COMPLETE CLASSIFICATION OF THE TORSION STRUCTURES OF RATIONAL ELLIPTIC CURVES OVER QUINTIC NUMBER FIELDS

ENRIQUE GONZÁLEZ-JIMÉNEZ

Abstract

We classify the possible torsion structures of rational elliptic curves over quintic number fields. In addition, let E be an elliptic curve defined over \mathbb{Q} and let $G=E(\mathbb{Q})_{\text {tors }}$ be the associated torsion subgroup. We study, for a given G, which possible groups $G \subseteq H$ could appear such that $H=E(K)_{\text {tors }}$, for $[K: \mathbb{Q}]=5$. In particular, we prove that at most there is one quintic number field K such that the torsion grows in the extension K / \mathbb{Q}, i.e., $E(\mathbb{Q})_{\text {tors }} \subsetneq E(K)_{\text {tors }}$.

1. Introduction

Let E / K be an elliptic curve defined over a number field K. The Mordell-Weil Theorem states that the set of K-rational points, $E(K)$, is a finitely generated abelian group. Denote by $E(K)_{\text {tors }}$, the torsion subgroup of $E(K)$, which is isomorphic to $\mathcal{C}_{m} \times \mathcal{C}_{n}$ for two positive integers m, n, where m divides n and where \mathcal{C}_{n} is a cyclic group of order n.

One of the main goals in the theory of elliptic curves is to characterize the possible torsion structures over a given number field, or over all number fields of a given degree. In 1978 Mazur [25] published a proof of Ogg's conjecture (previously established by Beppo Levi), a milestone in the theory of elliptic curves. In that paper, he proved that the possible torsion structures over \mathbb{Q} belong to the set:

$$
\Phi(1)=\left\{\mathcal{C}_{n} \mid n=1, \ldots, 10,12\right\} \cup\left\{\mathcal{C}_{2} \times \mathcal{C}_{2 m} \mid m=1, \ldots, 4\right\},
$$

and that any of them occurs infinitely often. A natural generalization of this theorem is as follows. Let $\Phi(d)$ be the set of possible isomorphic torsion structures $E(K)_{\text {tors }}$, where K runs through all number fields K of degree d and E runs through all elliptic curves over K. Thanks to the uniform boundedness theorem [26, $\Phi(d)$ is a finite set. Then the problem is to determine $\Phi(d)$. Mazur obtained the rational case $(d=1)$. The generalization to quadratic fields $(d=2)$ was obtained by Kamienny, Kenku and Momose [17, [22]. For $d \geq 3$ a complete answer for this problem is still open, although there have been some advances in the last years.

However, more is known about the subset $\Phi^{\infty}(d) \subseteq \Phi(d)$ of torsion subgroups that arise for infinitely many $\overline{\mathbb{Q}}$-isomorphism classes of elliptic curves defined over number fields of degree d. For $d=1$ and $d=2$ we have $\Phi^{\infty}(d)=\Phi(d)$, the cases $d=3$ and $d=4$ have been determined by Jeon et al. [15, 16], and recently the cases $d=5$ and $d=6$ by Derickx and Sutherland [7].

Restricting our attention to the complex multiplication case, we denote $\Phi^{\mathrm{CM}}(d)$ the analogue of the set $\Phi(d)$ but restricting to elliptic curves with complex multiplication (CM elliptic curves in the sequel). In 1974 Olson [30] determined the set of possible torsion structures over \mathbb{Q} of CM elliptic curves:

$$
\Phi^{\mathrm{CM}}(1)=\left\{\mathcal{C}_{1}, \mathcal{C}_{2}, \mathcal{C}_{3}, \mathcal{C}_{4}, \mathcal{C}_{6}, \mathcal{C}_{2} \times \mathcal{C}_{2}\right\} .
$$

[^0]The quadratic and cubic cases were determined by Zimmer et al. [27, 8, 31]; and recently, Clark et al. [5] have computed the sets $\Phi^{\mathrm{CM}}(d)$, for $4 \leq d \leq 13$. In particular, they proved

$$
\Phi^{\mathrm{CM}}(5)=\Phi^{\mathrm{CM}}(1) \cup\left\{\mathcal{C}_{11}\right\} .
$$

In addition to determining $\Phi(d)$, there are many authors interested in the question of how the torsion grows when the field of definition is enlarged. We focus our attention when the underlying field is \mathbb{Q}. In analogy to $\Phi(d)$, let $\Phi_{\mathbb{Q}}(d)$ be the subset of $\Phi(d)$ such that $H \in \Phi_{\mathbb{Q}}(d)$ if there is an elliptic curve E / \mathbb{Q} and a number field K of degree d such that $E(K)_{\text {tors }} \simeq H$. One of the first general result is due to Najman [29], who determined $\Phi_{\mathbb{Q}}(d)$ for $d=2,3$. Chou [4] has given a partial answer to the classification of $\Phi_{\mathbb{Q}}(4)$. Recently, the author with Najman [11] have completed the classification of $\Phi_{\mathbb{Q}}(4)$ and $\Phi_{\mathbb{Q}}(p)$ for p prime. Moreover, in [11] it has been proved that $E(K)_{\text {tors }}=E(\mathbb{Q})_{\text {tors }}$ for all elliptic curves E defined over \mathbb{Q} and all number fields K of degree d, where d is not divisible by a prime ≤ 7. In particular, $\Phi_{\mathbb{Q}}(d)=\Phi(1)$ if d is not divisible by a prime ≤ 7.

Our first result determines $\Phi_{\mathbb{Q}}(5)$.
Theorem 1. The sets $\Phi_{\mathbb{Q}}(5)$ and $\Phi_{\mathbb{Q}}^{\mathrm{CM}}(5)$ are given by

$$
\begin{aligned}
& \Phi_{\mathbb{Q}}(5)=\left\{\mathcal{C}_{n} \mid n=1, \ldots, 12,25\right\} \cup\left\{\mathcal{C}_{2} \times \mathcal{C}_{2 m} \mid m=1, \ldots, 4\right\}, \\
& \Phi_{\mathbb{Q}}^{\mathrm{CM}}(5)=\left\{\mathcal{C}_{1}, \mathcal{C}_{2}, \mathcal{C}_{3}, \mathcal{C}_{4}, \mathcal{C}_{6}, \mathcal{C}_{11}, \mathcal{C}_{2} \times \mathcal{C}_{2}\right\}
\end{aligned}
$$

Remark. $\Phi_{\mathbb{Q}}(5)=\Phi_{\mathbb{Q}}(1) \cup\left\{\mathcal{C}_{11}, \mathcal{C}_{25}\right\}$ and $\Phi_{\mathbb{Q}}^{\mathrm{CM}}(5)=\Phi^{\mathrm{CM}}(5)=\Phi^{\mathrm{CM}}(1) \cup\left\{\mathcal{C}_{11}\right\}$.
For a fixed $G \in \Phi(1)$, let $\Phi_{\mathbb{Q}}(d, G)$ be the subset of $\Phi_{\mathbb{Q}}(d)$ such that E runs through all elliptic curves over \mathbb{Q} with $E(\mathbb{Q})_{\text {tors }} \simeq G$. For each $G \in \Phi(1)$ the sets $\Phi_{\mathbb{Q}}(d, G)$ have been determined for $d=2$ in [23, 13], for $d=3$ in [12] and partially for $d=4$ in [10].

Our second result determines $\Phi_{\mathbb{Q}}(5)$ for any $G \in \Phi(1)$.
Theorem 2. For $G \in \Phi(1)$, we have $\Phi_{\mathbb{Q}}(5, G)=\{G\}$, except in the following cases:

G	$\Phi_{\mathbb{Q}}(5, G)$
\mathcal{C}_{1}	$\left\{\mathcal{C}_{1}, \mathcal{C}_{5}, \mathcal{C}_{11}\right\}$
\mathcal{C}_{2}	$\left\{\mathcal{C}_{2}, \mathcal{C}_{10}\right\}$
\mathcal{C}_{5}	$\left\{\mathcal{C}_{5}, \mathcal{C}_{25}\right\}$

Moreover, there are infinitely many $\overline{\mathbb{Q}}$-isomorphism classes of elliptic curves E / \mathbb{Q} with $H \in \Phi_{\mathbb{Q}}(5, G)$, except for the case $H=\mathcal{C}_{11}$ where only the elliptic curves 121a2, 121c2, 121b1 have eleven torsion over a quintic number field.

In fact, it is possible to give a more detailed description of how the torsion grows. For this purpose for any $G \in \Phi(1)$ and any positive integer d, we define the set

$$
\mathcal{H}_{\mathbb{Q}}(d, G)=\left\{S_{1}, \ldots, S_{n}\right\}
$$

where $S_{i}=\left[H_{1}, \ldots, H_{m}\right]$ is a list of groups $H_{j} \in \Phi_{\mathbb{Q}}(d, G) \backslash\{G\}$, such that, for each $i=1, \ldots, n$, there exists an elliptic curve E_{i} / \mathbb{Q} that satisfies the following properties:

- $E_{i}(\mathbb{Q})_{\text {tors }} \simeq G$, and
- there are number fields K_{1}, \ldots, K_{m} (non-isomorphic pairwise) whose degrees divide d with $E_{i}\left(K_{j}\right)_{\text {tors }} \simeq H_{j}$, for all $j=1, \ldots, m$; and for each j there does not exist $K_{j}^{\prime} \subset K_{j}$ such that $E_{i}\left(K_{j}^{\prime}\right)_{\mathrm{tors}} \simeq H_{j}$.

We are allowing the possibility of two (or more) of the H_{j} being isomorphic. The above sets have been completely determined for the quadratic case $(d=2)$ in [14], for the cubic case $(d=3)$ in [12] and computationally conjectured for the quartic case $(d=4)$ in [10. The quintic case $(d=5)$ is treated in this paper, and the next result determined $\mathcal{H}_{\mathbb{Q}}(5, G)$ for any $G \in \Phi(1)$:

Theorem 3. For $G \in \Phi(1)$, we have $\mathcal{H}_{\mathbb{Q}}(5, G)=\emptyset$, except in the following cases:

G	$\mathcal{H}_{\mathbb{Q}}(5, G)$
\mathcal{C}_{1}	\mathcal{C}_{5}
	\mathcal{C}_{11}
\mathcal{C}_{2}	\mathcal{C}_{10}
\mathcal{C}_{5}	\mathcal{C}_{25}

In particular, for any elliptic curve E / \mathbb{Q}, there is at most one quintic number field K, up to isomorphism, such that $E(K)_{\text {tors }} \neq E(\mathbb{Q})_{\text {tors }}$.
Remark. Notice that for any CM elliptic curve E / \mathbb{Q} and any quintic number field K it has $E(K)_{\text {tors }}=$ $E(\mathbb{Q})_{\text {tors }}$, except to the elliptic curve $121 \mathrm{b1}$ and $K=\mathbb{Q}\left(\zeta_{11}\right)^{+}=\mathbb{Q}\left(\zeta_{11}+\zeta_{11}^{-1}\right)$ where $E(\mathbb{Q})_{\text {tors }} \simeq \mathcal{C}_{1}$ and $E(K)_{\text {tors }} \simeq \mathcal{C}_{11}$.

