Band-Limited Wavelets with Subexponential Decay

Jacek Dziubański (Wroclaw) * Eugenio Hernández ${ }^{\dagger}$ (Madrid)

15 November 1996

Abstract

It is well known that the compactly supported wavelets cannot belong to the class $C^{\infty}(\mathbf{R}) \cap L^{2}(\mathbf{R})$. This is also true for wavelets with exponential decay. We show that one can construct wavelets in the class $C^{\infty}(\mathbf{R}) \cap L^{2}(\mathbf{R})$ that are "almost" of exponential decay and, moreover, they are band-limited. We do this by showing that we can adapt the construction of the Lemarié-Meyer wavelets [LM] that is found in [BSW] so that we obtain band-limited, C^{∞}-wavelets on \mathbf{R} that have subexponential decay, that is, for every $0<\varepsilon<1$, there exits $C_{\varepsilon}>0$ such that $|\psi(x)| \leq C_{\varepsilon} e^{-|x|^{1-\varepsilon}}, x \in \mathbf{R}$. Moreover, all of its derivatives have also subexponential decay. The proof is constructive and uses the Gevrey classes of functions.

[^0]
1 Introduction.

An orthonormal wavelet ψ is said to have exponential decay if there exist $c>0$ and $\alpha>0$ such that $|\psi(x)| \leq c e^{-\alpha|x|}$ for all $x \in \mathbf{R}$. The spline wavelets have exponential decay ([Le]) as well as the compactly supported wavelets ([Da]). But, there is no orthonormal wavelet with exponential decay belonging to $C^{\infty}(\mathbf{R})$ such that all its derivatives are bounded. To see this, suppose that such a wavelet ψ exists. The exponential decay of ψ would imply that

$$
\hat{\psi}(z)=\int_{\mathbf{R}} e^{-i z x} \psi(x) d x
$$

is a holomorphic function on $|\operatorname{Im} z|<\alpha$. Moreover, the smoothness and decay of ψ would imply that all the moments of ψ are zero. (See Theorem 3.4, Chapter 2, in [HW]). Hence, $\frac{d^{n} \hat{\psi}}{d \xi^{n}}(0)=0$ for all $n=0,1,2, \cdots$. The expansion of $\hat{\psi}(z)$ in powers of z around the origin shows that $\hat{\psi} \equiv 0$ in a neighborhood of $z=0$. Since $\{z \in \mathbf{C}:|\operatorname{Im} z|<\alpha\}$ contains the real line in its interior, ψ must be the zero function on \mathbf{R}.

Orthonormal wavelets ψ that belong to $C^{\infty}(\mathbf{R})$ have been exhibited in [LM]. They are band-limited (i.e. the supports of their Fourier transforms are bounded) and belong to the Schwartz class \mathcal{S}. They can be constructed using smooth "bell" functions as explained in [AWW] or [HW]. It is impossible, however, for any one of these wavelets to have exponential decay (since $\hat{\psi} \equiv 0$ in a neighborhood of the origin).

DEFINITION 1.1 A real-valued function f defined on \mathbf{R} is said to have subexponential decay if whenever $0<\varepsilon<1$, there exists $C_{\varepsilon}>0$ such that

$$
|\psi(x)| \leq C_{\varepsilon} e^{-|x|^{1-\varepsilon}}
$$

for all $x \in \mathbf{R}$.

We shall show how to construct band-limited, orthonormal wavelets with subexponential decay belonging to $C^{\infty}(\mathbf{R})$. The construction is obtained by finding an appropriate "bell" function b whose Fourier transform has subexponential decay. This is accomplished by means of the Gevrey classes of functions, whose definition and properties are presented in the next section.

2 The Gevrey Classes.

DEFINITION 2.1 For $\delta>0$, the Gevrey class Γ^{δ} is the set of all C^{∞} real-valued functions defined on \mathbf{R} such that for every compact set $K \subset \mathbf{R}$ there is a constant C_{K} satisfying

$$
\left|D^{n} f(x)\right| \leq C_{K} C_{K}^{n} n^{n \delta}
$$

for all $x \in K$ and for all $n=1,2,3, \cdots$.
DEFINITION 2.2 For $\delta>0$, the (small) Gevrey class γ^{δ} is the set of all C^{∞} real-valued functions defined on \mathbf{R} such that for every compact set $K \subset \mathbf{R}$ and every $\varepsilon>0$, there is a constant $C_{K, \varepsilon}$ satisfying

$$
\left|D^{n} f(x)\right| \leq C_{K, \varepsilon} \varepsilon^{n}(n!)^{\delta}
$$

for all $x \in K$ and for all $n=1,2,3, \cdots$.

