊂ R1
] and thus Qk

] 6= R1
] .

In short, to each Q ∈ ΓS we have assigned 2d different cubes in Γ and these are not
associated to any other cube in ΓS. We conclude that 2d Card(ΓS) ≤ Card(Γ) and, as
desired,

Card(ΓL) = Card(Γ)− Card(ΓS) ≥ Card(Γ)− 1

2d
Card(Γ) =

2d − 1

2d
Card(Γ).

�

4.2.3. Proof of (4.1). We can now conclude easily the proof of Theorem 4.1. By (4.2)
and (4.5), we know that∥∥1̃Γ

∥∥
LΦ(Rd)

'
∥∥∥ ∑

Q∈Γmin

χLight(Q)(x)

ϕ(|Q|)

∥∥∥
LΦ(Rd)

, (4.6)

so we only have to estimate this last expression. Let λ = h+
ϕ (Card(Γmin)), so that

ϕ(|Q| Card(Γmin)) ≤ λϕ(|Q|) for all Q ∈ Γmin . Since {Light(Q) : Q ∈ Γmin} is a
disjoint collection, we have∫

Rd

Φ

∑Q∈Γmin

χLight(Q)(x)

ϕ(|Q|)

λ

 dx =
∑

Q∈Γmin

Φ

(
1

λϕ(|Q|)

)
|Light(Q)|
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≤
∑

Q∈Γmin

Φ
(

1
ϕ(|Q| Card(Γmin))

)
|Q| =

∑
Q∈Γmin

Φ
(
Φ−1

(
1

|Q| Card(Γmin)

))
|Q| = 1 .

Hence, by (4.6) and Lemma 4.3, and since h+
ϕ is non-decreasing, we have∥∥1̃Γ

∥∥
LΦ(Rd)

. h+
ϕ (Card(Γmin)) ≤ h+

ϕ (Card Γ).

We next show how to obtain the left hand side of (4.1). By (4.6), and using that
ΓL ⊂ Γmin, we can write∥∥1̃Γ

∥∥
LΦ(Rd)

&
∥∥∥ ∑

Q∈ΓL

χLight(Q)(x)

ϕ(|Q|)

∥∥∥
LΦ(Rd)

Now let λ < h−ϕ (2−d Card(ΓL)) so that λϕ(|Q|) < ϕ(|Q| 2−d Card(ΓL)) for any Q ∈
ΓL . Proceeding as before, using that |Light(Q)| ≥ 2−d |Q| for Q ∈ ΓL, we deduce that∫

Rd

Φ

∑Q∈ΓL

χLight(Q)(x)

ϕ(|Q|)

λ

 dx =
∑

Q∈ΓL

Φ

(
1

λϕ(|Q|)

)
|Light(Q)|

>
∑

Q∈ΓL

Φ

(
1

ϕ(2−d|Q| Card(ΓL))

)
2−d|Q| = 1 .

Thus, by (2.1), Lemma 4.3 and by (2.6) with s = (2d − 1) 2−2d and t = Card(Γ) we
obtain∥∥1̃Γ

∥∥
LΦ(Rd)

≥ h−ϕ (2−d Card(ΓL)) ≥ h−ϕ ((2d − 1) 2−2d Card(Γ)) ≥ C h−ϕ (Card Γ) .

This completes the proof of Theorem 4.1. �

5. Greediness of wavelet bases in LΦ.

In this section we prove Theorem 1.1. Some of the arguments have been adapted
from [27] (see, however, an alternative proof in [31, §2]). Throughout the section
we shall assume that ϕ : (0,∞) → (0,∞) is a non-decreasing function so that
limt→0+ ϕ(t) = 0, limt→∞ ϕ(t) =∞, and, in addition, ϕ ∈ ∆2, that is, ϕ(2 t) ≤ C0 ϕ(t),
for all t > 0.

Recall the definitions of H+
ϕ (t) and h±ϕ (t) in (2.3) and (3.4), and let us also introduce

H−
ϕ (t) = inf

s>0

ϕ(st)

ϕ(s)
, t > 0 .

The following lemma is a trivial consequence of the doubling property.

Lemma 5.1. Given ϕ as above we have

C−1
0 h−ϕ (t) ≤ H−

ϕ (t) ≤ h−ϕ (t) and h+
ϕ (t) ≤ H+

ϕ (t) ≤ C0 h
+
ϕ (t), ∀ t > 0. (5.1)

Our second lemma follows an argument presented in [27, p. 31–32] in the context
of Young functions, which we have adapted to our situation.

Lemma 5.2. Let ϕ be as above and suppose that there exists C1 > 0 such that

H+
ϕ (N) ≤ C1H

−
ϕ (N) , for all N = 1, 2, 3, . . . . (5.2)

Then, there exist c0 ≥ 1 and 0 < α <∞ such that

c−1
0 tα ≤ ϕ(t) ≤ c0 t

α , for all t > 0 . (5.3)



WAVELETS, ORLICZ SPACES, AND GREEDY BASES 15

Proof. The proof is divided into several steps.

Step 1. H+
ϕ (t) ≤ C0C1H

−
ϕ (t) for all t > 0.

Let t ≥ 1 and choose N such that N ≤ t < N + 1. Using that ϕ is non-decreasing,
ϕ ∈ ∆2 and (5.2), we have

H+
ϕ (t) ≤ H+

ϕ (N + 1) ≤ H+
ϕ (2N) ≤ C0H

+
ϕ (N) ≤ C0C1H

−
ϕ (N) ≤ C0C1H

−
ϕ (t) .

The inequality for t ∈ (0, 1) follows from the previous case and H+
ϕ (t) = 1/H−

ϕ (1/t).

Step 2. There exists c0 ≥ 1 such that c−1
0 ϕ(t)ϕ(s) ≤ ϕ(ts) ≤ c0 ϕ(t)ϕ(s) for all t > 0

and s ∈ (0, 1].

From Step 1 we deduce

ϕ(ts)

ϕ(s)
≤ H+

ϕ (t) ≤ C0C1H
−
ϕ (t) ≤ C0C1

ϕ(t · 1)

ϕ(1)
.

