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Abstract

It is well known that the compactly supported wavelets cannot
belong to the class C∞(R) ∩ L2(R). This is also true for wavelets
with exponential decay. We show that one can construct wavelets in
the class C∞(R)∩L2(R) that are “almost” of exponential decay and,
moreover, they are band-limited. We do this by showing that we can
adapt the construction of the Lemarié-Meyer wavelets [LM] that is
found in [BSW] so that we obtain band-limited, C∞-wavelets on R
that have subexponential decay, that is, for every 0 < ε < 1, there
exits Cε > 0 such that |ψ(x)| ≤ Cε e

−|x|1−ε

, x ∈ R. Moreover, all of its
derivatives have also subexponential decay. The proof is constructive
and uses the Gevrey classes of functions.
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1 Introduction.

An orthonormal wavelet ψ is said to have exponential decay if there exist
c > 0 and α > 0 such that |ψ(x)| ≤ c e−α|x| for all x ∈ R. The spline wavelets
have exponential decay ([Le]) as well as the compactly supported wavelets
([Da]). But, there is no orthonormal wavelet with exponential decay
belonging to C∞(R) such that all its derivatives are bounded. To see this,
suppose that such a wavelet ψ exists. The exponential decay of ψ would
imply that

ψ̂(z) =
∫
R
e−izx ψ(x) dx

is a holomorphic function on |Im z| < α. Moreover, the smoothness and
decay of ψ would imply that all the moments of ψ are zero. (See Theorem
3.4, Chapter 2, in [HW]). Hence, dnψ̂

dξn (0) = 0 for all n = 0, 1, 2, · · · . The

expansion of ψ̂(z) in powers of z around the origin shows that ψ̂ ≡ 0 in a
neighborhood of z = 0. Since {z ∈ C : |Im z| < α} contains the real line in
its interior, ψ must be the zero function on R.

Orthonormal wavelets ψ that belong to C∞(R) have been exhibited in
[LM]. They are band-limited (i.e. the supports of their Fourier transforms
are bounded) and belong to the Schwartz class S. They can be constructed
using smooth “bell” functions as explained in [AWW] or [HW]. It is im-
possible, however, for any one of these wavelets to have exponential decay
(since ψ̂ ≡ 0 in a neighborhood of the origin).

DEFINITION 1.1 A real-valued function f defined on R is said to have
subexponential decay if whenever 0 < ε < 1, there exists Cε > 0 such
that

|ψ(x)| ≤ Cε e
−|x|1−ε

for all x ∈ R.

We shall show how to construct band-limited, orthonormal wavelets with
subexponential decay belonging to C∞(R). The construction is obtained by
finding an appropriate “bell” function b whose Fourier transform has subex-
ponential decay. This is accomplished by means of the Gevrey classes of
functions, whose definition and properties are presented in the next section.
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2 The Gevrey Classes.

DEFINITION 2.1 For δ > 0, the Gevrey class Γδ is the set of all C∞

real-valued functions defined on R such that for every compact set K ⊂ R
there is a constant CK satisfying

|Dnf(x)| ≤ CK CnK nnδ ,

for all x ∈ K and for all n = 1, 2, 3, · · · .

DEFINITION 2.2 For δ > 0, the (small) Gevrey class γδ is the set of
all C∞ real-valued functions defined on R such that for every compact set
K ⊂ R and every ε > 0, there is a constant CK,ε satisfying

|Dnf(x)| ≤ CK,ε ε
n(n!)δ ,

for all x ∈ K and for all n = 1, 2, 3, · · ·.

We have taken the above definitions from [Ho1] (pp. 280–281) and [Ho2]
(p. 137). Since n! ≤ nn it is clear that for every δ > 0

γδ ⊂ Γδ . (2.3)

LEMMA 2.4 If 0 < δ′ < δ then Γδ
′ ⊂ γδ .

Proof: Let K ⊂ R be compact and ε > 0. For f ∈ Γδ
′

we can find
CK > 0 such that

|Dnf(x)| ≤ CK CnK nδ
′n ,

for all x ∈ K and all n = 1, 2, 3, · · ·. By Stirling’s formula (n! ∼
√

2πn nn e−n)
we can write

|Dnf(x)| ≤ C ′
K(n!)δ(C ′

K)n
(n!)δ

′−δ enδ
′

(
√

2πn)δ′
, x ∈ K .

The sequence An = C ′
K(n!)