Let us define

$$
h_{\mathbb{Q}}(d)=\max _{G \in \Phi(1)}\left\{\# S \mid S \in \mathcal{H}_{\mathbb{Q}}(d, G)\right\} .
$$

The values $h_{\mathbb{Q}}(d)$ have been computed for $d=2$ and $d=3$ in [14] and [12] respectively. For $d=4$ we computed a lower bound in [10]. For $d=5$ we have:
Corollary 4. $h_{\mathbb{Q}}(5)=1$.
Remark. In particular, we have deduced the following:

d	2	3	4	5
$h_{\mathbb{Q}}(d)$	4	3	≥ 9	1

Notation. We will use the Antwerp-Cremona tables and labels [1, 6] when referring to specific elliptic curves over \mathbb{Q}.

For conjugacy classes of subgroups of $\mathrm{GL}_{2}(\mathbb{Z} / p \mathbb{Z})$ we will use the labels introduced by Sutherland in [34, §6.4].

We will write $G \simeq H$ (or $G \lesssim H$) for the fact that G is isomorphic to H (or to a subgroup of H resp.) without further detail on the precise isomorphism.

For a positive integer n we will write $\varphi(n)$ for the Euler-totient function of n.
We use \mathcal{O} to denote the point at infinity of an elliptic curve (given in Weierstrass form).

2. Mod n Galois representations associated to elliptic curves

Let E / \mathbb{Q} be an elliptic curve and n a positive integer. We denote by $E[n]$ the n-torsion subgroup of $E(\overline{\mathbb{Q}})$, where $\overline{\mathbb{Q}}$ is a fixed algebraic closure of \mathbb{Q}. That is, $E[n]=\{P \in E(\overline{\mathbb{Q}}) \mid[n] P=\mathcal{O}\}$. The absolute Galois group $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ acts on $E[n]$ by its action on the coordinates of the points, inducing a Galois representation

$$
\rho_{E, n}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \longrightarrow \operatorname{Aut}(E[n]) .
$$

Notice that since $E[n]$ is a free $\mathbb{Z} / n \mathbb{Z}$-module of rank 2 , fixing a basis $\{P, Q\}$ of $E[n]$, we identify $\operatorname{Aut}(E[n])$ with $\mathrm{GL}_{2}(\mathbb{Z} / n \mathbb{Z})$. Then we rewrite the above Galois representation as

$$
\rho_{E, n}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \longrightarrow \mathrm{GL}_{2}(\mathbb{Z} / n \mathbb{Z}) .
$$

Therefore we can view $\rho_{E, n}(\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}))$ as a subgroup of $\mathrm{GL}_{2}(\mathbb{Z} / n \mathbb{Z})$, determined uniquely up to conjugacy, and denoted by $G_{E}(n)$ in the sequel. Moreover, $\mathbb{Q}(E[n])=\{x, y \mid(x, y) \in E[n]\}$ is Galois and since $\operatorname{ker} \rho_{E, n}=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}(E[n]))$, we deduce that $G_{E}(n) \simeq \operatorname{Gal}(\mathbb{Q}(E[n]) / \mathbb{Q})$.

Let $R=(x(R), y(R)) \in E[n]$ and $\mathbb{Q}(R)=\mathbb{Q}(x(R), y(R)) \subseteq \mathbb{Q}(E[n])$, then by Galois theory there exists a subgroup \mathcal{H}_{R} of $\operatorname{Gal}(\mathbb{Q}(E[n]) / \mathbb{Q})$ such that $\mathbb{Q}(R)=\mathbb{Q}(E[n])^{\mathcal{H}_{R}}$. In particular, if we denote by H_{R} the image of \mathcal{H}_{R} in $\mathrm{GL}_{2}(\mathbb{Z} / n \mathbb{Z})$, we have:

- $[\mathbb{Q}(R): \mathbb{Q}]=\left[G_{E}(n): H_{R}\right]$.
- $\operatorname{Gal}(\widehat{\mathbb{Q}(R)} / \mathbb{Q}) \simeq G_{E}(n) / N_{G_{E}(n)}\left(H_{R}\right)$, where $\widehat{\mathbb{Q}(R)}$ denotes the Galois closure of $\mathbb{Q}(R)$ in $\overline{\mathbb{Q}}$, and $N_{G_{E}(n)}\left(H_{R}\right)$ denotes the normal core of H_{R} in $G_{E}(n)$.
We have deduced the following result.
Lemma 5. Let E / \mathbb{Q} be an elliptic curve, n a positive integer and $R \in E[n]$. Then $[\mathbb{Q}(R)$: $\mathbb{Q}]$ divides $\left|G_{E}(n)\right|$. In particular $[\mathbb{Q}(R): \mathbb{Q}]$ divides $\left|\mathrm{GL}_{2}(\mathbb{Z} / n \mathbb{Z})\right|$.

In practice, given the conjugacy class of $G_{E}(n)$ we can deduce the relevant arithmetic-algebraic properties of the fields of definition of the n-torsion points: since $E[n]$ is a free $\mathbb{Z} / n \mathbb{Z}$-module of rank 2 , we can identify the n-torsion points with $(a, b) \in(\mathbb{Z} / n \mathbb{Z})^{2}$ (i.e. if $R \in E[n]$ and $\{P, Q\}$ is a $\mathbb{Z} / n \mathbb{Z}$-basis of $E[n]$, then there exist $a, b \in \mathbb{Z} / n \mathbb{Z}$ such that $R=a P+b Q$). Therefore H_{R} is the stabilizer of (a, b) by the action of $G_{E}(n)$ on $(\mathbb{Z} / n \mathbb{Z})^{2}$. In order to compute all the possible degrees (jointly with the Galois group of its Galois closure in $\overline{\mathbb{Q}}$) of the fields of definition of the n-torsion points we run over all the elements of $(\mathbb{Z} / n \mathbb{Z})^{2}$ of order n.

Now, observe that $\langle R\rangle \subset E[n]$ is a subgroup of order n. Equivalently, E / \mathbb{Q} admits a cyclic n isogeny (non-rational in general). The field of definition of this isogeny is denoted by $\mathbb{Q}(\langle R\rangle)$. A similar argument could be used to obtain a description of $\mathbb{Q}(\langle R\rangle)$ using Galois theory. In particular, if $\langle R\rangle$ is $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-stable then the isogeny is defined over \mathbb{Q}. To compute the relevant arithmeticalgebraic properties of the field $\mathbb{Q}(\langle R\rangle)$ is similar to the case $\mathbb{Q}(R)$, replacing the pair (a, b) by the $\mathbb{Z} / n \mathbb{Z}$-module of rank 1 generated by (a, b) in $(\mathbb{Z} / n \mathbb{Z})^{2}$.

In the case E / \mathbb{Q} be a non-CM elliptic curve and $p \leq 11$ be a prime, Zywina [35] has described all the possible subgroups of $\mathrm{GL}_{2}(\mathbb{Z} / p \mathbb{Z})$ that occur as $G_{E}(p)$.

For each possible subgroup $G_{E}(p) \subseteq \mathrm{GL}_{2}(\mathbb{Z} / p \mathbb{Z})$ for $p \in\{2,3,5,11\}$, Table \rceil lists in the first and second column the corresponding labels in Sutherland and Zywina notations, and the following data:
d_{0} : the index of the largest subgroup of $G_{E}(p)$ that fixes a $\mathbb{Z} / p \mathbb{Z}$-submodule of rank 1 of $E[p]$; equivalently, the degree of the minimal extension L / \mathbb{Q} over which E admits a L-rational p-isogeny.
d_{v} : is the index of the stabilizers of $v \in(\mathbb{Z} / p \mathbb{Z})^{2}, v \neq(0,0)$, by the action of $G_{E}(p)$ on $(\mathbb{Z} / p \mathbb{Z})^{2}$; equivalently, the degrees of the extension L / \mathbb{Q} over which E has a L-rational point of order p.
d : is the order of $G_{E}(p)$; equivalently, the degree of the minimal extension L / \mathbb{Q} for which $E[p] \subseteq E(L)$.
Note that Table 1 is partially extracted from Table 3 of [34]. The difference is that [34, Table 3] only lists the minimum of d_{v}, which is denoted by d_{1} therein.

For the CM case, Zywina [35, §1.9] gives a complete description of $G_{E}(p)$ for any prime p.

3. Isogenies.

In this paper a rational n-isogeny of an elliptic curve E / \mathbb{Q} is a (surjective) morphism $E \longrightarrow E^{\prime}$ defined over \mathbb{Q} where E^{\prime} / \mathbb{Q} and the kernel is cyclic of order n. The rational n-isogenies of elliptic curves over \mathbb{Q}, have been described completely in the literature, for all $n \geq 1$. The following result gives all the possible values of n.

Sutherland	Zywina	d_{0}	d_{v}	d
2Cs	G_{1}	1	1	1
2B	G_{2}	1	1,2	2
2Cn	G_{3}	3	3	3
GL $(2, \mathbb{Z} / 2 \mathbb{Z})$	3	3	6	
3Cs.1.1	$H_{1,1}$	1	1,2	2
3Cs	G_{1}	1	2,4	4
3B.1.1	$H_{3,1}$	1	1,6	6
3B.1.2	$H_{3,2}$	1	2,3	6
3Ns	G_{2}	2	4	8
3B	G_{3}	1	2,6	12
3Nn	G_{4}	4	8	16
GL $(2, \mathbb{Z} / 3 \mathbb{Z})$	4	8	48	
11B.1.4	$H_{1,1}$	1	5,110	110
11B.1.5	$H_{2,1}$	1	5,110	110
11B.1.6	$H_{2,2}$	1	10,55	110
11B.1.7	$H_{1,2}$	1	10,55	110
11B.10.4	G_{1}	1	10,110	220
11B.10.5	G_{2}	1	10,110	220
11Nn	G_{3}	12	120	240
GL(2, $\mathbb{Z} / 11 \mathbb{Z})$		12	120	13200

Sutherland	Zywina	d_{0}	d_{v}	d
5Cs.1.1	$H_{1,1}$	1	1,4	4
5Cs.1.3	$H_{1,2}$	1	2,4	4
5Cs.4.1	G_{1}	1	$2,4,8$	8
5Ns.2.1	G_{3}	2	8,16	16
5Cs	G_{2}	1	4	16
5B.1.1	$H_{6,1}$	1	1,20	20
5B.1.2	$H_{5,1}$	1	4,5	20
5B.1.4	$H_{6,2}$	1	2,20	20
5B.1.3	$H_{5,2}$	1	4,10	20
5Ns	G_{4}	2	8,16	32
5B.4.1	G_{6}	1	2,20	40
5B.4.2	G_{5}	1	4,10	40
5Nn	G_{7}	6	24	48
5B	G_{8}	1	4,20	80
5S4	G_{9}	6	24	96
GL $(2, \mathbb{Z} / 5 \mathbb{Z})$	6	24	480	

Table 1. Image groups $G_{E}(p)$, for $p \in\{2,3,5,11\}$, for non-CM elliptic curves E / \mathbb{Q}.