On the other hand, Step 1 also implies

ϕ(t) = ϕ(1)
ϕ(t · 1)

ϕ(1)
≤ ϕ(1)H+

ϕ (t) ≤ ϕ(1)C0C1H
−
ϕ (t) ≤ ϕ(1)C0C1

ϕ(ts)

ϕ(s)
.

Step 3. There exists 0 ≤ α <∞ such that ϕ(t) ≤ c0 t
α for all t ∈ (0, 1].

Let f1(u) = log[c0/ϕ(e−u)]. For all u, v ≥ 0, Step 2 yields

f1(u+ v) = log c0
ϕ(e−u e−v)

≤ log
c20

ϕ(e−u) ϕ(e−v)
= f1(u) + f1(v) . (5.4)

Let u ≥ v > 0 and choose n ∈ N such that nv ≤ u < (n + 1)v . Then, by (5.4) and
the fact that f1 is non-decreasing we obtain

f1(u) ≤ f1((n+ 1)v) ≤ (n+ 1) f1(v) .

Since nv + v ≤ u+ v we have (n+ 1) ≤ u+v
v
, and hence

f1(u) ≤
u+ v

v
f1(v) , u ≥ v > 0 .

Thus, for all v > 0,

lim sup
u→∞

f1(u)

u
≤ lim sup

u→∞

u+ v

u

f1(v)

v
=
f1(v)

v
, (5.5)

which shows that

0 ≤ lim sup
u→∞

f1(u)

u
≤ lim inf

v→∞

f1(v)

v
.

Consequently, there exists α ≥ 0 such that limu→∞
f1(u)

u
= α . Using (5.5) it follows

that α < ∞ and also that for v > 0, we obtain α ≤ f1(v)
v

= 1
v
log[c0/ϕ(e−v)] . This

estimate with t = e−v, implies that ϕ(t) ≤ c0 t
α for all t ∈ (0, 1] , as we wanted to

prove.

Step 4. For all t ∈ (0, 1], we have tα ≤ c0 ϕ(t) and also α > 0.

Let f2(u) = log(1/[c0 ϕ(e−u)]). For all u, v ≥ 0, by Step 2 we have

f2(u) + f2(v) = log 1
c20ϕ(e−u) ϕ(e−v)

≤ log
1

c0ϕ(e−(u+v))
= f2(u+ v) . (5.6)
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For u ≥ v > 0, choose n ∈ N such that nv ≤ u < (n + 1)v . Then, by (5.6) and the
fact that f2 is non-decreasing

nf2(v) ≤ f2(nv) ≤ f2(u) .

Since u < (n+ 1)v we have n > u−v
v
, and hence

u− v
v

f2(v) ≤ f2(u) , u ≥ v > 0 .

Note that f2(u) = 2 log 1/c0 + f1(u). Hence for all v > 0

α = lim
u→∞

f2(u)

u
≥ lim

u→∞

u− v
u

f2(v)

v
=
f2(v)

v
. (5.7)

This implies that α > 0. On the other hand, this estimate with t = e−v yields that
ϕ(t) ≥ 1

c0
tα for all t ∈ (0, 1] , as we wanted to prove.

Step 5. The proof of (5.3).

The previous steps imply that

c−1
0 tα ≤ ϕ(t) ≤ c0 t

α , for all t ∈ (0, 1] . (5.8)

Let t > 1. By Step 2 and (5.8)

c−1
0 ≤ ϕ(1) = ϕ(t · t−1) ≤ c0 ϕ(t)ϕ(t−1) ≤ c20 ϕ(t) t−α

Consequently, c−3
0 tα ≤ ϕ(t). A similar argument gives

c0 ≥ ϕ(1) = ϕ(t · t−1) ≥ c−1
0 ϕ(t)ϕ(t−1) ≥ c−2

0 ϕ(t) t−α

and therefore ϕ(t) ≤ c30 t
α , completing the proof of (5.3). �

Proof of Theorem 1.1. We already mentioned in Section 2.3 that (admissible) wavelet
bases are greedy in Lp(Rd) for all 1 < p <∞. Thus, the interesting implication is the
converse.

Suppose that a given wavelet basis is democratic in an Orlicz space LΦ(Rd). Then,
Theorem 4.1 and Remark 3.2 give

h+
ϕ (N) ≤ C h−ϕ (N), N = 1, 2, 3, . . .

for some constant C > 0. Note that the fundamental function ϕ of LΦ clearly satisfies
the conditions we assumed at the beginning of this section. Hence, Lemma 5.1 implies

H+
ϕ (N) ≤ C1H

−
ϕ (N), N = 1, 2, 3, . . .

and therefore Lemma 5.2 leads to ϕ(t) ' tα , for some 0 < α <∞. Taking p = 1/α, we
have that LΦ(Rd) = Lp(Rd) with equivalent norms. Moreover, since π LΦ = π LΦ = 1/p,
we necessarily have 1 < p <∞. �
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6. Greedy algorithm and Errors of Approximation

In this section we prove Theorem 1.3 and Corollary 1.4, concerning the inclusions
of the N -term approximation spaces of LΦ(Rd). To do so, it suffices to consider the
same problems in the sequence space fΦ defined in §2.2. We recall that fΦ is the space
of all sequences of complex numbers s = {sQ}Q∈D such that

‖s‖fΦ =
∥∥∥(∑

Q∈D

|sQ|2|Q|−1χQ(·)
)1/2∥∥∥

LΦ(Rd)
<∞.

In this setting the approximation is performed from the canonical basis {eQ}Q∈D,
where each vector eQ has entry 1 at the index Q, and 0 otherwise. Observe that the
canonical basis is unconditional in fΦ, and in particular that fΦ satisfies the lattice
property

|sQ| ≤ |tQ|, ∀ Q ∈ D =⇒ ‖{sQ}Q∈D‖fΦ ≤ ‖{tQ}Q∈D‖fΦ . (6.1)

The greedy algorithm in fΦ takes the following form: given s = {sQ}Q∈D ∈ fΦ, we
order the index set in such a way that

‖sQ1 eQ1‖fΦ ≥ ‖sQ2 eQ2‖fΦ ≥ ‖sQ3 eQ3‖fΦ ≥ . . . (6.2)

handling ties arbitrarily. Notice that, as in (3.3)

‖eQ‖fΦ = ϕ(|Q|)/|Q|
1
2 , Q ∈ D. (6.3)

The greedy algorithm of step N ≥ 1 is given by the correspondence

s =
∑
Q∈D

sQ eQ ∈ fΦ −→ GN(s) =
N∑

k=1

sQk
eQk

.