We have taken the above definitions from [Ho1] (pp. 280-281) and [Ho2] (p. 137). Since $n!\leq n^{n}$ it is clear that for every $\delta>0$

$$
\begin{equation*}
\gamma^{\delta} \subset \Gamma^{\delta} \tag{2.3}
\end{equation*}
$$

LEMMA 2.4 If $0<\delta^{\prime}<\delta$ then $\Gamma^{\delta^{\prime}} \subset \gamma^{\delta}$.

Proof: Let $K \subset \mathbf{R}$ be compact and $\varepsilon>0$. For $f \in \Gamma^{\delta^{\prime}}$ we can find $C_{K}>0$ such that

$$
\left|D^{n} f(x)\right| \leq C_{K} C_{K}^{n} n^{\delta^{\prime} n}
$$

for all $x \in K$ and all $n=1,2,3, \cdots$. By Stirling's formula $\left(n!\sim \sqrt{2 \pi n} n^{n} e^{-n}\right)$ we can write

$$
\left|D^{n} f(x)\right| \leq C_{K}^{\prime}(n!)^{\delta}\left(C_{K}^{\prime}\right)^{n} \frac{(n!)^{\delta^{\prime}-\delta} e^{n \delta^{\prime}}}{(\sqrt{2 \pi n})^{\delta^{\prime}}}, \quad x \in K
$$

The sequence $A_{n}=C_{K}^{\prime}(n!)^{\frac{\delta^{\prime}-\delta}{n}} e^{\delta^{\prime}} /(\sqrt{2 \pi n})^{\delta^{\prime} / n}$ tends to zero as $n \rightarrow \infty$ since $\delta^{\prime}<\delta$. Thus, there exists $N(\varepsilon) \in \mathbf{N}$ such that for all $n \geq N(\varepsilon), A_{n} \leq$ ε. Hence, for all $x \in K$,

$$
\left|D^{n} f(x)\right| \leq C_{K}^{\prime} \varepsilon^{n}(n!)^{\delta}
$$

for all $n \geq N(\varepsilon)$. This inequality is also true for $n=1,2, \ldots N(\varepsilon)-1$ by enlarging the constant if necessary.

The Gevrey classes satisfy $\gamma^{\delta_{1}} \subset \gamma^{\delta_{2}}$ and $\Gamma^{\delta_{1}} \subset \Gamma^{\delta_{2}}$ when $0<\delta_{1}<\delta_{2}$. When $\delta>1$ the classes γ^{δ} and Γ^{δ} contain "cutoff" functions. This follows from Theorem 1.3.5 in [Ho1]. We feel that it is worthwhile for the reader to present the essential ingredients of this result. With $\chi=\chi_{[0,1]}$ write $\chi_{a}=\frac{1}{a} \chi\left(\frac{x}{a}\right)$. For any sequence $a_{1} \geq a_{2} \geq \cdots>0$ such that $a=\sum_{j=1}^{\infty} a_{j}<\infty$, the function

$$
\varphi_{k}=\chi_{a_{1}} * \ldots * \chi_{a_{k}}
$$

belongs to $C^{k-1}(\mathbf{R})$, has support in $[0, a]$ and converges as $k \rightarrow \infty$ to a function $\varphi \in C^{\infty}(\mathbf{R})$, with support in $[0, a]$, such that $\int_{\mathbf{R}} \varphi(x) d x=1$ and

$$
\begin{equation*}
\left|D^{n} \varphi(x)\right| \leq \frac{2^{n}}{a_{1} \ldots a_{n}} \tag{2.5}
\end{equation*}
$$

By taking $a_{n}=n^{-\delta}$ in the above construction it follows that $\varphi \in \Gamma^{\delta}$ when $\delta>1$. (Observe that in this case $\sum_{n=1}^{\infty} n^{-\delta}$ is a convergent series.)

This result shows that there are "cutoff" functions in every class Γ^{δ} and γ^{δ} when $\delta>1$. A modification of the above regularization procedure shows that there exists a "cutoff" function which belongs to every Γ^{δ} and γ^{δ} for all $\delta>1$.

PROPOSITION 2.6 For every $a>0$ there exists $\varphi_{a} \in \Gamma^{\delta}$ for every $\delta>1$. Moreover, $\varphi_{a} \geq 0, \sup \varphi_{a} \subset[-a, a]$ and $\int_{\mathbf{R}} \varphi_{a}(x) d x=\pi / 2$.