Theorem 6 ([25, 18, 19, 20, 21). Let E / \mathbb{Q} be an elliptic curve with a rational n-isogeny. Then $n \leq 19$ or $n \in\{21,25,27,37,43,67,163\}$.

A direct consequence of the Galois theory applied to the theory of cyclic isogenies is the following (cf. Lemma 3.10 [4).
Lemma 7. Let E / \mathbb{Q} be an elliptic curve such that $E(K)[n] \simeq \mathcal{C}_{n}$ over a Galois extension K / \mathbb{Q}. Then E has a rational n-isogeny.

4. \mathcal{P}-primary torsion subgroup

Let E / K be an elliptic curve defined over a number field K. For a given set of primes $\mathcal{P} \subset \mathbb{Z}$, let $E(K)\left[\mathcal{P}^{\infty}\right]$ denote the \mathcal{P}-primary torsion subgroup of $E(K)_{\text {tors }}$, that is, the direct product of the p-Sylow subgroups of $E(K)$ for $p \in \mathcal{P}$. If $\mathcal{P}=\{p\}$, let us denote by $E(K)\left[p^{\infty}\right]$.
Proposition 8. Let E / \mathbb{Q} be an elliptic curve and K / \mathbb{Q} be a quintic number field.
(1) If P is a point of prime order p in $E(K)$, then $p \in\{2,3,5,7,11\}$.
(2) If $E(K)[n]=E[n]$, then $n=2$.

Proof. (1) Lozano-Robledo [24] has determined that the set of primes p for which there exists a number field K of degree ≤ 5 and an elliptic curve E / \mathbb{Q} such that the p divides the order of $E(K)_{\text {tors }}$ is given by $S_{\mathbb{Q}}(5)=\{2,3,5,7,11,13\}$. Then to finish the proof we must remove the prime $p=13$. This follows from Lemma 5 since 5 does not divide the order of $\mathrm{GL}_{2}\left(\mathbb{F}_{13}\right)$, that is $2^{5} \cdot 3^{2} \cdot 7 \cdot 13$.
(2) Let E / K be the base change of E over the number field K. If $E[n] \subseteq E(K)$ then $\mathbb{Q}\left(\zeta_{n}\right) \subseteq K$. In particular $\varphi(n) \mid[K: \mathbb{Q}]$. The only possibility if $[K: \mathbb{Q}]=5$ is $n=2$.
4.1. p-primary torsion subgroup $(p \neq 5,11)$.

Lemma 9. Let E / \mathbb{Q} be an elliptic curve and K / \mathbb{Q} a quintic number field. Then, for any prime $p \neq 5,11$:

$$
E(K)\left[p^{\infty}\right]=E(\mathbb{Q})\left[p^{\infty}\right] .
$$

In particular, if $P \in E(K)\left[p^{\infty}\right]$ and p^{n} is its order, then $n \leq 3,2$, 1, if $p=2,3,7$, respectively, and $n=0$ otherwise.

Proof. Let $P \in E(K)\left[p^{n}\right]$. By Lemma $[\mathbb{S},[P): \mathbb{Q}]$ divides $\left|\mathrm{GL}_{2}\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)\right|=p^{4 n-3}\left(p^{2}-1\right)(p-1)$. If $p \in\{2,3,7\}$ then $\mathbb{Q}(P)=\mathbb{Q}$. Together with Proposition (8) (2), we deduce $E(K)\left[p^{\infty}\right]=E(\mathbb{Q})\left[p^{\infty}\right]$. If $p \geq 13$ and $n>0$, then $\left[p^{n-1}\right] P \in E(K)$ is a point or order p, a contradiction with Proposition [8 (11). That is, $E(K)\left[p^{\infty}\right]=E(\mathbb{Q})\left[p^{\infty}\right]=\{\mathcal{O}\}$ if $p \geq 13$.

4.2. 5-primary torsion subgroup.

Lemma 10. Let E / \mathbb{Q} be an elliptic curve and K / \mathbb{Q} a quintic number field. Then

$$
E(K)\left[5^{\infty}\right] \lesssim \mathcal{C}_{25}
$$

In particular if $E(K)\left[5^{\infty}\right] \neq\{\mathcal{O}\}$ then E has non-CM. Moreover:
(1) if $E(\mathbb{Q})\left[5^{\infty}\right] \simeq \mathcal{C}_{5}$, then $G_{E}(5)$ is labeled 5 B.1.1 or 5 Cs.1.1;
(2) if $E(K)\left[5^{\infty}\right] \simeq \mathcal{C}_{5}$ and $E(\mathbb{Q})\left[5^{\infty}\right]=\{\mathcal{O}\}$, then $G_{E}(5)$ is labeled 5B.1.2;
(3) if $E(K)\left[5^{\infty}\right] \simeq \mathcal{C}_{25}$, then $E(\mathbb{Q})\left[5^{\infty}\right] \simeq \mathcal{C}_{5}$. Moreover, K is Galois if $G_{E}(5)$ is labeled 5B.1.1.

Proof. First suppose that E has CM. Then by the classification $\Phi_{\mathbb{Q}}^{\mathrm{CM}}(5)$ we deduce that $E(K)\left[5^{\infty}\right]=$ $\{\mathcal{O}\}$. From now on we assume that E is non-CM. First, it is not possible $E[5] \subseteq E(K)$ by Proposition 8 (2). Now, the characterization of $\Phi(1)$ tells us that $E(\mathbb{Q})\left[5^{\infty}\right] \lesssim \mathcal{C}_{5}$. We observe in Table 1 that $d_{v}=1$ (resp. $d_{v}=5$) for some $v \in(\mathbb{Z} / 5 \mathbb{Z})^{2}$ of order 5 if and only if $G_{E}(5)$ is labeled by 5Cs.1.1 or 5B.1.1 (resp. 5B.1.2), which proves (11) (resp. (2i)). We are going to prove that $E(K)\left[5^{\infty}\right] \lesssim \mathcal{C}_{25}$. First, we prove (3). Assume that there exists a quintic number field K such that $E(K)[25]=\langle P\rangle \simeq \mathcal{C}_{25}$. Then $G_{E}(25)$ satisfies:

$$
G_{E}(25) \equiv G_{E}(5)(\bmod 5) \quad \text { and } \quad\left[G_{E}(25): H_{P}\right]=5
$$

Note that in general we do not have an explicit description of $G_{E}(25)$, but using Magma [2] we do a simulation with subgroups of $G L_{2}(\mathbb{Z} / 25 \mathbb{Z})$.

First assume that $G_{E}(5)$ is labeled by 5 B .1 .2 , then $G_{E}(5)$ is conjugate in $\mathrm{GL}_{2}(\mathbb{Z} / 5 \mathbb{Z})$ to the subgroup (cf. [35, Theorem 1.4 (iii)])

$$
H_{5,1}=\left\langle\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\right\rangle \subset \mathrm{GL}_{2}(\mathbb{Z} / 5 \mathbb{Z})
$$

Since we do not have a characterization of $G_{E}(25)$, we check using Magma that for any subgroup G of $G L_{2}(\mathbb{Z} / 25 \mathbb{Z})$ satisfying $G \equiv H(\bmod 5)$ for some conjugate H of $H_{5,1}$ in $\mathrm{GL}_{2}(\mathbb{Z} / 5 \mathbb{Z})$, and for any
$v \in(\mathbb{Z} / 25 \mathbb{Z})^{2}$ of order 25 , we have $\left[G: G_{v}\right] \neq 5$ (where G_{v} be the stabilizer of v by the action of G on $\left.(\mathbb{Z} / 25 \mathbb{Z})^{2}\right)$. Therefore for any point $P \in E[25]$ it has $\left[G_{E}(25): H_{P}\right] \neq 5$. In particular this proves that if $G_{E}(5)$ is labeled by 5B.1.2, then there is not 5^{n}-torsion over a quintic number field, for $n>1$. This finishes the first part of (3).

Now assume that $G_{E}(5)$ is labeled by 5 B .1 .1 . That is, $G_{E}(5)$ is conjugate in $\mathrm{GL}_{2}(\mathbb{Z} / 5 \mathbb{Z})$ to the subgroup (cf. [35, Theorem 1.4 (iii)])

$$
H_{6,1}=\left\langle\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\right\rangle \subset \mathrm{GL}_{2}(\mathbb{Z} / 5 \mathbb{Z})
$$

A similar argument as the one used before, we check that for any subgroup G of $G L_{2}(\mathbb{Z} / 25 \mathbb{Z})$ satisfying $G \equiv H(\bmod 5)$ for some conjugate H of $H_{6,1}$ in $\mathrm{GL}_{2}(\mathbb{Z} / 5 \mathbb{Z})$, and for any $v \in(\mathbb{Z} / 25 \mathbb{Z})^{2}$ of order 25 such that $\left[G: G_{v}\right]=5$ we have that $G / N_{G}\left(G_{v}\right) \simeq \mathcal{C}_{5}$. Therefore we have deduced that if E / \mathbb{Q} is an elliptic curve such that $G_{E}(5)$ is labeled by 5 B.1.1 and there exists a quintic number field K with a K-rational point of order 25 , then K is Galois. Note that in this case there does not exist a point of order 5^{n} for $n>2$ over any quintic number field: suppose that K^{\prime} is a quintic number field such that there exists $P \in E\left(K^{\prime}\right)\left[5^{n}\right]$. Then $\left[5^{n-2}\right] P \in E\left(K^{\prime}\right)[25]$. Therefore K^{\prime} is Galois and, by Lemma 7, E has a rational 5^{n}-isogeny. In contradiction with Theorem 6 This completes the proof of (3).