As usual, when N = 0 we set G0(s) = 0.
We recall the definition of the approximation spaces : given α > 0 and 0 < q <∞

Aα
q (fΦ) =

{
s ∈ fΦ :

[∑
N≥1

(
NασN(s)fΦ

)q 1

N

] 1
q
<∞

}
,

and

‖s‖Aα
q (fΦ) = ‖s‖fΦ +

[∑
N≥1

(
NασN(s)fΦ

)q 1

N

] 1
q
.

When q =∞ one modifies these definitions in the standard way:

Aα
∞(fΦ) =

{
s ∈ fΦ : sup

N≥1
NασN(s)fΦ <∞

}
, ‖s‖Aα

∞(fΦ) = ‖s‖fΦ + sup
N≥1

NασN(s)fΦ .

6.1. Sequence spaces in D. We recall the definition of some classical sequence
spaces over the index set D. All of them are subspaces of c0 and therefore for each
sequence {sQ}Q∈D we can find an enumeration of the index set D = {Qk}∞k=1 so
that |sQ1 | ≥ |sQ2| ≥ . . . and in addition limk→∞ sQk

= 0. We shall always assume
that {sQk

}k≥1 corresponds to such ordering, which coincides with the non-increasing
rearrangement s∗ of the sequence s.
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Let η = {ηk}k≥1 be a fixed positive increasing sequence so that limk→∞ ηk =∞ and
η is doubling (i.e. η2k ≤ C ηk, k ≥ 1). Then, for each 0 < r ≤ ∞ we define a discrete
Lorentz space by

Λr
η =

{
s ∈ c0 : ‖s‖Λr

η
=
[∑

k≥1

(
ηk |sQk

|
)r 1

k

] 1
r
<∞

}
.

Note that for r = ∞ one writes ‖s‖Λ∞η = supk ηk |sQk
|. These are quasi-Banach

rearrangement invariant spaces, which are Banach when r ≥ 1 and in addition {ηr
k/k}k

is non-increasing (see [4, p. 28]). When r = 1 or r = ∞ we shall write, respectively,
Λη and Mη (the latter called Marcinkiewicz space). The particular case {ηk = k1/τ}
leads to the classical (discrete) Lorentz spaces Λr

η = `τ,r(D). The spaces Λr
η for general

η, and in particular their interpolation properties, have been studied e.g. in [22, 25, 4].
In our applications we shall use the sequences {ηk = kαh±ϕ (k)}k≥1, for suitable α ≥ 0,
which always satisfy the required assumptions.

Remark 6.1. Given a fixed sequence space s as above, we define a new sequence
space s(fΦ), isomorphic to s, by

s(fΦ) =
{
s = {sQ}Q∈D ∈ fΦ : {sQ‖eQ‖fΦ}Q ∈ s

}
,

with ‖s‖s(fΦ) =
∥∥{sQ‖eQ‖fΦ}Q

∥∥
s
. Such definitions appear naturally in relation with

greedy approximation when the basis is not normalized (see e.g. [11]).

6.2. Jackson’s inequalities. In this section we apply our results in §4 to obtain
Jackson type estimates associated with the greedy algorithm.

Proposition 6.2. Let Φ be a Young function so that 0 < π LΦ ≤ π LΦ < 1. Then,
Λh+

ϕ
(fΦ) ↪→ fΦ, and moreover, there is a constant C > 0 so that

‖s−GN−1(s)‖fΦ ≤ C
∞∑

k>N/2

‖sQk
eQk
‖fΦ h+

ϕ (k) 1
k
, ∀ N ≥ 1. (6.4)

Proof. We show (6.4) for every N ≥ 1 (when N = 1, as G0(s) = 0, this is the
embedding Λh+

ϕ
(fΦ) ↪→ fΦ). By the triangular inequality and (6.1) we have

‖s−GN−1(s)‖fΦ =
∥∥∥∑

k≥N

sQk
eQk

∥∥∥
fΦ
≤

∞∑
j=0

∥∥∥ ∑
2jN≤k<2j+1N

sQk
eQk

∥∥∥
fΦ

≤
∞∑

j=0

‖sQ
2j N

eQ
2j N
‖fΦ
∥∥∥ ∑

2jN≤k<2j+1N

eQk

‖eQk
‖

fΦ

∥∥∥
fΦ

≤ C

∞∑
j=0

∥∥sQ
2j N

eQ
2j N

∥∥
fΦ
h+

ϕ (2j N)

where in the last inequality we have used Theorem 4.1. This estimate can be trans-
formed into 6.4 using that h+

ϕ (k)/k is non-increasing. Indeed, one just writes the right
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hand side as
∞∑

j=0

∑
2j−1N<k≤2jN

∥∥sQ
2j N

eQ
2j N

∥∥
fΦ

h+
ϕ (2j N)

2j−1N
≤ 2

∑
k>N/2

‖sQk
eQk
‖fΦ

h+
ϕ (k)

k
.

�

Remark 6.3. The inequality in (6.4) is best possible, in the sense that left and right
hand sides are comparable for certain choices of s. Given N ≥ 2 we take k ∈ Z so
that

1

2
h+

ϕ (N) <
ϕ(N 2k d)

ϕ(2k d)
≤ h+

ϕ (N). (6.5)

Let Γ ⊂ D be a collection of 2N − 1 pairwise disjoint dyadic cubes of equal size 2kd

and set s = 1̃Γ =
∑

Q∈Γ eQ/‖eQ‖fΦ . Notice that for Q ∈ Γ we have ‖sQ eQ‖fΦ = 1.