δ′−δ
n eδ

′
/

(
√

2πn)δ
′/n tends to zero as n → ∞

since δ′ < δ . Thus, there exists N(ε) ∈ N such that for all n ≥ N(ε), An ≤
ε . Hence, for all x ∈ K,

|Dnf(x)| ≤ C ′
K εn(n!)δ ,
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for all n ≥ N(ε). This inequality is also true for n = 1, 2, . . . N(ε) − 1 by
enlarging the constant if necessary. 2

The Gevrey classes satisfy γδ1 ⊂ γδ2 and Γδ1 ⊂ Γδ2 when 0 < δ1 < δ2 .
When δ > 1 the classes γδ and Γδ contain “cutoff” functions. This follows
from Theorem 1.3.5 in [Ho1]. We feel that it is worthwhile for the reader
to present the essential ingredients of this result. With χ = χ[0,1] write

χa = 1
aχ

(
x
a

)
. For any sequence a1 ≥ a2 ≥ · · · > 0 such that a =

∞∑
j=1

aj <∞ ,

the function
ϕk = χa1 ∗ . . . ∗ χak

belongs to Ck−1(R), has support in [0, a] and converges as k → ∞ to a
function ϕ ∈ C∞(R), with support in [0, a], such that

∫
R ϕ(x) dx = 1 and

|Dnϕ(x)| ≤ 2n

a1 . . . an
. (2.5)

By taking an = n−δ in the above construction it follows that ϕ ∈ Γδ when

δ > 1. (Observe that in this case
∞∑
n=1

n−δ is a convergent series.)

This result shows that there are “cutoff” functions in every class Γδ and
γδ when δ > 1. A modification of the above regularization procedure shows
that there exists a “cutoff” function which belongs to every Γδ and γδ for
all δ > 1.

PROPOSITION 2.6 For every a > 0 there exists ϕa ∈ Γδ for every δ > 1.
Moreover, ϕa ≥ 0 , supϕa ⊂ [−a, a] and

∫
R ϕa(x) dx = π/2 .

Proof: Since Γδ is invariant under dilations and multiplication by con-
stants, it is enough to show the result for a = 1 and show that

∫
R ϕa(x) dx <

∞. Let h be an even function such that h ∈ C∞([−1, 1]), h ≥ 0, and∫ 1
−1 h(x) dx = 1. Choose δm = 1 + 1

m and let Nm be an increasing sequence
of positive integers such that ∑

n≥Nm

1
nδm

<
1

2m
.

Choose an = n−δm when Nm ≤ n < Nm+1 . Observe that∑
n≥N1

an ≤
∞∑
m=1

1
2m

= 1 .
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Define
ϕ(n) = haN1

∗ haN1+1 ∗ · · · ∗ han

where ha(x) = 1
ah

(
x
a

)
, so that

∫
R ha(x) dx = 1. Obviously supϕ(n) ⊂

[−1, 1]. We shall show that for every δ > 1, there exists C = Cδ such that
for all x ∈ R and all N = 1, 2, 3, · · · ,

|DNϕ(n)(x)| ≤ Cδ(Cδ)NN δN , (2.7)

for all n ≥ n(Cδ , N). Take m and n so large that δm < δ , and Nm+N < n .
Then,

DNϕ(n) = haN1
∗ haN1+1 ∗ · · · ∗ haNm

∗DhaNm+1 ∗ · · · ∗DhNm+N ∗ · · · ∗ han .

We have

‖ Dhan ‖1=
1
an

∫
R

1
an

∣∣∣∣Dh(
x

an

)∣∣∣∣ dx ≤ C

an
≤ Cnδm

if n ≥ Nm . Thus, using
∫
u ∗ v = (

∫
u)(

∫
v), and

∫
R ha = 1, we deduce,

|DNϕ(n)(x)| ≤ CN (Nm + 1)δm · · · (Nm +N)δm

≤ CN (Nm +N)δmN ≤ CN N δmN
m N δN

≤ CN N2N
m N δN ≤ Cδ(Cδ)NN δN ,

where Cδ = CN2
m (observe that Nm depends on δ). One can show that

{DNϕ(n) : n = N1,...} is a Cauchy sequence for every N = 0, 1, 2, . . .. Thus,
ϕ(n) converges to a function ϕ which satisfies 2.7 with ϕ(n) replaced by ϕ .
Hence, ϕ ∈ Γδ for all δ > 1 and supϕ(n) ⊂ [−1, 1]. 2

The behaviour of the Fourier transforms of functions with compact sup-
port that are contained in γδ is given in the following result.

PROPOSITION 2.8 Let δ > 0. Suppose f is a function such that sup f ⊂
[−A,A] and f ∈ γδ . Then, for every B > 0 there exists a constant CB such
that

|f̂(z)| ≤ CB eA|Im(z)| e−B|Re z|1/δ
, z ∈ C .

Proposition 2.8 is a generalization of one of the implications in the Paley-
Wiener theorem and its proof can be found in Lemma 12.7.4. of [Ho2].
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3 The Construction.

For fixed a > 0 choose a “cutoff” function ϕa as in Proposition 2.6. In
particular, ϕa ∈ Γδ for every δ > 1. Set

θa(x) =
∫ x

−∞
ϕa(t) dt .

