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Three cubes in arithmetic progression over quadratic fields

Enrique González-Jiménez

Abstract. We study the problem of the existence of arithmetic progres-
sions of three cubes over quadratic number fields Q(

√
D), where D is a

squarefree integer. For this purpose, we give a characterization in terms
of Q(

√
D)-rational points on the elliptic curve E : y2 = x3 − 27. We com-

pute the torsion subgroup of the Mordell–Weil group of this elliptic curve
over Q(

√
D) and we give an explicit answer, in terms of D, to the finite-

ness of the free part of E(Q(
√

D)) for some cases. We translate this task
to computing whether the rank of the quadratic D-twist of the modular
curve X0(36) is zero or not.
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1. Introduction. Nowadays, the study of arithmetic progressions consisting of
perfect nth powers is of considerable interest in Number Theory. Thanks to the
development of new techniques to solve Diophantine equations, several prob-
lems related to arithmetic progressions are being solved. For example, Darmon
and Merel [5] proved that there are no non-trivial arithmetic progressions of
three nth powers. The present article studies the oldest and simplest problem
in this direction, that is, the case of three cubes in arithmetic progression.

According to Dickson’s History of the Theory of Numbers [6, Vol. II, pp.
572–573], Legendre [12] established that there are no non-trivial arithmetic
progressions of three cubes over Q. We will study in this paper when there
exists a non-trivial arithmetic progression of three cubes over a quadratic
number field.

The author was partially supported by the grants CCG08-UAM/ESP-3906 and MTM
2009-07291.
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Note that, for the number field case, important progress has been made
in the last years. Xarles [17], for instance, has proved that for any positive
integers n and d, the length of any arithmetic progression of nth powers over
a number field of degree d is bounded by a constant depending only on n and
d. In particular, for the case of squares over quadratic fields, Xarles [17] has
proved that the length of any arithmetic progression of squares over any qua-
dratic field is less than six. The case of length four and five has been treated
in [8,9], respectively. Therefore the study of arithmetic progressions of squares
over a quadratic field can be considered done.

A next task could be to study the case of arithmetic progressions of cubes
over quadratic fields. As a first step in this project, the goal of this paper is to
study when there exists a three-term arithmetic progression consisting of cubes
over Q(

√
D), where D is a squarefree integer. For this purpose, first we will

parametrize the set of arithmetic progressions of three cubes by the rational
points of the elliptic curve E : y2 = x3 − 27. Therefore, to find three cubes
in arithmetic progression over Q(

√
D) we should compute the Mordell–Weil

group E(Q(
√

D)). Finally we will reduce our problem to the determination
of the rank of the quadratic twists of the modular curve X0(36). We will use
the work of Barthel [1] and Frey [7] to obtain an answer to this question for
some D.

2. Parametrization. Let x3
0, x

3
1, x

3
2 be three cubes in a field k, and assume

that they form an arithmetic progression. Therefore, they satisfy x3
1 − x3

0 =
x3

2 − x3
1. That is, the point [x0, x1, x2] ∈ P2(k) belongs to the projective curve

C : X3
0 − 2X3

1 + X3
2 = 0. It is easy to check that if char(k) $= 2, 3 then C

is an irreducible smooth projective curve of genus 1 with two trivial points:
[1, 1, 1], [−1, 0, 1] ∈ C(k). Note that this two points correspond to the trivial
arithmetic progressions: the constant progression 1, 1, 1 and −1, 0, 1.

Since the genus of C is 1 and C has at least one rational point, C is an
elliptic curve defined over k. Let us compute a Weierstrass model for C. We
have that [−1, 0, 1] is an inflection point of C. Let move the point [−1, 0, 1] to
[0, 1, 0] and its tangent line to the line w = 0. The tangent line at [−1, 0, 1] is
X0 + X2 = 0, then the linear change of variables that sends [X0,X1,X2] to
[u, v, w] = [X0,X1,X0+X2] gives us the equation −2v3+3u2w−3uw2+w3 = 0.
Now assuming that char(k) $= 2, 3, we can make a change of variables to obtain
an isomorphism to the elliptic curve E : zy2 = x3 − 27z3. This isomorphism is
as follows:

ϕ : C −→ E, ϕ([x0, x1, x2]) = [6x1, 9(x0 − x2), x0 + x2]

and its inverse is given by:

ϕ−1 : E −→ C, ϕ−1([x, y, z]) =
[
9z + y

18
,
x

6
,
9z − y

18

]
.