Thus s−GN−1(s) = 1̃Γ′ for some Γ′ ⊂ Γ with Card Γ′ = N . It is easy to see that

σN−1(s)fΦ = ‖s−GN−1(s)‖fΦ =
∥∥1̃Γ′

∥∥
fΦ

=
ϕ(N 2k d)

ϕ(2k d)
' h+

ϕ (N), (6.6)

where the third equality follows as in Lemma 3.1
On the other hand, when s = 1̃Γ, the right hand side of (6.4) takes the form∑
N/2<k≤2 N−1 h

+
ϕ (k)/k ' h+

ϕ (N), by the doubling property of h+
ϕ .

Remark 6.4. We should also point out that for certain other sequences s the estimate
in 6.4 may be too “crude”. To see this consider the same example as before, but

choosing the cubes sizes 2kd so that in place of (6.5) we have h−ϕ (N) ≤ ϕ(N 2k d)
ϕ(2k d)

<

2h−ϕ (N). Then, σN−1(s)fΦ = ‖s − GN−1(s)‖fΦ ' h−ϕ (N), while the right hand side of
(6.4) is still comparable to h+

ϕ (N). For non democratic spaces the gap between these
two quantities can be big, as we have seen in the examples in §3.

The estimate in (6.4) implies a decay of σN(s)fΦ as N growths. For general s ∈
Λh+

ϕ
(fΦ) we do not have further information about the rate of decay. However, re-

stricting s to appropriate subspaces we can obtain precise rates of convergence.

Corollary 6.5. Let Φ be a Young function so that 0 < π LΦ ≤ π LΦ < 1, and let
α > 0. Then, for every s ∈Mkαh+

ϕ (k)(f
Φ) we have

‖s−GN−1(s)‖fΦ ≤ C N−α ‖s‖M
kαh+

ϕ (k)
(fΦ), ∀ N ≥ 1. (6.7)

Proof. By (6.4) and the definition of the Marcinkiewicz space

‖s−GN−1(s)‖fΦ ≤ C
∑

k>N/2

‖sQk
eQk
‖fΦ h+

ϕ (k)
1

k
≤ C ‖s‖M

kαh+
ϕ (k)

(fΦ)

∞∑
k>N/2

k−α 1

k

≤ C N−α ‖s‖M
kαh+

ϕ (k)
(fΦ).

�

The previous result can be translated as an inclusion of approximation spaces.

Corollary 6.6. Let α > 0. Then

Mkαh+
ϕ (k)(f

Φ) ↪→ Aα
∞(fΦ). (6.8)

Moreover, Mkαh+
ϕ (k) is the largest Mη-space so that Mη(f

Φ) ↪→ Aα
∞(fΦ).
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Proof. The inclusion (6.8) is obvious from (6.7) and the definition of Aα
∞(fΦ). To

see the optimality, assume that Mη(f
Φ) ↪→ Aα

∞(fΦ), and let s = 1̃Γ be as in Remark
6.3. Then, by (6.6) we have ‖s‖Aα

∞(fΦ) & Nαh+
ϕ (N). On the other hand, ‖s‖Mη(fΦ) =

sup1≤k≤2N−1 ηk = η2N−1. Thus, the assumed inclusion and the doubling property give
Nαh+

ϕ (N) . ηN , which shows Mη(f
Φ) ↪→Mkαh+

ϕ (k)(f
Φ). �

As a particular case we obtain the following inclusions in terms of classical Lorentz
spaces.

Corollary 6.7. Let α > 0. Then, we have the inclusion

`τ,∞(fΦ) ↪→ Aα
∞(fΦ), whenever 1

τ
> α + π LΦ . (6.9)

Proof. By (2.5), we know that h+
ϕ (t) ≤ Cε t

π
LΦ+ε, ∀ t ≥ 1. Choosing ε = 1

τ
−α− π LΦ

this gives kαh+
ϕ (k) . k

1
τ , k ≥ 1, which in turn implies `τ,∞ ↪→ Mkαh+

ϕ (k). The result

then follows from (6.8). �

Remark 6.8. Let us observe that from the proof of Corollary 6.6, if (6.9) is valid for
1
τ

= α + π LΦ , then it follows that h+
ϕ (N) . Nπ

LΦ . Also, Lemma 5.1 and (2.4) imply

that h+
ϕ (N) & Nπ

LΦ and therefore h+
ϕ (N) ' Nπ

LΦ for N ≥ 1. Conversely, if one

assumes that h+
ϕ (N) ' Nπ

LΦ for N ≥ 1, Corollary 6.6 gives `τ,∞(fΦ) ↪→ Aα
∞(fΦ) with

1
τ

= α+ π LΦ . This shows that for (6.9) to be valid at the endpoint 1
τ

= α+ π LΦ , it is
necessary and sufficient that h+

ϕ (N) ' Nπ
LΦ , N ≥ 1. In our examples in §2.1, this is

the case for the Young functions associated with L2 + L4, L2 ∩ L4 or Lp(logL)α with
α > 0, but may fail in other cases, such as for the spaces Lp(logL)α with α < 0 (see
Example 2.3).

6.3. Bernstein’s inequalities. Bernstein type estimates are useful to obtain con-
verse inclusions for approximation spaces.

Proposition 6.9. Let Φ be a Young function so that 0 < π LΦ ≤ π LΦ < 1. Then,
fΦ ↪→Mh−ϕ

(fΦ) and there is a constant C > 0 so that

‖GN(s)‖M
h−ϕ

(fΦ) = sup
1≤k≤N

‖sQk
eQk
‖fΦ h−ϕ (k) ≤ C ‖GN(s)‖fΦ , ∀ N ≥ 1. (6.10)

Proof. As before, it suffices to show (6.10), since the embedding fΦ ↪→Mh−ϕ
(fΦ) follows

by letting N →∞. For fixed 1 ≤ k ≤ N , using Theorem 4.1 and the lattice property
(6.1) we have

‖sQk
eQk
‖fΦ h−ϕ (k) ≤ C ‖sQk

eQk
‖fΦ
∥∥∥ k∑

j=1

eQj

‖eQj
‖fΦ

∥∥∥
fΦ
≤ C

∥∥∥ k∑
j=1

sQj
eQj

∥∥∥
fΦ

≤ C ‖GN(s)‖fΦ .