Observe that θa ∈ Γδ for every δ > 1. As in [AWW] we consider Sa(x) =
sin(θa(x)) and Ca(x) = cos(θa(x)), so that

ba(x) = Sa(x− π) C2a(x− 2π), a ≤ π

3
, (3.1)

is a bell function associated with the interval [π, 2π] as considered in [AWW]
or [BSW]. Let us assume for the moment (see Theorem 3.3 below) that Sa
and Ca belong to Γδ for every δ > 1. Since Γδ is an algebra (Proposition
8.4.1 in [Ho1]) and it is invariant under traslations, it follows that ba ∈ Γδ

for every δ > 1. Extending ba evenly to [−∞, 0] it is proved in [AWW] (see
also Corollary 4.7 of Chapter 1 in [HW]) that the function ψ defined by

ψ̂a(ξ) = eiξ/2 ba(ξ) (3.2)

is an orthonormal wavelet in L2(R).

The following result shows, as a particular case, that the functions Sa
and Ca, constructed as the composition of the sine and cosine functions with
θa, belong to Γδ for every δ > 1.

THEOREM 3.3 Let δ ≥ 1. Suppose that F is an entire function and
f ∈ Γδ . Then, g(x) = F (f(x)) ∈ Γδ .

Proof: We have to show that for every compact set K ⊂ R there is a
constant C0 such that

|DNg(x0)| ≤ C0 C
N
0 N

δN

for all x0 ∈ K and all N = 1, 2, · · ·. Using the Taylor expansion we can
write

f(x) =
N∑
n=0

1
n!

Dnf(x0)(x− x0)n +RN (x;x0) ≡ fN (x) +RN (x).
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Obviously, DNg(x0) = DN [F (fN )](x0). By the assumption, F (fN (z)), z ∈
C , is analytic, and by the Cauchy formula we can write

DNg(x0) =
N !
2πi

∫
ωN

F (fN (z))
(z − x0)N+1

dz ,

where ωN = {z ∈ C : |z − x0| = 1
2eC N1−δ} and C is the constant such that

|Dnf(x)| ≤ C Cn nδn for all x ∈ K and all n = 1, 2, · · ·. If z ∈ ωN , we use
Stirling’s formula to obtain

|fN (z)| ≤
N∑
n=0

1
n!

C Cn nδn
(

1
2eC

N1−δ
)n

≤
N∑
n=0

1
n!

C nδn
1

(2e)n
Nn−nδ

≤ C ′
N∑
n=0

nδn−n en
1

(2e)n
Nn−nδ

= C ′
N∑
n=0

1
2n

(
n

N

)δn−n
.

Since δ ≥ 1, we have |fN (z)| ≤ C ′ ∑∞
n=0

1
2n = 2C ′ . Since F is analytic we

obtain |F (fN (z))| ≤ C ′′ on ωN . Thus,

|DNg(x0)| ≤ N !
2π

C ′′ 2π
2eC

N1−δ
(

1
2eC

N1−δ
)−(N+1)

≤ C1 N !(2eC)NN (δ−1)N .

Using N ! ≤ Nn we obtain

|DNg(x0)| ≤ C1(2eC)NN δN ≤ C0 C
N
0 N

δN

where C0 = max{C1, 2eC}. 2

REMARK. One can find in the literature that if F is an entire function
and f ∈ Γδ , then h(x) = f(F (x)) ∈ Γδ (see Proposition 8.4.1 in [Ho1]).
The result contained in Theorem 3.3 seems to be knew.

COROLLARY 3.4 There exist band-limited, C∞, orthonormal wavelets
in L2(R) with subexponential decay. Moreover all of its derivatives have
also exponential decay.
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Proof: Let 0 < ε < 1 and choose δ = 1
1−ε(δ > 1). The function ba

defined by 3.1, as well as its even extension to (−∞ , 0] belong to Γδ for
every δ > 1 by Theorem 3.3. By Lemma 2.4, ba ∈ γδ for every δ > 1.
By Proposition 2.8 (with B = 1) the orthonormal wavelet ψa given by 3.2
satisfies

|ψa(x)| = C

∣∣∣∣b̂a (
x+

1
2

)∣∣∣∣ ≤ Cε e
−|x+ 1

2
|1/δ ≤ Cε e

−|x|1−ε
, x ∈ R .

That ψa is band-limited is obvious from the definition of ba . The fact that
all of its derivatives have also exponential decay follows from

|Dnψa(x)| = C
∣∣∣(ξneiξ/2ba(ξ))̂ (x)

∣∣∣
and

ξneiξ/2ba(ξ) ∈ γδ

for every δ > 1. 2
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Jacek Dziubański Eugenio Hernández
Instytut Matematyczny Departamento Matemáticas
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