Finally we assume that $G_{E}(5)$ is labeled by 5 Cs .1 .1 . That is, $G_{E}(5)$ is conjugate in $\mathrm{GL}_{2}(\mathbb{Z} / 5 \mathbb{Z})$ to the subgroup (cf. [35, Theorem 1.4 (iii)])

$$
H_{1,1}=\left\langle\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)\right\rangle \subset \mathrm{GL}_{2}(\mathbb{Z} / 5 \mathbb{Z})
$$

In this case using a similar algorithm as above we check that if there exists a quintic number field K such that $E(K)[25] \simeq \mathcal{C}_{25}$ then K is Galois or the Galois closure of K in $\overline{\mathbb{Q}}$ is isomorphic to \mathcal{F}_{5}, where \mathcal{F}_{5} denotes the Fröbenius group of order 20. In the former case, this proves that there does not exist a point of order 5^{n} for $n>2$ over any Galois quintic number field. Now, assume that K is not Galois, then $G_{E}(125)$ satisfies:

$$
\begin{array}{ll}
G_{E}(125) \equiv G_{E}(5)(\bmod 5) & , \quad\left[G_{E}(125): H_{P}\right]=5 \\
G_{E}(125) \equiv G_{E}(25)(\bmod 25) & , \quad\left[G_{E}(25): H_{5 P}\right]=5
\end{array}
$$

We check that for any subgroup G of $G L_{2}(\mathbb{Z} / 125 \mathbb{Z})$ satisfying $G \equiv H(\bmod 5)$ for some conjugate H of $H_{1,1}$ in $\mathrm{GL}_{2}(\mathbb{Z} / 5 \mathbb{Z})$, and for any $v \in(\mathbb{Z} / 125 \mathbb{Z})^{2}$ of order 125 such that $\left[G: G_{v}\right]=5$ and $G / N_{G}\left(G_{v}\right) \simeq \mathcal{F}_{5}$ we obtain that $\left[G^{\prime}: G_{w}^{\prime}\right] \neq 5$ for any $w \in(\mathbb{Z} / 25 \mathbb{Z})^{2}$ of order 25 ; where $G^{\prime} \equiv$ $G(\bmod 25)$. We deduce that there do not exist points of order 125 over quintic number fields. So, $E(K)\left[5^{\infty}\right] \lesssim \mathcal{C}_{25}$.

This finishes the proof.

4.3. 11-primary torsion subgroup.

Lemma 11. Let E / \mathbb{Q} be an elliptic curve and K / \mathbb{Q} a quintic number field. Then

$$
E(K)\left[11^{\infty}\right] \lesssim \mathcal{C}_{11} .
$$

In particular, if $E(K)\left[11^{\infty}\right] \neq\{\mathcal{O}\}$ then E is labeled 121a2, 121c2, or 121b1, $K=\mathbb{Q}\left(\zeta_{11}\right)^{+}$and $E(K)_{\text {tors }} \simeq \mathcal{C}_{11}$.

Proof. First, suppose that E / \mathbb{Q} is non-CM. Then Table 1 shows that there exists a point of order 11 over a quintic number field if and only if $G_{E}(11)$ is labeled 11B.1.4 or 11B.1.5. Or in Zywina notation, $G_{E}(11)$ is conjugate in $\mathrm{GL}_{2}(\mathbb{Z} / 11 \mathbb{Z})$ to the subgroups $H_{1,1}$ or $H_{2,1}$. Then Zywina 35, Theorem $1.6(\mathrm{v})]$ proved that E is isomorphic (over \mathbb{Q}) to 121 a 2 or 121 c 2 respectively.

Now, let us suppose that E / \mathbb{Q} has $C M$. Recall that there are thirteen \mathbb{Q}-isomorphic classes of elliptic curve with CM (cf. [33, A §3]), each of them has CM by an order in the imaginary quadratic field with discriminant $-D$, where $D \in\{3,4,7,8,11,19,43,67,163\}$. In this context, Zywina 35 , $\S 1.9]$ gives a complete characterization of the conjugacy class of $G_{E}(p)$ in $\mathrm{GL}_{2}(\mathbb{Z} / p \mathbb{Z})$, for any prime p. Let us apply these results for the case $p=11$. The proof splits on whether $j(E) \neq 0$ (Proposition 1.14 [35]) or $j(E)=0$ (Proposition 1.16 (iv) [35]):

- $j(E) \neq 0$. Depending whether $-D$ is a quadratic residue modulo 11 :
- if $D \in\{7,8,19,43\}$ then $G_{E}(11)$ is conjugate to 11 Ns .
- if $D \in\{3,4,6,7,163\}$ then $G_{E}(11)$ is conjugate to 11 Nn .
- if $D=11$:
* if E is 121 b 1 then $G_{E}(11)$ is conjugate to 11B.1.3,
* if E is 121 b 2 then $G_{E}(11)$ is conjugate to 11B.1.8,
* otherwise $G_{E}(11)$ is conjugate to 11B.10.3.
- $j(E)=0$. Then $G_{E}(11)$ is conjugate to 11 Nn .1 .4 or 11 Ns .

The following table lists for each possible $G_{E}(11)$ as above, the value d_{1}, the minimum of the indexes of the stabilizers of $v \in(\mathbb{Z} / 11 \mathbb{Z})^{2}, v \neq(0,0)$, by the action of $G_{E}(11)$ on $(\mathbb{Z} / 11 \mathbb{Z})^{2}$; equivalently, the minimum degree of the extension L / \mathbb{Q} over which E has a L-rational point of order 11 .

11 Ns	11 Nn	11 B .1 .3	11 B .1 .8	11 B .10 .3	11 Nn .1 .4
20	120	5	10	10	40

The above table proves that E / \mathbb{Q} has a point of order 11 over a quintic number fields if and only if E is the curve 121 b 1 .

Finally, Table 3 shows that the torsion of the elliptic curves $121 \mathrm{a} 2,121 \mathrm{c} 2$ and 121 b 1 grows in a quintic number field to \mathcal{C}_{11} only over the field $\mathbb{Q}\left(\zeta_{11}\right)^{+}$, and over that field the torsion is \mathcal{C}_{11}.
Remark. If in the above statement the quintic number field is replaced by a number field K of degree d such that $d \neq 5$ and $d \leq 9$, then there does not exist any elliptic curve E / \mathbb{Q} with a point of order 11 over K.

4.4. $\{p, q\}$-primary torsion subgroup.

Lemma 12. Let E / \mathbb{Q} be an elliptic curve and K / \mathbb{Q} a quintic number field. Let $p, q \in\{2,3,5,7,11\}$, $p \neq q$, such that $p q$ divides the order of $E(K)_{\text {tors }}$. Then

$$
E(\mathbb{Q})\left[\{p, q\}^{\infty}\right]=E(K)\left[\{p, q\}^{\infty}\right] \quad \text { or } \quad E(K)\left[\{p, q\}^{\infty}\right] \simeq \mathcal{C}_{10} .
$$

In the former case, $E(\mathbb{Q})_{\text {tors }}=E(\mathbb{Q})\left[\{p, q\}^{\infty}\right] \simeq G$, where $G \in\left\{\mathcal{C}_{6}, \mathcal{C}_{10}, \mathcal{C}_{2} \times \mathcal{C}_{6}\right\}$.
Proof. First we may suppose $p \neq 11$ by Lemma 11. Assume that $p, q \in\{2,3,7\}$, then by Lemma 9 we have that the $\{p, q\}$-primary torsion is defined over \mathbb{Q}. That is, $E(K)\left[\{p, q\}^{\infty}\right]=E(\mathbb{Q})\left[\{p, q\}^{\infty}\right]$. Let $G \in \Phi(1)$ such that $E(\mathbb{Q})_{\text {tors }} \simeq G$. Then $G \in\left\{\mathcal{C}_{6}, \mathcal{C}_{2} \times \mathcal{C}_{6}\right\}$.

It remains to prove the case $p=5$ and $q \in\{2,3,7\}$. Without loss of generality we can assume that the 5 -primary torsion is not defined over \mathbb{Q}, otherwise $E(K)\left[\{5, q\}^{\infty}\right]=E(\mathbb{Q})\left[\{5, q\}^{\infty}\right]$ and the unique possibility is \mathcal{C}_{10}. In particular, by Lemma 10 we have that E has non-CM and the 5 -primary torsion of E over K is cyclic of order 5 or 25 , and $E(\mathbb{Q})\left[5^{\infty}\right]=\{\mathcal{O}\}$ or $E(\mathbb{Q})\left[5^{\infty}\right] \simeq \mathcal{C}_{5}$ respectively. Depending on $q \in\{2,3,7\}$ we have:

- $q=2$:
$\star E(K)\left[5^{\infty}\right] \simeq \mathcal{C}_{5}$. If $E(K)\left[2^{\infty}\right] \simeq \mathcal{C}_{2}$ then there are infinitely many elliptic curves such that $E(K)\left[\{2,5\}^{\infty}\right] \simeq \mathcal{C}_{10}$ (see Proposition 15). In fact, the above 2-primary torsion is the unique possibility since if $\mathcal{C}_{4} \lesssim E(\mathbb{Q})$ then $\mathcal{C}_{20} \not \mathbb{Z} E(K)$ and if $E[2] \lesssim E(\mathbb{Q})$ then $\mathcal{C}_{2} \times \mathcal{C}_{10} \not \subset E(K)$ (see Remark below Theorem 7 of [10]).
$\star E(K)\left[5^{\infty}\right] \simeq \mathcal{C}_{25}$. Assume that $E(K)[2] \neq\{\mathcal{O}\}$. If $G_{E}(5)$ is labeled 5 B .1 .1 then K is Galois and therefore, by Lemma $7, E$ has a rational 50 -isogeny, that is not possible by Theorem 6. Now suppose that $G_{E}(5)$ is labeled 5Cs.1.1. Since $E(K)\left[2^{\infty}\right]=E(\mathbb{Q})\left[2^{\infty}\right]$ and $E\left(\mathbb{Q}\left(\zeta_{5}\right)\right)=E[5]$ (by Table (1) we deduce $\mathcal{C}_{5} \times \mathcal{C}_{10} \lesssim E\left(\mathbb{Q}\left(\zeta_{5}\right)\right)$. But this is not possible since Bruin and Najman [3, Theorem 6] have proved that any elliptic curve defined over $\mathbb{Q}\left(\zeta_{5}\right)$ have torsion subgroup isomorphic to a group in the following set

$$
\Phi\left(\mathbb{Q}\left(\zeta_{5}\right)\right)=\left\{\mathcal{C}_{n} \mid n=1, \ldots, 10,12,15,16\right\} \cup\left\{\mathcal{C}_{2} \times \mathcal{C}_{2 m} \mid m=1, \ldots, 4\right\} \cup\left\{\mathcal{C}_{5} \times \mathcal{C}_{5}\right\} .
$$

- $q=3$: A necessary condition if 15 divides $E(K)_{\text {tors }}$ is that the 5 -torsion is not defined over \mathbb{Q} and the 3 -torsion is defined over \mathbb{Q}. By Lemma 10, $G_{E}(5)$ is labeled 5B.1.2. Zywina [35, Theorem 1.4] has showed that its j-invariant is of the form

$$
J_{5}(t)=\frac{\left(t^{4}+228 t^{3}+494 t^{2}-228 t+1\right)^{3}}{t\left(t^{2}-11 t-1\right)^{5}}, \quad \text { for some } t \in \mathbb{Q}
$$

On the other hand, we have proved that the 3 -torsion is defined over \mathbb{Q}. Then, by Table 亿 $G_{E}(3)$ is labeled 3Cs.1.1 or 3B.1.1. Again Zywina [35, Theorem 1.2] characterizes the j-invariant of E / \mathbb{Q} depending on the conjugacy class of $G_{E}(3)$:
\star 3Cs.1.1: $J_{1}(s)=27 \frac{(s+1)^{3}(s+3)^{3}\left(s^{2}+3\right)^{3}}{s^{3}\left(s^{2}+3 s+3\right)^{3}}$, for some $s \in \mathbb{Q}$. We must have an equality of j-invariants: $J_{1}(s)=J_{5}(t)$. In particular, grouping cubes we deduce:

$$
t\left(t^{2}-11 t-1\right)^{2}=r^{3}, \quad \text { for some } t, r \in \mathbb{Q}
$$