�

Remark 6.10. As before, one can show the optimality of (6.10) by finding an appro-
priate s for which both sides of the inequality are comparable. Indeed, one just needs
to choose s = 1̃Γ, for Γ consisting of N disjoint cubes of equal size 2kd and k such



WAVELETS, ORLICZ SPACES, AND GREEDY BASES 21

that h−ϕ (N) ≤ ϕ(N 2k d)
ϕ(2k d)

< 2h−ϕ (N). In this case, as in Lemma 3.1 we have

‖GN(s)‖fΦ = ‖s‖fΦ =
ϕ(N 2k d)

ϕ(2k d)
' h−ϕ (N). (6.11)

On the other hand, as h−ϕ is non-decreasing,

‖GN(s)‖M
h−ϕ

(fΦ) = sup
1≤k≤N

h−ϕ (k) = h−ϕ (N),

and therefore both sides of (6.10) are comparable.

Corollary 6.11. Let Φ be a Young function so that 0 < π LΦ ≤ π LΦ < 1 and let
α > 0. Then, there exists C > 0 so that, for all N ≥ 1,

‖s‖Λ
kαh−ϕ (k)

(fΦ) ≤ C Nα ‖s‖fΦ , ∀ s ∈ ΣN . (6.12)

Proof. Write s = GN(s) =
∑N

k=1 sQk
eQk

with ‖sQ1eQ1‖fΦ ≥ ‖sQ2eQ2‖fΦ ≥ . . .. By
(6.10) we have

‖s‖Λ
kαh−ϕ (k)

(fΦ) =
N∑

k=1

kαh−ϕ (k) ‖sQk
eQk
‖fΦ

1

k
≤ C ‖GN(s)‖fΦ

N∑
k=1

kα

k
≤ C ′Nα ‖s‖fΦ .

�

As before, the above result can be stated as an inclusion of approximation spaces.
Below, the number ρ = ρα ∈ (0, 1] is chosen so that the quasi-normed space Λkαh−ϕ (k)

satisfies the ρ-triangular inequality, that is, for every N ≥ 1,

‖s1 + s2‖ρΛ
kαh−ϕ (k)

≤ ‖s1‖ρΛ
kαh−ϕ (k)

+ ‖s2‖ρΛ
kαh−ϕ (k)

. (6.13)

Corollary 6.12. Let α > 0. Then

Aα
ρ (fΦ) ↪→ Λkαh−ϕ (k)(f

Φ). (6.14)

Moreover, Λkαh−ϕ (k) is the smallest Λη-space so that Aα
q (fΦ) ↪→ Λη(f

Φ) for some 0 <
q ≤ 1.

Proof. The argument for (6.14) is standard (see e.g. [8]). It suffices to prove that

‖s‖Λ
kαh−ϕ (k)

(fΦ) ≤ C ‖s‖Aα
ρ (fΦ), ∀ s ∈ ΣN , N ≥ 1

with a constant C > 0 independent of N and one obtains the desired inclusion by
letting N → ∞. We may also assume N = 2J . Now, write s =

∑J
j=0[s

(j) − s(j−1)],

where by convention s(J) = s, s(−1) = 0 and s(j) ∈ Σ2j is so that ‖s−s(j)‖fΦ ≤ 2σ2j(s)fΦ ,

0 ≤ j < J . Then applying (6.13), and (6.12) to s(j) − s(j−1) ∈ Σ2j+1 we obtain

‖s‖Λ
kαh−ϕ (k)

(fΦ) ≤
[ J∑

j=0

∥∥ s(j) − s(j−1)
∥∥ρ

Λ
kαh−ϕ (k)

(fΦ)

] 1
ρ ≤ C

[ J∑
j=0

2jαρ
∥∥s(j) − s(j−1)

∥∥ρ

fΦ

] 1
ρ
.

Now, by assumption for 1 ≤ j ≤ J∥∥s(j) − s(j−1)
∥∥

fΦ
≤
∥∥s(j) − s

∥∥
fΦ

+
∥∥s− s(j−1)

∥∥
fΦ
≤ 4σ2j−1(s)fΦ .

On the other hand for j = 0 we have∥∥s(0) − s(−1)
∥∥

fΦ
=
∥∥s(0)

∥∥
fΦ

.
∥∥s(0) − s

∥∥
fΦ

+ ‖s‖fΦ ≤ 2σ1(s)fΦ + ‖s‖fΦ .
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Hence,

‖s‖Λ
kαh−ϕ (k)

(fΦ) ≤ C
[
‖s‖fΦ +

J−1∑
j=0

(
2jα σ2j(s)fΦ

)ρ ] 1
ρ ' ‖s‖Aα

ρ (fΦ).

To see the optimality, assume that for some sequence η and q ∈ (0, 1] we have

Aα
q (fΦ) ↪→ Λη(f

Φ), and let s = 1̃Γ be as in Remark 6.10. Then by (6.11) we have

‖s‖Aα
q (fΦ) = ‖s‖fΦ +

[ N∑
k=1

(
kασk(s)fΦ

)q 1
k

] 1
q

. ‖s‖fΦ
[ N∑

k=1

kαq−1
] 1

q ' C Nα h−ϕ (N).

On the other hand, by the doubling property

‖s‖Λη(fΦ) =
N∑

k=1

ηk
1
k
≥

∑
N/2<k≤N

ηk
1
k

& ηN/2 & ηN .

