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Abstract

It is well known that the compactly supported wavelets cannot
belong to the class C*°(R) N L?(R). This is also true for wavelets
with exponential decay. We show that one can construct wavelets in
the class C°°(R) N L?(R) that are “almost” of exponential decay and,
moreover, they are band-limited. We do this by showing that we can
adapt the construction of the Lemarié-Meyer wavelets [LM] that is
found in [BSW] so that we obtain band-limited, C'*°-wavelets on R
that have subexponential decay, that is, for every 0 < € < 1, there
exits Cz > 0 such that [¢(x)| < C. e~17"™" 2 € R. Moreover, all of its
derivatives have also subexponential decay. The proof is constructive
and uses the Gevrey classes of functions.
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1 Introduction.

An orthonormal wavelet v is said to have exponential decay if there exist
¢ > 0and a > 0such that |[¢)(z)] < ¢ e~ for all z € R. The spline wavelets
have exponential decay ([Le]) as well as the compactly supported wavelets
([Da]). But, there is no orthonormal wavelet with exponential decay
belonging to C°°(R) such that all its derivatives are bounded. To see this,
suppose that such a wavelet v exists. The exponential decay of v would
imply that

P(z) = /R e )(z) dx

is a holomorphic function on [Im z| < a. Moreover, the smoothness and
decay of ¢ would imply that all the moments of ¢ are zero. (See Theorem

3.4, Chapter 2, in [HW]). Hence, %}?(0) =0 foralln =0,1,2,---. The

expansion of 1/3(2) in powers of z around the origin shows that 1& =0in a
neighborhood of z = 0. Since {z € C: |Im z| < a} contains the real line in
its interior, 1) must be the zero function on R.

Orthonormal wavelets ¢ that belong to C°°(R) have been exhibited in
[LM]. They are band-limited (i.e. the supports of their Fourier transforms
are bounded) and belong to the Schwartz class S. They can be constructed
using smooth “bell” functions as explained in [AWW] or [HW]. It is im-
possible, however, for any one of these wavelets to have exponential decay
(since ¢ = 0 in a neighborhood of the origin).

DEFINITION 1.1 A real-valued function f defined on R is said to have
subexponential decay if whenever 0 < € < 1, there exists Cz > 0 such
that

()| < Ce e

for all x € R.

‘We shall show how to construct band-limited, orthonormal wavelets with
subexponential decay belonging to C°°(R). The construction is obtained by
finding an appropriate “bell” function b whose Fourier transform has subex-
ponential decay. This is accomplished by means of the Gevrey classes of
functions, whose definition and properties are presented in the next section.



2 The Gevrey Classes.

DEFINITION 2.1 For § > 0, the Gevrey class I'? is the set of all C™
real-valued functions defined on R such that for every compact set K C R
there is a constant Ci satisfying

D" f(z)| < Cx Cf 0™,
forall x € K and for alln=1,2,3,---.

DEFINITION 2.2 For § > 0, the (small) Gevrey class v° is the set of
all C*° real-valued functions defined on R such that for every compact set
K C R and every e > 0, there is a constant Ck . satisfying

D" f(2)] < Ok €"(n))’

forall x € K and for alln=1,2,3,---.

We have taken the above definitions from [Hol| (pp. 280-281) and [Ho2]
(p. 137). Since n! < n™ it is clear that for every 6 > 0

SRl L (2.3)

LEMMA 2.4 If0<d <8 thenT¥ A9 .

Proof: Let K C R be compact and ¢ > 0. For f € Y we can find
Ck > 0 such that
|D"f(z)| < Cx Cfe 0™,
forallz € K andalln = 1,2,3,---. By Stirling’s formula (n! ~ v/27rn n™ e™")
we can write
n!>6’75 ené’

D" ()] < Clhen) () &

W)€ LeK.
(v/2mn)?