This equation defines a curve C of genus 2 , which in fact transforms (according to Magma) to $^{1} C^{\prime}: y^{2}=x^{6}+22 x^{3}+125$. The jacobian of C^{\prime} has rank 0 , so we can use the Chabauty method, and determine that the points on C^{\prime} are

$$
C^{\prime}(\mathbb{Q})=\{(1: \pm 1: 0)\} .
$$

Therefore C^{\prime} has no affine points and we obtain

$$
C(\mathbb{Q})=\{(0,0)\} \cup\{(1: 0: 0)\} .
$$

Then $t=0$, and since t divides the denominator of $J_{5}(t)$ we have reached a contradiction to the existence of such curve E.
\star 3B.1.1: $J_{3}(s)=27 \frac{(s+1)(s+9)^{3}}{s^{3}}$, for some $s \in \mathbb{Q}$. A similar argument with the equality $J_{3}(s)=J_{5}(t)$ gives us the equation:

$$
C: 27(s+1)(s+9)^{3} t\left(t^{2}-11 t-1\right)^{5}=s^{3}\left(t^{4}+228 t^{3}+494 t^{2}-228 t+1\right)^{3}
$$

In this case the above equation defines a genus 1 curve which has the following points: $\{(-2 / 27,-1 / 8),(-27 / 2,-2),(-27 / 2,1 / 2),(0,0),(-2 / 27,8)\} \cup\{(0: 1: 0),(1 / 27: 1: 0),(1: 0: 0)\}$.

The curve C is \mathbb{Q}-isomorphic to the elliptic curve 15a3, which Mordell-Weil group (over \mathbb{Q}) is of order 8. Therefore we deduce that $s=-2 / 27,-27 / 2$, and in particular

$$
j(E) \in\left\{-5^{2} / 2,-5^{2} \cdot 241^{3} / 2^{3}\right\} .
$$

[^1]Therefore there are two $\overline{\mathbb{Q}}$-isomorphic classes of elliptic curves. Each pair of elliptic curves in the same $\overline{\mathbb{Q}}$-isomorphic class is related by a quadratic twist. Najman [28] has made an exhaustive study of how the torsion subgroup changes upon quadratic twists. In particular Proposition 1 (c) [28] asserts that if E / \mathbb{Q} is neither 50 a 3 nor 450 b 4 , and it satisfies $E(\mathbb{Q})_{\text {tors }} \simeq$ \mathcal{C}_{3} and the (-3)-quadratic twist E^{-3}, satisfies $E^{-3}(\mathbb{Q})_{\text {tors }} \not 千 \mathcal{C}_{3}$, then for any quadratic twist we must have $E^{d}(\mathbb{Q}) \simeq \mathcal{C}_{1}$ for all $d \in \mathbb{Q}^{*} /\left(\mathbb{Q}^{*}\right)^{2}$. We apply this result to the elliptic curves 50 a 1 and 450 b 2 that have j-invariant $-5^{2} / 2$ and $-5^{2} \cdot 241^{3} / 2^{3}$ respectively. Both curves have cyclic torsion subgroup (over \mathbb{Q}) of order 3 and the corresponding torsion subgroup of the (-3)-quadratic twist is trivial. Thus we are left with two elliptic curves (50a1 and 450b2) to finish the proof. Applying the algorithm described in Section 7 we compute that the 5 -torsion does not grow over any quintic number field for both curves.

- $q=7$. Similar to the the case $q=3$, we deduce that E / \mathbb{Q} has the 7-torsion defined over \mathbb{Q} and $G_{E}(5)$ is labeled 5B.1.2. Looking at Table $\mathbb{\square}$ we deduce that E / \mathbb{Q} has a rational 5 -isogeny, since $d_{0}=1$ for 5B.1.2. Then, since E / \mathbb{Q} has a point of order 7 defined over \mathbb{Q}, there exists a rational 35 -isogeny, which contradicts Theorem 6.

4.5. $\{p, q, r\}$-primary torsion subgroup.

Lemma 13. Let E / \mathbb{Q} be an elliptic curve and K / \mathbb{Q} a quintic number field. Let $p, q, r \in\{2,3,5,7,11\}$, $p \neq q \neq r$, such that pqr divides the order of $E(K)_{\text {tors }}$. Then $E(K)\left[\{p, q, r\}^{\infty}\right]=\{\mathcal{O}\}$.
Proof. Lemma 12 shows that there do not exist three different primes p, q, r such that $p q r$ divides the order of $E(K)_{\text {tors }}$.

5. Proof of Theorems 1, 2 and 3

We are ready to prove Theorems 4, 2 and 3,
Proof of Theorem $\mathbb{1}$. Since we have $\Phi_{\mathbb{Q}}(1) \subseteq \Phi_{\mathbb{Q}}(5)$, let us prove that the unique torsion structures that remain to add to $\Phi_{\mathbb{Q}}(1)$ to obtain $\Phi_{\mathbb{Q}}(5)$ are \mathcal{C}_{11} and \mathcal{C}_{25}. Let $H \in \Phi_{\mathbb{Q}}(5)$ be such that $H \notin \Phi_{\mathbb{Q}}(1)$. Lemma 12 shows that $|H|=p^{n}$, for some prime p and a positive integer n. Now, Lemma 9 shows that $p \in\{5,11\}$. If $p=11$ then $n=1$ by Lemma 11, If $p=5$ then $n=2$ by Lemma 10, and an example with torsion subgroup isomorphic to \mathcal{C}_{25} is given in Table 3. This finish the proof for the set $\Phi_{\mathbb{Q}}(5)$.

Now the CM case. Notice that $\Phi_{\mathbb{Q}}^{\mathrm{CM}}(1) \subseteq \Phi_{\mathbb{Q}}^{\mathrm{CM}}(5) \subseteq \Phi^{\mathrm{CM}}(5)$. We have that the unique torsion structure that belongs to $\Phi^{\mathrm{CM}}(5)$ and not to $\Phi_{\mathbb{Q}}^{\mathrm{CM}}(1)$ is \mathcal{C}_{11}. But in Lemma 11 we have proved that the elliptic curve 121 b 1 has torsion subgroup isomorphic to \mathcal{C}_{11} over $\mathbb{Q}\left(\zeta_{11}\right)^{+}$. Therefore $\Phi_{\mathbb{Q}}^{\mathrm{CM}}(5)=$ $\Phi^{\mathrm{CM}}(5)$. This finishes the proof.

The determination of $\Phi_{\mathbb{Q}}(5, G)$ will rest on the following result:
Proposition 14. Let E / \mathbb{Q} be an elliptic curve and K / \mathbb{Q} a quintic number field such that $E(\mathbb{Q})_{\text {tors }} \simeq$ G and $E(K)_{\text {tors }} \simeq H$.
(1) Let $p \in\{2,3,7\}$ and G of order a power of p, then $H=G$.
(2) If $H=\mathcal{C}_{25}$, then $G=\mathcal{C}_{5}$.

Proof. The item (1) follows from Lemma 9 and (2) from Lemma (10 (3).
Proof of Theorem 圆 Let E / \mathbb{Q} be an elliptic curve and K / \mathbb{Q} a quintic number field such that

$$
E(\mathbb{Q})_{\mathrm{tors}} \simeq G \quad \text { and } \quad E(K)_{\mathrm{tors}} \simeq H
$$

The group $H \in \Phi_{\mathbb{Q}}(5)$ (row in Table (2) that does not appear in some $\Phi_{\mathbb{Q}}(5, G)$ for any $G \in \Phi(1)$ (column in Table (2), with $G \subseteq H$ can be ruled out using Proposition (14. In Table 2) we use:

- (11) and (2) to indicate which part of Proposition 14 is used,
- the symbol - to mean the case is ruled out because $G \not \subset H$,
- with a \checkmark, if the case is possible and, in fact, it occurs. There are two types of check marks in Table 2.
$-\checkmark$ (without a subindex) means that $G=H$.
$-\sqrt{5}$ means that $H \neq G$ can be achieved over a quintic number field K, and we have collected examples of curves and quintic number fields in Table 3 .

	\mathcal{C}_{1}	\mathcal{C}_{2}	\mathcal{C}_{3}	\mathcal{C}_{4}	\mathcal{C}_{5}	\mathcal{C}_{6}	\mathcal{C}_{7}	\mathcal{C}_{8}	\mathcal{C}_{9}	\mathcal{C}_{10}	\mathcal{C}_{12}	$\mathcal{C}_{2} \times \mathcal{C}_{2}$	$\mathcal{C}_{2} \times \mathcal{C}_{4}$	$\mathcal{C}_{2} \times \mathcal{C}_{6}$	$\mathcal{C}_{2} \times \mathcal{C}_{8}$
\mathcal{C}_{1}	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-
\mathcal{C}_{2}	(1)	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-
\mathcal{C}_{3}	(1)	-	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-
\mathcal{C}_{4}	(1)	(1)	-	\checkmark	-	-	-	-	-	-	-	-	-	-	-
\mathcal{C}_{5}	$\sqrt{5}$	-	-	-	\checkmark	-	-	-	-	-	-	-	-	-	-
\mathcal{C}_{6}	(11)	(1)	(1)	-	-	\checkmark	-	-	-	-	-	-	-	-	-
\mathcal{C}_{7}	(1)	-	-	-	-	-	\checkmark	-	-	-	-	-	-	-	-
\mathcal{C}_{8}	(1)	(1)	-	(1)	-	-	-	\checkmark	-	-	-	-	-	-	-
\mathcal{C}_{9}	(1)	-	(1)	-	-	-	-	-	\checkmark	-	-	-	-	-	-
\mathcal{C}_{10}	(1)	$\sqrt{5}$	-	-	(1)	-	-	-	-	\checkmark	-	-	-	-	-
\mathcal{C}_{11}	$\sqrt{5}$	-	-	-	-	-	-	-	-	-	-	-	-	-	-
\mathcal{C}_{12}	(1)	(1)	(1)	(1)	-	(1)	-	-	-	-	\checkmark	-	-	-	-
\mathcal{C}_{25}	(2)	-	-	-	$\sqrt{5}$	-	-	-	-	-	-	-	-	-	-
$\mathcal{C}_{2} \times \mathcal{C}_{2}$	(1)	(1)	-	-	-	-	-	-	-	-	-	\checkmark	-	-	-
$\mathcal{C}_{2} \times \mathcal{C}_{4}$	(1)	(1)	-	(1)	-	-	-	-	-	-	-	(1)	\checkmark	-	-
$\mathcal{C}_{2} \times \mathcal{C}_{6}$	(1)	(1)	(1)	-	-	(1)	-	-	-	-	-	(1)	-	\checkmark	-
$\mathcal{C}_{2} \times \mathcal{C}_{8}$	(1)	(1)	-	(1)	-	-	-	(1)	-	-	-	(1)	(1)	-	\checkmark

TABLE 2. The table displays either if the case happens for $G=H(\checkmark)$, if it occurs over a quintic $\left(\sqrt{5}^{5}\right)$, if it is impossible because $G \not \subset H(-)$ or if it is ruled out by Proposition (14) (1) and (2).