Proof: Since Γ^{δ} is invariant under dilations and multiplication by constants, it is enough to show the result for $a=1$ and show that $\int_{\mathbf{R}} \varphi_{a}(x) d x<$ ∞. Let h be an even function such that $h \in C^{\infty}([-1,1]), h \geq 0$, and $\int_{-1}^{1} h(x) d x=1$. Choose $\delta_{m}=1+\frac{1}{m}$ and let N_{m} be an increasing sequence of positive integers such that

$$
\sum_{n \geq N_{m}} \frac{1}{n^{\delta_{m}}}<\frac{1}{2^{m}} .
$$

Choose $a_{n}=n^{-\delta_{m}}$ when $N_{m} \leq n<N_{m+1}$. Observe that

$$
\sum_{n \geq N_{1}} a_{n} \leq \sum_{m=1}^{\infty} \frac{1}{2^{m}}=1
$$

Define

$$
\varphi_{(n)}=h_{a_{N_{1}}} * h_{a_{N_{1}+1}} * \cdots * h_{a_{n}}
$$

where $h_{a}(x)=\frac{1}{a} h\left(\frac{x}{a}\right)$, so that $\int_{\mathbf{R}} h_{a}(x) d x=1$. Obviously $\sup \varphi_{(n)} \subset$ $[-1,1]$. We shall show that for every $\delta>1$, there exists $C=C_{\delta}$ such that for all $x \in \mathbf{R}$ and all $N=1,2,3, \cdots$,

$$
\begin{equation*}
\left|D^{N} \varphi_{(n)}(x)\right| \leq C_{\delta}\left(C_{\delta}\right)^{N} N^{\delta N} \tag{2.7}
\end{equation*}
$$

for all $n \geq n\left(C_{\delta}, N\right)$. Take m and n so large that $\delta_{m}<\delta$, and $N_{m}+N<n$. Then,
$D^{N} \varphi_{(n)}=h_{a_{N_{1}}} * h_{a_{N_{1}+1}} * \cdots * h_{a_{N_{m}}} * D h_{a_{N_{m}+1}} * \cdots * D h_{N_{m}+N} * \cdots * h_{a_{n}}$.
We have

$$
\left\|D h_{a_{n}}\right\|_{1}=\frac{1}{a_{n}} \int_{\mathbf{R}} \frac{1}{a_{n}}\left|D h\left(\frac{x}{a_{n}}\right)\right| d x \leq \frac{C}{a_{n}} \leq C n^{\delta_{m}}
$$

if $n \geq N_{m}$. Thus, using $\int u * v=\left(\int u\right)\left(\int v\right)$, and $\int_{\mathbf{R}} h_{a}=1$, we deduce,

$$
\begin{aligned}
\left|D^{N} \varphi_{(n)}(x)\right| & \leq C^{N}\left(N_{m}+1\right)^{\delta_{m}} \cdots\left(N_{m}+N\right)^{\delta_{m}} \\
& \leq C^{N}\left(N_{m}+N\right)^{\delta_{m} N} \leq C^{N} N_{m}^{\delta_{m} N} N^{\delta N} \\
& \leq C^{N} N_{m}^{2 N} N^{\delta N} \leq C_{\delta}\left(C_{\delta}\right)^{N} N^{\delta N}
\end{aligned}
$$

where $C_{\delta}=C N_{m}^{2}$ (observe that N_{m} depends on δ). One can show that $\left\{D^{N} \varphi_{(n)}: n=N_{1, \ldots}\right\}$ is a Cauchy sequence for every $N=0,1,2, \ldots$ Thus, $\varphi_{(n)}$ converges to a function φ which satisfies 2.7 with $\varphi_{(n)}$ replaced by φ. Hence, $\varphi \in \Gamma^{\delta}$ for all $\delta>1$ and $\sup \varphi_{(n)} \subset[-1,1]$.

The behaviour of the Fourier transforms of functions with compact support that are contained in γ^{δ} is given in the following result.

PROPOSITION 2.8 Let $\delta>0$. Suppose f is a function such that $\sup f \subset$ $[-A, A]$ and $f \in \gamma^{\delta}$. Then, for every $B>0$ there exists a constant C_{B} such that

$$
|\hat{f}(z)| \leq C_{B} e^{A|\operatorname{Im}(z)|} e^{-B|\operatorname{Re} z|^{1 / \delta}}, \quad z \in \mathbf{C}
$$

Proposition 2.8 is a generalization of one of the implications in the PaleyWiener theorem and its proof can be found in Lemma 12.7.4. of [Ho2].