Thus, if the assumed inclusion holds, the previous two estimates lead us to ηN .
Nαh−ϕ (N), which in turn implies Λkαh−ϕ (k) ↪→ Λη. �

Corollary 6.13. Let α > 0. Then, we have the inclusions

Aα
ρ (fΦ) ↪→ `τ,1(fΦ), whenever 1

τ
< α + π LΦ . (6.15)

Proof. From (2.5) we have h−ϕ (t) = 1/h+
ϕ (1/t) ≥ Cεt

π
LΦ−ε, t ≥ 1. Letting ε =

α+π LΦ − 1
τ

we obtain that kαh−ϕ (k) & k
1
τ , which leads to Λkαh−ϕ (k) ↪→ `τ,1. The result

then follows from (6.14). �

Remark 6.14. As in Remark 6.8 if (6.15) holds at 1
τ

= α + π LΦ it follows that
h−ϕ (N) & Nπ

LΦ and therefore h+
ϕ (t) . tπ LΦ for 0 < t ≤ 1. From Lemma 5.1 and

(2.4) we also have that h+
ϕ (t) & tπ LΦ for 0 < t ≤ 1. This yields that h+

ϕ (t) ' tπ LΦ

for 0 < t ≤ 1. On the other hand, assuming that h+
ϕ (t) ' tπ LΦ for 0 < t ≤ 1, (6.14)

implies (6.15) at 1
τ

= α+π LΦ . All this shows that a necessary and sufficient condition

for the endpoint case 1
τ

= α + π LΦ in (6.15) to hold is h+
ϕ (t) ' tπ LΦ for t ∈ (0, 1]. In

our examples in §2.1, this is the case for the Young functions associated with L2 +L4,
L2 ∩L4 or Lp(logL)α with α < 0, but such property fails in this last case when α > 0
(see Example 2.2).

6.4. Inclusions for the approximation spaces Aα
q (fΦ). Finally, using real interpo-

lation we can obtain inclusions for the whole family of approximation spaces Aα
q (fΦ),

0 < q ≤ ∞. For this we take into account the interpolation properties of the sequence
spaces Λq

η, namely,(
Λr

kα0η(k),Λ
r
kα1η(k)

)
θ,q

= Λq
kαη(k), α = (1− θ)α0 + θα1, (6.16)

for all 0 < q, r ≤ ∞, 0 < θ < 1 (see e.g. [25, Prop. 6.2], [22, Thm. 3]).

Corollary 6.15. Let α > 0 and 0 < q ≤ ∞. Then

Λq

kαh+
ϕ (k)

(fΦ) ↪→ Aα
q (fΦ) ↪→ Λq

kαh−ϕ (k)
(fΦ). (6.17)
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Proof. Let α0 < α < α1, so that α = (α0 + α1)/2. Then, for every 0 < q, r ≤ ∞ we
have (see e.g. [8])

Aα
q =

(
Aα0

r , A
α1
r

)
1/2,q

.

Setting r = min{ρα0 , ρα1} and using (6.14)

Aα
q (fΦ) =

(
Aα0

r (fΦ), Aα1
r (fΦ)

)
1/2,q

↪→
(
Λkα0h−ϕ (k)(f

Φ),Λkα1h−ϕ (k)(f
Φ)
)
1/2,q

= Λq

kαh−ϕ (k)
(fΦ),

where the last equality follows from (6.16). Similarly, by (6.8)

Aα
q (fΦ) =

(
Aα0
∞ (fΦ), Aα1

∞ (fΦ)
)
1/2,q
←↩
(
Mkα0h+

ϕ (k)(f
Φ),Mkα1h+

ϕ (k)(f
Φ)
)
1/2,q

= Λq

kαh+
ϕ (k)

(fΦ).

�

As a consequence of (6.17), and proceeding as in Corollaries 6.7 and 6.13 we obtain
the following result.

Corollary 6.16. For all α > 0, q, q0, q1 ∈ (0,∞] we have

`τ0,q0(fΦ) ↪→ Aα
q (fΦ) ↪→ `τ1,q1(fΦ),

whenever 1
τ1
< α + π LΦ ≤ α+ π LΦ < 1

τ0
.

Proof. Pick τ so that 1
τ0
> 1

τ
> α + π LΦ . Then as in the proof of Corollary 6.7 we

observed that for all t ≥ 1 we have tα h+
ϕ (t) . t

1
τ . Then (6.17) and the embedding

`τ0,q0 ↪→ `τ,q yield

Aα
q (fΦ)←↩ Λq

kαh+
ϕ (k)

(fΦ)←↩ Λq

k
1
τ
(fΦ) = `τ,q(fΦ)←↩ `τ0,q0(fΦ).

For the other embedding we choose τ verifying 1
τ1
< 1

τ
< α + π LΦ . The proof of

Corollary 6.13 yields that tα h−ϕ (t) & t
1
τ . Then (6.17) and the embedding `τ,q ↪→ `τ1,q1

give

Aα
q (fΦ) ↪→ Λq

kαh−ϕ (k)
(fΦ) ↪→ Λq

k
1
τ
(fΦ) = `τ,q(fΦ) ↪→ `τ1,q1(fΦ).

�

Remark 6.17. Observe that the two results stated in the introduction, Theorem 1.3
and Corollary 1.4, are straightforward consequences of Corollaries 6.15 and 6.16 and
the definition of the spaces s(LΦ) in (1.4).

Remark 6.18. Notice finally that the inclusions in (6.17) remain as well valid when
we replace Aα

q (fΦ) by the smaller approximation space

Gα
q (fΦ) =

{
s ∈ fΦ :

[∑
N≥1

(
Nα‖s−GN(s)‖fΦ

)q 1
N

] 1
q
<∞

}
.

This is because of our formulation of the Jackson estimate in (6.7). We do not know
however whether in general one has Aα

q (fΦ) = Gα
q (fΦ). See more properties of Gα

q (fΦ)
in [12].
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6.5. Besov spaces of generalized smoothness. Let Ψ : (0,∞)→ (0,∞) be a fixed
continuous function with sups>0 Ψ(ts)/Ψ(s) < ∞, for all t > 0. Given 0 < τ, q ≤
∞, we define a Besov space of Ψ-smoothness, ḂΨ

τ,q(Rd), as the set of all tempered

distributions f ∈ S ′(Rd) for which

‖f‖ḂΨ
τ,q

=
[∑

j∈Z

(
Ψ(2j) ‖f ∗ χj‖Lτ (Rd)

)q] 1
q
< ∞, (6.18)

where χ ∈ S(Rd) is so that χ{|ξ|≤1} ≤ χ̂(ξ) ≤ χ{|ξ|≤2}, and χj(x) = 2jdχ(2jx) −
2(j−1)dχ(2j−1x). As usual, one takes the quotient of Ḃα

τ,q with the set of polynomials
to get a (quasi)-Banach space.