It remains to prove that there are infinitely many $\overline{\mathbb{Q}}$-isomorphism classes of elliptic curves E / \mathbb{Q} with $H \in \Phi_{\mathbb{Q}}(5, G)$, except for the case $H=\mathcal{C}_{11}$. Note that for any elliptic curve E / \mathbb{Q} with $E(\mathbb{Q})_{\text {tors }}$, there is always an extension K / \mathbb{Q} of degree 5 such that $E(K)_{\text {tors }}=E(\mathbb{Q})_{\text {tors }}$. Then for any $G \in \Phi(1) \cap \Phi_{\mathbb{Q}}(5)$ the statement is proved. Now, since $\Phi_{\mathbb{Q}}(5) \backslash \Phi(1)=\left\{\mathcal{C}_{11}, \mathcal{C}_{25}\right\}$, the only case that remains to prove is $H=\mathcal{C}_{25}$. This case will be proved in Proposition 16 .

Proof of Theorem 3. Let E / \mathbb{Q} be an elliptic curve such that the torsion grows to \mathcal{C}_{11} over a quintic number field K. Then by Lemma 11 we know that $K=\mathbb{Q}\left(\zeta_{11}\right)^{+}$and the torsion does not grow for any other quintic number field. Therefore to finish the proof it remains to prove that there does not exist an elliptic curve E / \mathbb{Q} and two non-isomorphic quintic number fields K_{1}, K_{2} such that $E\left(K_{i}\right)_{\text {tors }} \simeq H \in \Phi_{\mathbb{Q}}(5), i=1,2$, and $E(\mathbb{Q})_{\text {tors }} \not 千 H$. Note that the compositum $K_{1} K_{2}$ satisfies $\left[K_{1} K_{2}: \mathbb{Q}\right] \leq\left[K_{1}: \mathbb{Q}\right]\left[K_{2}: \mathbb{Q}\right]=25$. Now, by Theorem 2 we deduce $H \in\left\{\mathcal{C}_{5}, \mathcal{C}_{10}, \mathcal{C}_{25}\right\}$:

- First suppose that $H \in\left\{\mathcal{C}_{5}, \mathcal{C}_{10}\right\}$. Then by Lemma 10, $G_{E}(5)$ is labeled 5B.1.2. Now, since $K_{1} \not 千 K_{2}$ we deduce $K_{1} K_{2}=\mathbb{Q}(E[5])$ and, in particular, $\operatorname{Gal}\left(\widehat{K_{1} K_{2}} / \mathbb{Q}\right) \simeq G_{E}(5)$. In this case we have that $G_{E}(5) \simeq \mathcal{F}_{5}$, where \mathcal{F}_{5} denotes the Fröbenius group of order 20. Diagram 1 shows the
lattice subgroup of \mathcal{F}_{5}, where $\mathcal{H}_{k, i}$ denotes the k-th subgroup of index i in \mathcal{F}_{5}. Note that all the index 5 subgroups $\mathcal{H}_{k, 5}$ are conjugates in \mathcal{F}_{5}. That is, their associated fixed quintic number fields are isomorphic. This proves that $K_{1} \simeq K_{2}$.

Diagram 1. Lattice subgroup of \mathcal{F}_{5}

- Finally suppose that $H=\mathcal{C}_{25}$. In this case we use a similar argument as above but replacing $G_{E}(5)$ by $G_{E}(25)$. We know by Lemma 10 that $G_{E}(5)$ is labeled 5B.1.1 or 5Cs.1.1, but we do not have an explicit description of $G_{E}(25)$. For that reason we apply an analogous algorithm as the one used in the proof of Lemma 10 (3). By [35, Theorem 1.4 (iii)]) we have that $G_{E}(5)$ is conjugate in $\mathrm{GL}_{2}(\mathbb{Z} / 5 \mathbb{Z})$ to

$$
H_{6,1}=\left\langle\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\right\rangle \quad \text { or } \quad H_{1,1}=\left\langle\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)\right\rangle,
$$

depending if $G_{E}(5)$ is labeled 5B.1.1 or 5Cs.1.1 respectively.
Suppose that $K_{1} \not 千 K_{2}$, then $K_{1} K_{2}=\mathbb{Q}(E[25])$. Therefore $\operatorname{Gal}\left(\widehat{K_{1} K_{2}} / \mathbb{Q}\right) \simeq G_{E}(25)$ and $\left|G_{E}(25)\right| \leq 25$. Now, we fix \mathcal{H} to be $H_{6,1}$ or $H_{1,1}$ and since we do not have an explicit description of $G_{E}(25)$ we run a Magma program where the input is a subgroup G of $G L_{2}(\mathbb{Z} / 25 \mathbb{Z})$ satisfying

- $|G| \leq 25$,
- $G \equiv H(\bmod 5)$ for some conjugate H of \mathcal{H} in $\mathrm{GL}_{2}(\mathbb{Z} / 5 \mathbb{Z})$,
- there exists $v \in(\mathbb{Z} / 25 \mathbb{Z})^{2}$ of order 25 such that $\left[G: G_{v}\right]=5$.

If $\mathcal{H}=H_{6,1}$ the above algorithm does not return any subgroup G. In the case $\mathcal{H}=H_{1,1}$ all the subgroups returned are isomorphic either to \mathcal{F}_{5} or to \mathcal{C}_{20}. If $G \simeq \mathcal{F}_{5}$ then we have proved that it has five index 5 subgroups, all of them at the same conjugation class. If $G \simeq \mathcal{C}_{20}$ there is only one subgroup of index 5 . We have reached a contradiction with $K_{1} \not \neq K_{2}$. This finishes the proof.

6. Infinite families of rational elliptic curves where the torsion grows over a QUINTIC NUMBER FIELD.

Let E / \mathbb{Q} be an elliptic curve and K a quintic number field such that $E(\mathbb{Q})_{\text {tors }} \simeq G \in \Phi(1)$ and $E(K)_{\text {tors }} \simeq H \in \Phi_{\mathbb{Q}}(5)$. Theorem 3 shows that $G \nsucceq H$ in the following cases:

$$
(G, H) \in\left\{\left(\mathcal{C}_{1}, \mathcal{C}_{5}\right),\left(\mathcal{C}_{1}, \mathcal{C}_{11}\right),\left(\mathcal{C}_{2}, \mathcal{C}_{10}\right),\left(\mathcal{C}_{5}, \mathcal{C}_{25}\right)\right\} .
$$

By Lemma 11 we have that the pair $\left(\mathcal{C}_{1}, \mathcal{C}_{11}\right)$ only occurs in three elliptic curves. For the rest of the above pairs we are going to prove that there are infinitely many non-isomorphic classes of elliptic curves and quintic number fields satisfying each pair.
6.1. $\left(\mathcal{C}_{1}, \mathcal{C}_{5}\right)$ and $\left(\mathcal{C}_{2}, \mathcal{C}_{10}\right)$. Let E / \mathbb{Q} be an elliptic curve and K a quintic number field such that $E(\mathbb{Q})[5]=\{\mathcal{O}\}$ and $E(K)[5] \simeq \mathcal{C}_{5}$. Then Theorem 2 tells us that:

$$
E(\mathbb{Q})_{\mathrm{tors}} \simeq \mathcal{C}_{1} \text { and } E(K)_{\mathrm{tors}} \simeq \mathcal{C}_{5}, \quad \text { or } \quad E(\mathbb{Q})_{\mathrm{tors}} \simeq \mathcal{C}_{2} \text { and } E(K)_{\mathrm{tors}} \simeq \mathcal{C}_{10}
$$

First notice that E has non-CM, since \mathcal{C}_{5} is not a subgroup of any group in $\Phi^{\mathrm{CM}}(5)$. Then Lemma 10 shows that $G_{E}(5)$ is labeled 5B. 1.2 ($H_{5,1}$ in Zywina's notation). Then Zywina 35, Theorem $1.4($ iii $)]$ proved that there exists $t \in \mathbb{Q}$ such that E is isomorphic (over \mathbb{Q}) to $\mathcal{E}_{5, t}$:
$\mathcal{E}_{5, t}: y^{2}=x^{3}-27\left(t^{4}+228 t^{3}+494 t^{2}-228 t+1\right) x+54\left(t^{6}-522 t^{5}-10005 t^{4}-10005 t^{2}+522 t+1\right)$.
Table 1 shows that the degree of the field of definition of a point of order 5 in E is 4 or 5 . Moreover, we can compute explicitly the number fields factorizing the 5 -division polynomial $\psi_{5}(x)$ attached to E. We define the following polynomial of degree 5 :

$$
\begin{aligned}
p_{5}(x)=x^{5}+ & \left(-15 t^{2}-450 t-15\right) x^{4}+\left(90 t^{4}-65880 t^{3}+22860 t^{2}+11880 t+90\right) x^{3} \\
+ & \left(-270 t^{6}-1015740 t^{5}-7086690 t^{4}+5725080 t^{3}-4520610 t^{2}-82620 t-270\right) x^{2} \\
+ & \left(405 t^{8}-8874360 t^{7}-58872420 t^{6}-253721160 t^{5}-1423822050 t^{4}+637175160 t^{3}+18109980 t^{2}\right. \\
& +223560 t+405) x-243 t^{10}-22886226 t^{9}-485812647 t^{8}+3223702152 t^{7}-34272829350 t^{6} \\
& \quad-21920257260 t^{5}-53316735462 t^{4}-2958964344 t^{3}-74726631 t^{2}-211410 t-243 .
\end{aligned}
$$

Then $p_{5}(x)$ divides $\psi_{5}(x)$ and we have $E(\mathbb{Q}(\alpha))[5]=\langle R\rangle \simeq \mathcal{C}_{5}$, where $p_{5}(\alpha)=0$ and α is the x-coordinate of R.