The sequence A, = C’}((n!)(sgts e‘y/(\/ 27n)% /™ tends to zero as n — oo
since ¢’ < § . Thus, there exists N(g) € N such that for all n > N(e), 4,, <
€ . Hence, for all x € K,

D" f(2)| < C e"(n))’



for all n > N(g). This inequality is also true for n = 1,2,...N(¢) — 1 by
enlarging the constant if necessary. O

The Gevrey classes satisfy 491 € 4% and I'* € I'? when 0 < 6; < 85 .
When 6 > 1 the classes 7% and I'’ contain “cutoff” functions. This follows
from Theorem 1.3.5 in [Hol]. We feel that it is worthwhile for the reader
to present the essential ingredients of this result. With x = xjg,1) write

o

Xa = %X (Z). For any sequence a; > az > --- > 0 such that a = Zaj < o0,

j=1
the function
SOIC:XLH **X@k

belongs to C*~1(R), has support in [0,a] and converges as k — oo to a
function ¢ € C*°(R), with support in [0, a], such that [g ¢(z) dz =1 and
2n
D" < — . 2.5
D) < (25)

é

By taking a, = n~? in the above construction it follows that ¢ € ' when

[ee)
d > 1. (Observe that in this case Zn_6 is a convergent series.)
n=1
This result shows that there are “cutoff” functions in every class I’ and
~% when § > 1. A modification of the above regularization procedure shows

that there exists a “cutoff” function which belongs to every I'° and ~9 for
all 9 > 1.

PROPOSITION 2.6 For everya > 0 there exists p, € T for every § > 1.
Moreover, ¢, > 0 ,sup @, C [—a,a] and [g pa(x) do =7/2.

Proof: Since I'? is invariant under dilations and multiplication by con-
stants, it is enough to show the result for ¢ = 1 and show that [ @a(x) dz <
oo. Let h be an even function such that h € C*°(]-1,1]),h > 0, and
f_ll h(z) dxz = 1. Choose 6, = 1 + % and let IV, be an increasing sequence
of positive integers such that

1 1

> 5 < g

n>Nm

Choose a,, = n~ % when N,, < n < Npt1 - Observe that

=1
D <Y o=l
n>Ni m=1



Define

On) = haN1 * haN1+1 %% hg,

where hq(z) = 1h (%), so that [ he(x) dz = 1. Obviously sup ¢, C

[—1,1]. We shall show that for every 6 > 1, there exists C' = Cj such that
foralz e Randall N =1,2,3,---,

DN o) ()] < C5(Cs)N NN (2.7)

for alln > n(Cs , N). Take m and n so large that d,, < , and N,,,+N < n .
Then,

DNgo(n) hay, * haN1+1 * haNm * DhaNerl sk Dhn, (N *---%hg, .
We have
1 1 C
| Dha, Ih= —/ — |Dh (x ’ dr < = < Cndm
an JR Qn Gn GQp

if n > Ny, . Thus, using [u*v = (fu)([v), and [g ha =1, we deduce,

DNy ()] < CN (N + 1) -+ (N + N)Om
< CN NTQRNNéN < C(S(C(S)NN(SN ’

where C5 = CN2, (observe that N, depends on §). One can show that
{Dng(n) :n = Ny} is a Cauchy sequence for every N =0,1,2,.... Thus,
©(n) converges to a function ¢ which satisfies 2.7 with ¢, replaced by ¢ .
Hence, ¢ € T for all § > 1 and sup om) C [-1,1]. O

The behaviour of the Fourier transforms of functions with compact sup-
port that are contained in 4? is given in the following result.

PROPOSITION 2.8 Letd > 0. Suppose f is a function such that sup f C
[~A, Al and f € 4° . Then, for every B > 0 there exists a constant Cg such
that

]f(z)\ <Cp cAlm(z)| —-BRe 2'/? , L cC .

Proposition 2.8 is a generalization of one of the implications in the Paley-
Wiener theorem and its proof can be found in Lemma 12.7.4. of [Ho2].