Besov spaces of generalized smoothness were introduced in [22, 5] in the context of
real interpolation with function parameters (see also references in [1, 10]). The par-
ticular case Ψ(t) = tα corresponds to the usual (homogeneous) Besov space Ḃα

τ,q(Rd).

When Ψ(t) = tα(1 + log+ t)γ one obtains logarithmic Besov spaces Ḃ
(α,γ)
τ,q , analogous

to those studied by Leopold in [21] (see also [24]). Alternative characterizations of
these spaces also appear in [15, 2]. We point out that most of the above mentioned
references only consider the theory of “inhomogeneous spaces” (in which the series
in (6.18) is truncated to j ≥ 0; see (6.23) below). Minor modifications, however, are
necessary to carry out a similar theory in the “homogeneous” setting of ḂΨ

τ,q.

In this paper we shall only use the wavelet characterization of ḂΨ
τ,q(Rd) (which

we may as well take as definition), similar to the one obtained by Almeida in the
inhomogeneous setting (see [1]). As in §2.2 we fix a wavelet basis {ψ`

Q}, which we
shall assume to consist of Schwartz functions. For notational simplicity, we shall also
drop the super-index `.

Proposition 6.19. A tempered distribution f belongs to ḂΨ
τ,q(Rd) if and only if∑

j∈Z

[( ∑
|Q|=2−jd

∣∣Ψ(|Q|−
1
d ) |Q|

1
τ
− 1

2 〈f, ψQ〉
∣∣τ) 1

τ
]q
<∞. (6.19)

Moreover, this expression is comparable to ‖f‖q
ḂΨ

τ,q
.

A particular case of this result is given next.

Corollary 6.20. Let Φ be a Young function with 0 < π LΦ ≤ π LΦ < 1 and τ > 0.

Define Ψ(t) = t
d
τ /Φ−1(td) = t

d
τ ϕ(t−d). Then,

ḂΨ
τ,τ =

{
f ∈ S ′(Rd) :

∑
Q

∥∥〈f, ψQ〉Q eQ

∥∥τ

fΦ
<∞

}
, (6.20)

with the equivalence of norms ‖f‖ḂΨ
τ,τ
'
(∑

Q

∥∥〈f, ψQ〉Q eQ

∥∥τ

fΦ

) 1
τ .

Proof. From (2.5) and (2.6) it follows that the function Ψ(t) satisfies the conditions
required at the beginning of this section. By (6.3) and the definition of Ψ we have

‖eQ‖fΦ = |Q|−
1
2ϕ(|Q|) = |Q|

1
τ
− 1

2 Ψ(|Q|−
1
d ).

Therefore we can write∑
Q

∥∥〈f, ψQ〉Q eQ

∥∥τ

fΦ
=
∑
Q

∣∣Ψ(|Q|−
1
d ) |Q|

1
τ
− 1

2 〈f, ψQ〉
∣∣τ ,
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which together with Proposition 6.19 complete the proof. �

We now proceed to connect these Besov spaces with the approximation spaces
Aα

r (LΦ).

Corollary 6.21. Let α > 0 and 0 < q ≤ ∞. Then

Ḃt
d
τ0 ϕ(t−d)

τ0,τ0
↪→ Aα

q (LΦ) ↪→ Ḃt
d
τ1 ϕ(t−d)

τ1,τ1
, (6.21)

whenever 1
τ1
< α + π LΦ ≤ α+ π LΦ < 1

τ0
.

Remark 6.22. As usual, the first inclusion in (6.21) is understood with the assign-
ment f 7−→

∑
Q〈f, ψQ〉QψQ, so that polynomials in the Besov space are mapped into

the null function of LΦ (see the proof below).

Proof of Corollary 6.21. We prove the first inclusion. Given f ∈ Ḃt
d
τ0 ϕ(t−d)

τ0,τ0 , by (6.20)
the sequence {〈f, ψQ〉Q ‖eQ‖fΦ}Q∈D belongs to `τ0 , and since 1

τ0
> π LΦ , also to Λh+

ϕ
.

By Proposition 6.2, this implies that s = {〈f, ψQ〉}Q∈D ∈ fΦ, and therefore f ] =∑
Q〈f, ψQ〉QψQ ∈ LΦ(Rd) (with convergence of the series in LΦ). Moreover, by Corol-

lary 6.16, we also have s ∈ `τ0(fΦ) ↪→ Aα
q (fΦ). Finally, since σN(s)fΦ = σN(f ])LΦ we

easily conclude that f ] ∈ Aα
q (LΦ) and ‖f ]‖Aα

q (LΦ) ≤ C ‖f‖ḂΨ
τ0,τ0

as asserted. The sec-

ond inclusion is proved similarly using the right hand inclusion of Corollary 6.16. �

Remark 6.23. A special case of the previous proof gives the Sobolev type embedding

Ḃt
d
τ ϕ(t−d)

τ,τ ↪→ LΦ, 0 < τ < 1/π LΦ .

This is a refinement of the classical estimate Ḃ
d( 1

τ
− 1

p
)

τ,τ ↪→ Lp, for 0 < τ < p.

The special case of Zygmund spaces Lp(logL)γ p. Let us now consider the special
case of the Zygmund spaces LΦ = Lp(logL)γ p in Examples 2.2 and 2.3 above. We
wish to describe the approximation spaces Aα

q (LΦ), for fixed α > 0 and 0 < q ≤ ∞.

The description is given in terms of the logarithmic Besov spaces Ḃ
(α,γ)
τ,τ (Rd), i.e.

ḂΨ
τ,τ with Ψ(t) = tα(1+ log+ t)γ. By Corollary 6.20 and the explicit expression ϕ(t) '

t
1
p (1 + log+ 1/t)γ, we can identify Ḃ

(α,γ)
τ,τ (Rd) with `τ (fΦ) when 1

τ
= α

d
+ 1

p
.

Then, Corollary 6.21 gives

Ḃ(α0,γ)
τ0,τ0

↪→ A
α
d
q (Lp (logL)γ p) ↪→ Ḃ(α1,γ)

τ1,τ1
, (6.22)

for all α1 < α < α0,
1
τ0

= α0

d
+ 1

p
, and 1

τ1
= α1

d
+ 1

p
.