Now suppose that $E(\mathbb{Q})_{\text {tors }} \simeq \mathcal{C}_{2}$, then $G_{E}(2)$ is labeled 2B. Then Zywina [35, Theorem 1.1] proved that its j-invariant is of the form

$$
J_{2}(s)=256 \frac{(s+1)^{3}}{s}, \quad \text { for some } s \in \mathbb{Q}
$$

Therefore we have $J_{2}(s)=j\left(\mathcal{E}_{5, t}\right)$ for some $s, t \in \mathbb{Q}$. In other words we have a solution of the next equation

$$
256 \frac{(s+1)^{3}}{s}=\frac{\left(t^{4}+228 t^{3}+494 t^{2}-228 t+1\right)^{3}}{t\left(t^{2}-11 t-1\right)^{5}}
$$

This equation defines a curve C of genus 0 with $(0,0) \in C(\mathbb{Q})$, which can be parametrize (according to Magma and making a linear change of the projective coordinate in order to simplify the parametrization) by:

$$
(s, t)=\left(\frac{-512(5 r+1)\left(5 r^{2}-1\right)^{5}}{(5 r-1)(5 r+3)\left(5 r^{2}+10 r+1\right)^{5}}, \frac{2(5 r+3)^{2}}{(5 r-1)^{2}(5 r+1)}\right), \quad \text { where } r \in \mathbb{Q}
$$

Finally, replacing the above value for t in $\mathcal{E}_{5, t}$ and simplifying the Weierstrass equation we obtain:

$$
E_{r}: y^{2}=x^{3}-2\left(5 r^{2}+2 r+1\right)\left(5 r^{4}-40 r^{3}-30 r^{2}+1\right) x^{2}+84375(5 r-1)(5 r+3)\left(5 r^{2}+10 r+1\right)^{5} x
$$

Thus we have proved the following result:
Proposition 15. There exist infinitely many $\overline{\mathbb{Q}}$-isomorphic classes of elliptic curves E / \mathbb{Q} such that $E(\mathbb{Q})_{\text {tors }} \simeq \mathcal{C}_{1}$ (resp. \mathcal{C}_{2}) and infinitely many quintic number fields K such that $E(K)_{\text {tors }} \simeq \mathcal{C}_{5}$ (resp. $\left.\mathcal{C}_{10}\right)$.
6.2. $\left(\mathcal{C}_{5}, \mathcal{C}_{25}\right)$. Let E / \mathbb{Q} be an elliptic curve such that $G_{E}(5)$ is labeled by 5B.1.1 and there exists a quintic number field K with the property $E(K)_{\text {tors }} \simeq \mathcal{C}_{25}$. Then, by Lemma (10 (3), K is Galois. In particular E / \mathbb{Q} has a rational 25-isogeny. Then, we observe in [24, Table 3] that its j-invariant must be of the form:

$$
j_{25}(h)=\frac{\left(h^{10}+10 h^{8}+35 h^{6}-12 h^{5}+50 h^{4}-60 h^{3}+25 h^{2}-60 h+16\right)^{3}}{\left(h^{5}+5 h^{3}+5 h-11\right)}, \quad \text { for some } h \in \mathbb{Q}
$$

On the other hand, Zywina [35, Theorem 1.4(iii)] proved that there exists $s \in \mathbb{Q}$ such that E is isomorphic (over $\mathbb{Q})$ to $\mathcal{E}_{6, s}$:

$$
\mathcal{E}_{6, s}: y^{2}=x^{3}-27\left(s^{4}-12 s^{3}+14 s^{2}+12 s+1\right) x+54\left(s^{6}-18 s^{5}+75 s^{4}+75 s^{2}+18 s+1\right)
$$

The above j-invariants should be equal, so $j\left(\mathcal{E}_{6, s}\right)=j_{25}(h)$ for some $s, h \in \mathbb{Q}$. This equality defines a non-irreducible curve over \mathbb{Q} whose irreducible components are a genus 16 curve and a genus 0 curve. It is possible to give a parametrization of the above genus 0 curve such that $s=t^{5}$, where $t \in \mathbb{Q}$. That is, there exists $t \in \mathbb{Q}$ such that E is \mathbb{Q}-isomorphic to $\mathcal{E}_{6, t^{5}}$.

Now, let us define the quintic polynomial $p_{25}(x)$:

$$
\begin{aligned}
& p_{25}(x)=x^{5}+\left(-5 t^{10}-12 t^{8}-12 t^{7}-24 t^{6}+30 t^{5}-60 t^{4}+36 t^{3}-24 t^{2}+12 t-5\right) x^{4} \\
& \quad+\left(10 t^{20}+48 t^{18}+48 t^{17}+96 t^{16}+24 t^{15}+240 t^{14}-144 t^{13}+96 t^{12}-48 t^{11}+236 t^{10}+48 t^{8}+48 t^{7}+96 t^{6}\right. \\
& \left.\quad-264 t^{5}+240 t^{4}-144 t^{3}+96 t^{2}-48 t+10\right) x^{3}+\left(-10 t^{30}-72 t^{28}-72 t^{27}-144 t^{26}-252 t^{25}-360 t^{24}\right. \\
& \quad+216 t^{23}-144 t^{22}+72 t^{21}+1914 t^{20}+720 t^{18}+720 t^{17}+1440 t^{16}-1800 t^{15}+3600 t^{14}-2160 t^{13}+1440 t^{12} \\
& \left.-720 t^{11}+1914 t^{10}-72 t^{8}-72 t^{7}-144 t^{6}+612 t^{5}-360 t^{4}+216 t^{3}-144 t^{2}+72 t-10\right) x^{2} \\
& +\left(5 t^{40}+48 t^{38}+48 t^{37}+96 t^{36}+312 t^{35}+240 t^{34}-144 t^{33}+96 t^{32}-48 t^{31}-4516 t^{30}-1584 t^{28}-1584 t^{27}\right. \\
& -3168 t^{26}+19944 t^{25}-7920 t^{24}+4752 t^{23}-3168 t^{22}+1584 t^{21}-18114 t^{20}-1584 t^{18}-1584 t^{17}-3168 t^{16}- \\
& 12024 t^{15}-7920 t^{14}+4752 t^{13}-3168 t^{12}+1584 t^{11}-4516 t^{10}+48 t^{8}+48 t^{7}+96 t^{6}-552 t^{5}+240 t^{4}-144 t^{3} \\
& \left.+96 t^{2}-48 t+5\right) x-t^{50}-12 t^{48}-12 t^{47}-24 t^{46}-114 t^{45}-60 t^{44}+36 t^{43}-24 t^{42}+12 t^{41}+2371 t^{40} \\
& +816 t^{38}+816 t^{37}+1632 t^{36}-17880 t^{35}+4080 t^{34}-2448 t^{33}+1632 t^{32}-816 t^{31}+47294 t^{30}-13896 t^{28} \\
& -13896 t^{27}-27792 t^{26}+34740 t^{25}-69480 t^{24}+41688 t^{23}-27792 t^{22}+13896 t^{21}+47294 t^{20}+816 t^{18}+ \\
& 816 t^{17}+1632 t^{16}+13800 t^{15}+4080 t^{14}-2448 t^{13}+1632 t^{12}-816 t^{11}+2371 t^{10}-12 t^{8}-12 t^{7}-24 t^{6} \\
& +174 t^{5}-60 t^{4}+36 t^{3}-24 t^{2}+12 t-1 .
\end{aligned}
$$

Then $p_{25}(x)$ divides the 25 -division polynomial of $\mathcal{E}_{6, t^{5}}$. Fixing $t \in \mathbb{Q}$, we have that $\mathbb{Q}(\alpha) / \mathbb{Q}$ is a Galois extension of degree 5 and $E(\mathbb{Q}(\alpha))=\langle R\rangle \simeq \mathcal{C}_{25}$, where $p_{25}(\alpha)=0$ and the x-coordinate of R is 3α. Note that $[5] R=\left(3 t^{10}-18 t^{5}+3,108 t^{5}\right) \in E(\mathbb{Q})$.

We have proved the following result:
Proposition 16. There exist infinitely many $\overline{\mathbb{Q}}$-isomorphic classes of elliptic curves E / \mathbb{Q} and infinitely many quintic number fields K such that $E(K)_{\text {tors }} \simeq \mathcal{C}_{25}$. All of them satisfy $E(\mathbb{Q})_{\text {tors }} \simeq \mathcal{C}_{5}$.
6.2.1. A 5-triangle tale. Let E / \mathbb{Q} be an elliptic curve such that $G_{E}(5)$ is labeled by 5Cs.1.1 ($H_{1,1}$ in Zywina's notation). Zywina [35, Theorem 1.4(iii)] proved that there exists $t \in \mathbb{Q}$ such that E is isomorphic (over \mathbb{Q}) to $\mathcal{E}_{1, t}=\mathcal{E}_{5, t^{5}}$. We observe in Table 1 that there exists a $\mathbb{Z} / 5 \mathbb{Z}$-basis $\left\{P_{1}, P_{2}\right\}$ of $E[5]$ such that $E(\mathbb{Q})_{\text {tors }}=\left\langle P_{2}\right\rangle \simeq \mathcal{C}_{5}, E\left(\mathbb{Q}\left(\zeta_{5}\right)\right)_{\text {tors }}=E[5]=\left\langle P_{1}, P_{2}\right\rangle$. Now, since $\left\langle P_{1}\right\rangle$ and $\left\langle P_{2}\right\rangle$ are distinct $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-stable cyclic subgroups of $E(\overline{\mathbb{Q}})$ of order 5 , there exist two rational 5 -isogenies:

where the elliptic curves $E_{1}=E /\left\langle P_{1}\right\rangle$ and $E_{2}=E /\left\langle P_{2}\right\rangle$ are defined over \mathbb{Q}. Using Velu's formulae we can compute explicit equations of these elliptic curves:

$$
E_{1}=\mathcal{E}_{6, t^{5}}, \quad \quad E_{2}=\mathcal{E}_{5, s(t)}, \text { where } s(t)=\frac{t\left(t^{4}+3 t^{3}+4 t^{2}+2 t+1\right)}{t^{4}-2 t^{3}+4 t^{2}-3 t+1}
$$

Then we have $G_{E_{1}}(5)$ is labeled by 5B.1.1 and $G_{E_{2}}(5)$ is labeled by 5B.1.2. We observe that the elliptic curve E_{1} is the one obtained in the previous section, that is, $E_{1}(\mathbb{Q}(\alpha))=\langle R\rangle \simeq \mathcal{C}_{25}$, where $p_{25}(\alpha)=0$ and the x-coordinate of R is 3α. In particular, E_{1} has a rational 25 -isogeny. Note that $[5] R=Q_{2}=\left(3 t^{10}-18 t^{5}+3,108 t^{5}\right)$ is such that $E_{1}(\mathbb{Q})[5]=\left\langle Q_{2}\right\rangle \simeq \mathcal{C}_{5}$ and $E_{1}(L)[5]=E_{1}[5]=$ $\left\langle Q_{1}, Q_{2}\right\rangle$ with $[L: \mathbb{Q}]=20$. If $\widehat{\phi_{1}}: E_{1} \longrightarrow E$ denotes the dual isogeny of ϕ_{1}, then we have $\phi_{2} \circ \widehat{\phi_{1}}(\langle R\rangle)=\mathcal{O} \in E_{2}$. That is, $\phi_{2} \circ \widehat{\phi_{1}},: E_{2} \longrightarrow E_{1}$ is a rational 25 -isogeny.
Remark. There are only seven elliptic curves (11a1, 550k2, 1342c2, 33825be2, 165066d2, 185163a2 and 192698c2) with conductor less than 350.000 such that the corresponding mod 5 Galois representation is labeled 5Cs.1.1. All of them give the corresponding 5 -triangle with the associated elliptic curve (11a3, 550k3, 1342c1, 33825be3, 165066d1, $185163 a 1$ and 192698c1 resp.) with \mathcal{C}_{25} torsion over the corresponding quintic number field. Notice that there are no more elliptic curves with conductor less than 350.000 and torsion isomorphic to \mathcal{C}_{25} over a quintic number field.