3 The Construction.

For fixed $a>0$ choose a "cutoff" function φ_{a} as in Proposition 2.6. In particular, $\varphi_{a} \in \Gamma^{\delta}$ for every $\delta>1$. Set

$$
\theta_{a}(x)=\int_{-\infty}^{x} \varphi_{a}(t) d t
$$

Observe that $\theta_{a} \in \Gamma^{\delta}$ for every $\delta>1$. As in [AWW] we consider $S_{a}(x)=$ $\sin \left(\theta_{a}(x)\right)$ and $C_{a}(x)=\cos \left(\theta_{a}(x)\right)$, so that

$$
\begin{equation*}
b_{a}(x)=S_{a}(x-\pi) C_{2 a}(x-2 \pi), \quad a \leq \frac{\pi}{3}, \tag{3.1}
\end{equation*}
$$

is a bell function associated with the interval $[\pi, 2 \pi]$ as considered in [AWW] or [BSW]. Let us assume for the moment (see Theorem 3.3 below) that S_{a} and C_{a} belong to Γ^{δ} for every $\delta>1$. Since Γ^{δ} is an algebra (Proposition 8.4.1 in [Hol]) and it is invariant under traslations, it follows that $b_{a} \in \Gamma^{\delta}$ for every $\delta>1$. Extending b_{a} evenly to $[-\infty, 0]$ it is proved in [AWW] (see also Corollary 4.7 of Chapter 1 in [HW]) that the function ψ defined by

$$
\begin{equation*}
\hat{\psi}_{a}(\xi)=e^{i \xi / 2} b_{a}(\xi) \tag{3.2}
\end{equation*}
$$

is an orthonormal wavelet in $L^{2}(\mathbf{R})$.
The following result shows, as a particular case, that the functions S_{a} and C_{a}, constructed as the composition of the sine and cosine functions with θ_{a}, belong to Γ^{δ} for every $\delta>1$.

THEOREM 3.3 Let $\delta \geq 1$. Suppose that F is an entire function and $f \in \Gamma^{\delta}$. Then, $g(x)=F(f(x)) \in \Gamma^{\delta}$.

Proof: We have to show that for every compact set $K \subset \mathbf{R}$ there is a constant C_{0} such that

$$
\left|D^{N} g\left(x_{0}\right)\right| \leq C_{0} C_{0}^{N} N^{\delta N}
$$

for all $x_{0} \in K$ and all $N=1,2, \cdots$. Using the Taylor expansion we can write

$$
f(x)=\sum_{n=0}^{N} \frac{1}{n!} D^{n} f\left(x_{0}\right)\left(x-x_{0}\right)^{n}+R_{N}\left(x ; x_{0}\right) \equiv f_{N}(x)+R_{N}(x) .
$$

Obviously, $D^{N} g\left(x_{0}\right)=D^{N}\left[F\left(f_{N}\right)\right]\left(x_{0}\right)$. By the assumption, $F\left(f_{N}(z)\right), z \in$ \mathbf{C}, is analytic, and by the Cauchy formula we can write

$$
D^{N} g\left(x_{0}\right)=\frac{N!}{2 \pi i} \int_{\omega_{N}} \frac{F\left(f_{N}(z)\right)}{\left(z-x_{0}\right)^{N+1}} d z
$$

where $\omega_{N}=\left\{z \in \mathbf{C}:\left|z-x_{0}\right|=\frac{1}{2 e C} N^{1-\delta}\right\}$ and C is the constant such that $\left|D^{n} f(x)\right| \leq C C^{n} n^{\delta n}$ for all $x \in K$ and all $n=1,2, \cdots$. If $z \in \omega_{N}$, we use Stirling's formula to obtain

$$
\begin{aligned}
\left|f_{N}(z)\right| & \leq \sum_{n=0}^{N} \frac{1}{n!} C C^{n} n^{\delta n}\left(\frac{1}{2 e C} N^{1-\delta}\right)^{n} \\
& \leq \sum_{n=0}^{N} \frac{1}{n!} C n^{\delta n} \frac{1}{(2 e)^{n}} N^{n-n \delta} \\
& \leq C^{\prime} \sum_{n=0}^{N} n^{\delta n-n} e^{n} \frac{1}{(2 e)^{n}} N^{n-n \delta} \\
& =C^{\prime} \sum_{n=0}^{N} \frac{1}{2^{n}}\left(\frac{n}{N}\right)^{\delta n-n}
\end{aligned}
$$