3 The Construction.

For fixed a > 0 choose a “cutoff” function ¢, as in Proposition 2.6. In
particular, ¢, € I'Y for every § > 1. Set

B(z) = /x pult) dt .

Observe that 0, € T9 for every § > 1. As in [AWW] we consider S,(z) =
sin(f,(x)) and Cy(z) = cos(84(x)), so that

bo(z) = Sa(z — ) Co(x — 27), a< -, (3.1)

w3y

is a bell function associated with the interval [, 27] as considered in [AWW]
or [BSW]. Let us assume for the moment (see Theorem 3.3 below) that S,
and C, belong to I'® for every § > 1. Since I'® is an algebra (Proposition
8.4.1 in [Hol]) and it is invariant under traslations, it follows that b, € T'Y
for every § > 1. Extending b, evenly to [—o0, 0] it is proved in [AWW] (see
also Corollary 4.7 of Chapter 1 in [HW]) that the function ¢ defined by

Ya(€) = €2 ba(€) (3.2)

is an orthonormal wavelet in L?(R).

The following result shows, as a particular case, that the functions S,
and (', constructed as the composition of the sine and cosine functions with
0,, belong to I'? for every § > 1.

THEOREM 3.3 Let 6 > 1. Suppose that F is an entire function and

1
feTr?. Then, g(x) = F(f(x)) €T°.

Proof: We have to show that for every compact set K C R there is a
constant Cy such that

|DN g(o)| < Co Cf' NN

for all 9 € K and all N = 1,2,--.. Using the Taylor expansion we can
write

N
F@) =32 - D (o)~ w0)" + Ry (s ) = f(e) + R ().
n=0 ’



Obviously, D¥g(z¢) = DV [F(fxn)](x0). By the assumption, F(fy(2)),z €
C , is analytic, and by the Cauchy formula we can write

Ay gy

DN =
9(z0) 21 Joy (2 — 20)NH1 Z5

where wy = {z € C: |z — 2| = 555 N'7°} and C is the constant such that
ID"f(z)| < C C™"n’" forall z € K and all n = 1,2,---. If 2 € wy , we use
Stirling’s formula to obtain

™=

) < comnt (o )

n! 2eC

3
I
o

l C nén 1 Nn—n6
n! (2e)n

IA
hE

n=0
N 1
< C/ n&n—n e n—nd
nzzo (2e)™
N on—n
1 /n
- oy (2 .
> 5 (¥)
n=0

Since § > 1, we have |fy(z)| < C' Y02 5= = 2C’ . Since F is analytic we
obtain |F(fn(z))| < C” on wy . Thus,

NI 2 1 —(N+1)
N < or 2t pl-d ( 16)
D7 g(wo)l < 2 ¢ 2eC N 2eC N

< C) N(2C)NNO-DN

Using N! < N™ we obtain
|DN g(x0)| < C1(2C)N NN < ¢y CV NN

where Cy = max{C1,2eC'}. O

REMARK. One can find in the literature that if F' is an entire function
and f € T° |, then h(z) = f(F(x)) € T° (see Proposition 8.4.1 in [Hol]).
The result contained in Theorem 3.3 seems to be knew.

COROLLARY 3.4 There exist band-limited, C°°, orthonormal wavelets
in L*(R) with subexponential decay. Moreover all of its derivatives have
also exponential decay.



Proof: Let 0 < ¢ < 1 and choose § = 1=-(6 > 1). The function b,
defined by 3.1, as well as its even extension to (—oo ,0] belong to T for
every 6 > 1 by Theorem 3.3. By Lemma 2.4, b, € 70 for every 6§ > 1.
By Proposition 2.8 (with B = 1) the orthonormal wavelet ¢, given by 3.2
satisfies

[Ya(2)| = C

b <””" + ;N <C.eltal <ol zeR.

That 1, is band-limited is obvious from the definition of b, . The fact that
all of its derivatives have also exponential decay follows from

D™ (@)] = C | (€720, (€) ) (a)|

and '
£ne’/2h,(€) € 0

for every § > 1. O
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