Therefore, we have proved the following proposition:

Proposition 1. Let k be a field of char(k) $= 2, 3, then arithmetic progressions
of three cubes in k are parametrized by k-rational points of the elliptic curve
E : zy2 = x3 − 27z3. This parametrization is as follows:
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• Let x0, x1, x2 ∈ k such that x3
0, x

3
1, x

3
2 form an arithmetic progression. Then

P = [6x1, 9(x0 − x2), x0 + x2] ∈ E(k).
• Let P = [x, y, z] ∈ E(k). Define x0 = 9z + y, x1 = 3x, x2 = 9z − y. Then

x3
0, x

3
1, x

3
2 form an arithmetic progression.

Corollary 2. Let k be a field of char(k) $= 2, 3, then a necessary condition
for the existence of a non-trivial arithmetic progressions of three cubes is the
existence of a point (x, y) ∈ E(k) such that x $= 3. That is, Z/2Z ! E(k).

We will see that in general the condition Z/2Z ! E(k) is not sufficient.
As a corollary we obtain:

Corollary 3. There are no non-trivial arithmetic progressions of three rational
cubes.

This statement is due to Legendre [12], as we mentioned above. For the sake
of completeness, we will give a short proof using the above corollary.

Proof. With Sage [14] or Magma [3], one can check that E is the curve 36A3
in Cremona’s tables [4], resp. 36C in the Antwerp tables [2]. Checking these
tables or using one of the above mentioned computer algebra systems, one can
prove E(Q) ∼= Z/2Z. There are no Q-rational affine points on E apart (3, 0)
which corresponds to the constant arithmetic progressions. !
Remark 1. Let k be a field. If char(k) = 2 or 3 looking for arithmetic progres-
sions over k is not interesting. If char(k) = 2 and x3

0, x
3
1, x

3
2 is an arithmetic

progression, then its length is 2 instead of 3, since x3
2 = x3

0. Now, if char(k) = 3
then C : X3

0 − 2X3
1 + X3

2 = 0 is three copies of X0 + X1 + X2 = 0, that is
C(k) ∼= P1(k).

Our purpose in this paper is to obtain an answer to the following ques-
tion: Are there non-constant arithmetic progressions of three cubes over a
quadratic number field? Also, may the answer be affirmative, we would like
to give an explicit algorithm to construct them. Our main tool for this will be
the characterization given at Proposition 1.

Note that thanks to the above parametrization it is easy to check that for
any α ∈ Q, in the algebraic extension of Q generated by the squarefree part of
α3 −27, there exists a non-constant arithmetic progression of three cubes over
that field. Nevertheless, this construction is not useful for our purpose, since
we do not have control of the discriminant of this quadratic field.

Therefore, for a squarefree integer D, our goal is to compute the Mordell–
Weil group of the elliptic curve E : y2 = x3 − 27 over Q(

√
D). The torsion

subgroup will be computed in Section 3. In order to compute the rank, we will
translate this problem into computing the rank of the quadratic D-twist of E
over Q. This will be done in Section 4.

3. Torsion subgroup. In this section we are going to give a complete char-
acterization of the torsion subgroup of the elliptic curve E : y2 = x3 − 27
over a quadratic number field Q(

√
D). We will denote by E(Q(

√
D))tors this

subgroup. We can now prove the following result.
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Proposition 4. Let D be a squarefree integer. Then the torsion subgroup of the
elliptic curve E : y2 = x3 − 27 over Q(

√
D) is

E(Q(
√

D))tors ∼=
{

Z/2Z ⊕ Z/6Z if D = −3,
Z/2Z if D $= −3.