Since $\delta \geq 1$, we have $\left|f_{N}(z)\right| \leq C^{\prime} \sum_{n=0}^{\infty} \frac{1}{2^{n}}=2 C^{\prime}$. Since F is analytic we obtain $\left|F\left(f_{N}(z)\right)\right| \leq C^{\prime \prime}$ on ω_{N}. Thus,

$$
\begin{aligned}
\left|D^{N} g\left(x_{0}\right)\right| & \leq \frac{N!}{2 \pi} C^{\prime \prime} \frac{2 \pi}{2 e C} N^{1-\delta}\left(\frac{1}{2 e C} N^{1-\delta}\right)^{-(N+1)} \\
& \leq C_{1} N!(2 e C)^{N} N^{(\delta-1) N}
\end{aligned}
$$

Using $N!\leq N^{n}$ we obtain

$$
\left|D^{N} g\left(x_{0}\right)\right| \leq C_{1}(2 e C)^{N} N^{\delta N} \leq C_{0} C_{0}^{N} N^{\delta N}
$$

where $C_{0}=\max \left\{C_{1}, 2 e C\right\}$.
REMARK. One can find in the literature that if F is an entire function and $f \in \Gamma^{\delta}$, then $h(x)=f(F(x)) \in \Gamma^{\delta} \quad$ (see Proposition 8.4.1 in [Ho1]). The result contained in Theorem 3.3 seems to be knew.

COROLLARY 3.4 There exist band-limited, C^{∞}, orthonormal wavelets in $L^{2}(\mathbf{R})$ with subexponential decay. Moreover all of its derivatives have also exponential decay.

Proof: Let $0<\varepsilon<1$ and choose $\delta=\frac{1}{1-\varepsilon}(\delta>1)$. The function b_{a} defined by 3.1, as well as its even extension to $(-\infty, 0]$ belong to Γ^{δ} for every $\delta>1$ by Theorem 3.3. By Lemma 2.4, $b_{a} \in \gamma^{\delta}$ for every $\delta>1$. By Proposition 2.8 (with $B=1$) the orthonormal wavelet ψ_{a} given by 3.2 satisfies

$$
\left|\psi_{a}(x)\right|=C\left|\hat{b}_{a}\left(x+\frac{1}{2}\right)\right| \leq C_{\varepsilon} e^{-\left|x+\frac{1}{2}\right|^{1 / \delta}} \leq C_{\varepsilon} e^{-|x|^{1-\varepsilon}}, \quad x \in \mathbf{R} .
$$

That ψ_{a} is band-limited is obvious from the definition of b_{a}. The fact that all of its derivatives have also exponential decay follows from

$$
\left|D^{n} \psi_{a}(x)\right|=C\left|\left(\xi^{n} e^{i \xi / 2} b_{a}(\xi)\right)(x)\right|
$$

and

$$
\xi^{n} e^{i \xi / 2} b_{a}(\xi) \in \gamma^{\delta}
$$

for every $\delta>1$.

References

[AWW] Auscher, P., Weiss, G., Wickerhauser, M.V., "Local sine and cosine basis of Coifman and Meyer and the construction of smooth wavelets", in Wavelets: A tutorial in theory and applications (C.K. Chui, Ed.), Academic Press, (1992), 237-256.
[BSW] Bonami, A., Soria, F., Weiss, G., "Band-limited wavelets", J. of Geometric Analysis, 3(6), 1993, 544-578.
[Da] Daubechies, I., "Orthonormal bases of compactly supported wavelets", Comm. Pure Appl. Math., 41, (1988), 909-996.
[Ho1] Hörmander, L., "The analysis of linear partial differential operators I", Springer-Verlag, (1983).
[Ho2] Hörmander, L., "The analysis of linear partial differential operators II", Springer-Verlag, (1983).
[HW] Hernández, E., Weiss, G., "A first course on wavelets", CRC Press, (1996).
[Le] Lemarié-Rieusset, P.G., "Ondelettes localisation exponentielles", J. Math. Pure et Appl., 67, (1988),, 227-236.
[LM] Lemarié, P.G., Meyer, Y., "Ondelettes et bases hilbertiennes", Rev. Mat. Iberoamericana, 2, (1986), 1-18.

Jacek Dziubański
Instytut Matematyczny
Uniwersytet Wroclawski
50-384 Wroclaw, Poland.
jdziuban@math.uni.wroc.pl

Eugenio Hernández
Departamento Matemáticas
Universidad Autónoma de Madrid 28049 Madrid, Spain.
eugenio.hernandez@uam.es

[^0]: *Research supported by grant 2 P301 05207 from KNB, Poland.
 ${ }^{\dagger}$ Research supported by grant PB94-149 from DGICYT (Ministerio de Educación y Ciencia, Spain) and by a grant from Southwestern Bell Telephone Company. Math Subject Classification. Primary 42C15
 Keywords and Phrases. Wavelet, Gevrey classes, subexponential decay.