These inclusions can be slightly improved at the endpoints. More precisely, when
γ ≥ 0, using Corollary 6.15 an h+

ϕ (k) ' k1/p, we can take α0 = α in (6.22), provided

q ≥ τ0. On the other hand, if γ ≤ 0, one has h−ϕ (k) ' k1/p and then Corollary 6.15
gives the right hand inclusion of (6.22) with α1 = α, provided q ≤ τ1. Finally, observe

that in the special case γ = 0 we recover the well-known identity Ḃα
τ,τ = A

α
d
τ (Lp) with

1
τ

= α
d

+ 1
p

(see e.g. [11, (6.22)]).
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6.6. Truncated wavelet bases. In some applications it may be of interest to replace
the wavelet basis {ψQ} in §2.2 by a “truncated basis” of the form

B = {ψQ : |Q| ≤ 1} ∪ {ψ(0)
Q : |Q| = 1},

where ψ(0) denotes a suitable scaling function. All the results stated in this paper
remain valid for such bases, after standard modifications. More precisely, one considers
the characterization

‖f‖LΦ '
∥∥∥( ∑

|Q|≤1

|〈f, ψQ〉|2 |Q|−1χQ(·)
) 1

2
∥∥∥

LΦ
+
∥∥∥( ∑

|Q|=1

|〈f, ψ(0)
Q 〉|

2 χQ(·)
) 1

2
∥∥∥

LΦ

(implicit in the arguments of [28]) and the corresponding sequence space (which is
isomorphic to the subspace of all sequences of fΦ supported in |Q| ≤ 1). The arguments
presented in §3, §4 and §5 can be carried out in exactly the same way, except for the
fact that h+

ϕ (t), h−ϕ (t) in (3.4) are defined as

h+
ϕ (t) = sup

k≤0

ϕ(t2kd)

ϕ(2kd)
and h−ϕ (t) = inf

k≤0

ϕ(t2kd)

ϕ(2kd)
,

because of the restriction |Q| ≤ 1. Finally, in §6 one uses the “inhomogeneous” version
of Besov spaces, BΨ

τ,q(Rd), given by the norm

‖f‖BΨ
τ,q

=
[∑

j≥0

(
Ψ(2j) ‖f ∗ χj‖τ

)q] 1
q

(6.23)

where χj are as in §6.4 when j > 0, and χ0 = χ.

References

[1] A. Almeida, Wavelet bases in generalized Besov spaces. J. Math. Anal. Appl. 304 (2005),
198–211.

[2] J.L. Ansorena and O. Blasco, Atomic decomposition of weighted Besov spaces. J. London
Math. Soc. (2) 53 (1995), 127–140.

[3] C. Benett and R.C. Sharpley, Interpolation of operators. Pure and Appl. Math. 129, Aca-
demic Press, 1988.

[4] M. Carro, J. Raposo and J. Soria, Recent deveplopments in the theory of Lorentz spaces
and weighted inequalities. Memoirs Amer. Math. Soc. 107, (2007).

[5] F. Cobos and D. Fernandez, Hardy-Sobolev spaces and Besov spaces with a function param-
eter. Function spaces and applications (Lund, 1986), 158–170, Lecture Notes in Math. 1302,
Springer, Berlin, 1988.

[6] A. Cohen, R. DeVore and R. Hochmuth, Restricted non-linear approximation. Constr.
Approx. 16 (2000), 85–113.

[7] R. DeVore, G. Petrova and V. Temlyakov, Best basis selection for approximation in Lp.
Found. Comput. Math. 3 (2003), 161–185.

[8] R. DeVore and V.A. Popov, Interpolation spaces and nonlinear approximation. Function
spaces and applications (Lund, 1986), 191–205, Lecture Notes in Math. 1302, Springer, Berlin,
1988.

[9] S. Dilworth, N. Kalton, D. Kutzarova and V. Temlyakov, The thresholding greedy
algorithm, greedy bases and duality. Constr. Approx. 19 (2003), 575–597.

[10] W. Farkas and H.-G. Leopold, Characterisations of function spaces of generalised smooth-
ness. Ann. Mat. Pura Appl. 185 (2006), 1–62.



WAVELETS, ORLICZ SPACES, AND GREEDY BASES 27

[11] G. Garrigós and E. Hernández, Sharp Jackson and Bersntein inequalities for N-term ap-
proximation in Sequence Spaces with Applications. Indiana Univ. Math. J. 53 (2004), 1739–1762.

[12] R. Gribonval and M. Nielsen, Some remarks on non-linear approximation with Schauder
bases. East J. Approx. 7 (2001), no. 3, 267–285.

[13] E. Hernández and G. Weiss, A First Course on Wavelets. CRC Press, Boca Raton FL, 1996.
[14] C. Hsiao, B. Jawerth, B.J. Lucier and X.M. Yu, Near optimal compression of almost

optimal wavelet expansions. Wavelets: mathematics and applications, Stud. Adv. Math., CRC,
Boca Raton, FL, (1994), 425–446.

[15] G. A. Kalyabin and P. I. Lizorkin, Spaces of functions of generalized smoothness. Math.
Nachr. 133 (1987), 7–32.

[16] A. Kamont and V. N. Temlyakov, Greedy approximation and the multivariate Haar system.
Studia Math. 161 (2004), no. 3, 199–223.

[17] G. Kerkiacharyan and D. Picard, Entropy, universal coding, approximation and bases
properties. Constr. Approx. 20 (2004), 1–37.

[18] V. Kokilashvili and M. Krebc, Weighted inequalities in Lorentz and Orlicz spaces. World
Scientific, 1991.

[19] S.V. Konyagin and V.N. Temlyakov, A remark on greedy approximation in Banach spaces.
East J. Approx. 5 (1999), 365–379.

[20] S. Krein, J. Petunin and E. Semenov. Interpolation of linear operators. Translations Math.
Monographs 54. Amer. Math. Soc. 1982.

[21] H.-G. Leopold, Embeddings and entropy numbers in Besov spaces of generalized smoothness.
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Gustavo Garrigós, Departamento de Matemáticas, Universidad Autónoma de Ma-
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