7. EXAMPLES

Given an elliptic curve E / \mathbb{Q}, we describe a method to compute the quintic number field where the torsion could grow. If E is $121 \mathrm{a} 2,121 \mathrm{c} 2$ or 121 b 1 we have proved in Lemma 11 that the torsion grows to \mathcal{C}_{11} over the quintic number field $\mathbb{Q}\left(\zeta_{11}\right)^{+}$. For the rest of the elliptic curves, we first compute $E(\mathbb{Q})_{\text {tors }} \simeq G \in \Phi(1)$. If $G \neq \mathcal{C}_{1}, \mathcal{C}_{2}, \mathcal{C}_{5}$, then by Theorem 2 the torsion remains stable under any quintic extension. If $G=\mathcal{C}_{1}$ or \mathcal{C}_{2} then, by Theorem 2 the torsion could grow to \mathcal{C}_{5} or \mathcal{C}_{10} respectively. Now compute the 5 -division polynomial $\psi_{5}(x)$. It follows that the quintic number fields where the torsion could grow are contained in the number fields attached to the degree 5 factors of $\psi_{5}(x)$. In the case $G=\mathcal{C}_{5}$ the torsion could grow to \mathcal{C}_{25}, and the method is similar, replacing the 5 -division polynomial by the 25 -division polynomial. We explain this method with an example.

Example. Let E be the elliptic curve 11a2. We compute $E(\mathbb{Q})_{\text {tors }} \simeq \mathcal{C}_{1}$. Now, the 5 -division polynomial has two degree 5 irreducible factors: $p_{1}(x)$ and $p_{2}(x)$. Let $\alpha_{i} \in \overline{\mathbb{Q}}$ such that $p_{i}\left(\alpha_{i}\right)=0$, $i=1,2$. We deduce $\mathbb{Q}(\sqrt[5]{11})=\mathbb{Q}\left(\alpha_{1}\right)=\mathbb{Q}\left(\alpha_{2}\right)$ and $E(\mathbb{Q}(\sqrt[5]{11}))_{\text {tors }} \simeq \mathcal{C}_{5}$.

Table 3 shows examples where the torsion grows over a quintic number field. Each row shows the label of an elliptic curve E / \mathbb{Q} such that $E(\mathbb{Q})_{\text {tors }} \simeq G$, in the first column, and $E(K)_{\text {tors }} \simeq H$, in the second column, and the quintic number field K in the third column.

G	H	quintic	label
\mathcal{C}_{1}	\mathcal{C}_{5}	$\mathbb{Q}(\sqrt[5]{11})$	11 a 2
	\mathcal{C}_{11}	$\mathbb{Q}\left(\zeta_{11}\right)^{+}$	$121 \mathrm{a} 2,121 \mathrm{c} 2,121 \mathrm{~b} 1$
\mathcal{C}_{2}	\mathcal{C}_{10}	$\mathbb{Q}(\sqrt[5]{12})$	66 c 3
\mathcal{C}_{5}	\mathcal{C}_{25}	$\mathbb{Q}\left(\zeta_{11}\right)^{+}$	$11 \mathrm{a3}$

TABLE 3. Examples of elliptic curves such that $G \in \Phi(1), H \in \Phi_{\mathbb{Q}}(5, G)$ and $G \neq H$.

Remark. Note that, although we have proved in Propositions 15 and 16 that there are infinitely many elliptic curves over \mathbb{Q} such that the torsion grows over a quintic number field, these elliptic curve seems to appear not very often. We have computed for all elliptic curves over \mathbb{Q} with conductor less than 350.000 from [6] (a total of 2.188.263 elliptic curves) and we have found only 1256 cases where the torsion grows. Moreover, only 40 cases when it grows to \mathcal{C}_{10} and 7 to \mathcal{C}_{25} (the elliptic curves 11a3, 550k3, 1342c1, 33825be3 165066d1, 185163 a1 and 192698c1).

Acknowledgements. We thank Álvaro Lozano-Robledo, Filip Najman, and David Zureick-Brown for useful conversations. The author would like to thank the anonymous referee for useful comments and suggestions.

References

[1] B.J. Birch and W. Kuyk (eds.), Modular Functions of One Variable IV. Lecture Notes in Mathematics 476. Springer (1975). 3
[2] W. Bosma, J. Cannon, C. Fieker, and A. Steel (eds.). Handbook of Magma functions, Edition 2.20. http://magma.maths.usyd.edu.au/magma 2015. 6
[3] P. Bruin and F. Najman, A criterion to rule out torsion groups for elliptic curves over number fields, Res. Number Theory 2, 3 (2016). 9
[4] M. Chou, Torsion of rational elliptic curves over quartic Galois number fields. J. Number Theory 160 (2016), 603-628. 2, 5
[5] P. L. Clark, P. Corn, A. Rice, and J. Stankewicz. Computation on elliptic curves with complex multiplication, LMS J. Comput. Math. 17 (2014), 509-539. 2
[6] J.E. Cremona, Elliptic curve data for conductors up to 350.000. Available on http://johncremona.github.io/ecdata/, 2015. 3, 16
[7] M. Derickx and A. V. Sutherland, Torsion subgroups of elliptic curves over quintic and sextic number fields. Proc. Amer. Math. Soc., to appear. 1
[8] G. Fung, H. Ströher, H. Williams, and H. Zimmer. Torsion groups of elliptic curves with integral j-invariant over pure cubic fields. J. Number Theory 36 (1990) 12-45. 2
[9] E. González-Jiménez and J. González. Modular curves of genus 2. Math. Comp. 72 (2003) 397-418. 9
[10] E. González-Jiménez and Á. Lozano-Robledo, On torsion of rational elliptic curves over quartic fields. Math. Comp., to appear. 2 (3) 9
[11] E. González-Jiménez and F. Najman, Growth of torsion groups of elliptic curves upon base changes. arXiv:1609.02515. 2
[12] E. González-Jiménez, F. Najman, and J.M. Tornero, Torsion of rational elliptic curves over cubic fields. Rocky Mountain J. Math. 46 (2016), no. 6, 1899-1917. 2, 3
[13] E. González-Jiménez and J.M. Tornero, Torsion of rational elliptic curves over quadratic fields. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 108 (2014), 923-934. 2
[14] E. González-Jiménez and J.M. Tornero, Torsion of rational elliptic curves over quadratic fields II. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 110 (2016), 121-143. 3
[15] D. Jeon, C.H. Kim, and A. Schweizer, On the torsion of elliptic curves over cubic number fields, Acta Arith. 113 (2004), 291-301. 1
[16] D. Jeon, C.H. Kim, and E. Park, On the torsion of elliptic curves over quartic number fields, J. London Math. Soc. (2) 74 (2006), 1-12. 1
[17] S. Kamienny, Torsion points on elliptic curves and q-coefficients of modular forms. Invent. Math. 109 (1992) 129-133. 1
[18] M. A. Kenku, The modular curve $X_{0}(39)$ and rational isogeny, Math. Proc. Cambridge Philos. Soc. 85 (1979), 21-23. 5
[19] M. A. Kenku, The modular curves $X_{0}(65)$ and $X_{0}(91)$ and rational isogeny, Math. Proc. Cambridge Philos. Soc. 87 (1980), 15-20. 5
[20] M. A. Kenku, The modular curve $X_{0}(169)$ and rational isogeny, J. London Math. Soc. (2) 22 (1980), 239-244. 5
[21] M. A. Kenku, The modular curve $X_{0}(125), X_{1}(25)$ and $X_{1}(49)$, J. London Math. Soc. (2) 23 (1981), 415-427. 5
[22] M.A. Kenku and F. Momose, Torsion points on elliptic curves defined over quadratic fields. Nagoya Math. J. 109 (1988) 125-149. 1
[23] S. Kwon, Torsion subgroups of elliptic curves over quadratic extensions. J. Number Theory 62 (1997) 144-162. 2
[24] A. Lozano-Robledo. On the field of definition of p-torsion points on elliptic curves over the rationals. Math. Ann. 357 (2013) 279-305. 66 14
[25] B. Mazur, Rational isogenies of prime degree. Invent. Math. 44 (1978) 129-162. 15
[26] L. Merel, Bornes pour la torsion des courbes elliptiques sur les corps de nombres. Invent. Math. 124 (1996), 437-449. 1
[27] H. Müller, H. Ströher, and H. Zimmer, Torsion groups of elliptic curves with integral j-invariant over quadratic fields. J. Reine Angew. Math. 397 (1989) 100-161. 2
[28] F. Najman, The number of twists with large torsion of an elliptic curve. Rev. R. Acad. Cienc. Exactas Fhs. Nat. Ser. A Math. RACSAM 109 (2015), 535-547. 10
[29] F. Najman, Torsion of elliptic curves over cubic fields and sporadic points on $X_{1}(n)$. Math. Res. Letters, 23 (2016) 245-272. 2
[30] L. Olson, Points of finite order on elliptic curves with complex multiplication. Manuscripta Math. 14 (1974) 195-205. 1
[31] A. Pethő, T. Weis, and H. Zimmer, Torsion groups of elliptic curves with integral j-invariant over general cubic number fields. Int. J. Algebra Comput. 7 (1997) 353-413. 2
[32] J. H. Silverman, The arithmetic of elliptic curves, Second Edition, Graduate Texts in Mathematics, vol. 106, Springer, Dordrecht, 2009.
[33] J-H. Silverman, Advanced topics in the arithmetic of elliptic curves. Graduate Texts in Mathematics, vol. 151. Springer-Verlag, New York, 1994. 8
[34] A.V. Sutherland, Computing images of Galois representations attached to elliptic curves. Forum Math. Sigma 4 (2016), e4, 79 pp. 3 [4
[35] D. Zywina, On the possible images of the mod ℓ representations associated to elliptic curves over \mathbb{Q}. arXiv:1508.07660, 4. 6, 7 8 9 12 1314

Universidad Autónoma de Madrid, Departamento de Matemáticas, Madrid, Spain
E-mail address: enrique.gonzalez.jimenez@uam.es

[^0]: 2010 Mathematics Subject Classification. Primary: 11G05, 14G05; Secondary: 14H52, 11R21.
 Key words and phrases. Elliptic curves, torsion subgroup, rationals, quintic number fields.
 The author was partially supported by the grant MTM2015-68524-P..

[^1]: ${ }^{1} \mathrm{~A}$ remarkable fact is that this genus 2 curve is new modular of level 45 (see [9).