Proof. Kamienny [10] proved that the only primes possibly dividing the order
of the torsion subgroup of an elliptic curve over a quadratic field are 2, 3, 5, 7, 11
and 13. Then it is enough to compute for which quadratic fields the elliptic
curve E : y2 = x3 − 27 has a torsion point of order n ∈ {2, 3, 4, 5, 7, 11, 13}.
Note that we need to check n = 4 since there is a point of order 2 defined
over Q.

To achieve this we look for the irreducible factors of degree one or two of
the nth division polynomial of E in Z[x]. The set of these factors is {x, x −
3, x2 + 3x + 9, x2 − 6x − 18}. Therefore the only possible values of D such
that E(Q(

√
D))tors increases with respect E(Q)tors are D = 3 and D = −3. A

straightforward computation shows that E(Q(
√

3))tors ∼= Z/2Z and
E(Q(

√
−3))tors ∼= Z/2Z ⊕ Z/6Z. !

4. Rank. The aim of this section is to compute the rank of the elliptic curve
E : y2 = x3 − 27 over a quadratic field. We are going to translate this problem
to an easier one: to compute the rank of a quadratic twist of an elliptic curve
over Q.

Proposition 5. Let D be a squarefree integer, E : y2 = x3 − 27 and FD : y2 =
x3 + D3. Then

rankE(Q(
√

D)) = rankFD(Q).

Proof. Let denote by ED the D-quadratic twist of E. That is, ED : y2 =
x3 −27D3. It is well known that for an arbitrary elliptic curve E0 defined over
Q, we have

rankE0(Q(
√

D)) = rankE0(Q) + rankED
0 (Q). (1)

Applying the above equality to E we have rankE(Q(
√

D)) = rankED(Q),
since E(Q) is finite.

Now, we have that F 1 : y2 = x3 +1 is Q-isogenous to E1 = E. This isogeny
has the following equations

ψ : F 1 −→ E1, ψ(x, y) =
(

x3 + 4
x2

,
x3 − 8

x3
y

)
.

Therefore FD is Q-isogenous to ED, thus rankFD(Q) = rankED(Q). This
finishes the proof. !

The study of the rank of the quadratic twists of an elliptic curve is an
important area in the theory of elliptic curves. In particular, the quadratic
twists of the elliptic curve F 1 have been deeply studied by Barthel [1] and
Frey [7]. Their results will be applied in the context of arithmetic progressions
of three cubes in the next section.
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5. Arithmetic progressions of three cubes over quadratic fields.

Theorem 6. Let D be a squarefree integer. Then there is a non-trivial arith-
metic progression of three cubes over Q(

√
D) if and only if the D-quadratic

twist of X0(36) has positive rank.

Proof. First we apply the characterization given at Proposition 1 for the case
k = Q(

√
D) obtaining that arithmetic progressions of three cubes over Q(

√
D)

are parametrized by E(Q(
√

D)). Corollary 2 together with Proposition 4 tell
us that the only possible D such that there exists a non-trivial arithme-
tic progression of three cubes over Q(

√
D) coming from a torsion point of

E(Q(
√

D)) is D = −3. Let [x0, x1, x2] ∈ ϕ−1E(Q(
√

−3))tors, then its cor-
responding arithmetic progression x3

0, x
3
1, x

3
2 is equivalent to the arithmetic

progression −1, 0, 1 or 1, 1, 1.
Now we are going to obtain non-torsion points on E(Q(

√
D)) coming from

non-torsion points on ED(Q). This will be done thanks to the following map

φ : ED −→ E, φ(x, y) =
( x

D
,

y

D2

√
D

)
.

Let (x, y) ∈ ED(Q) then ϕ−1 ◦ φ(x, y) = [9D2 − y
√

D, 3xD, 9D2 + y
√

D] =
[x0, x1, x2] and denote by S the arithmetic progression x3

0, x
3
1, x

3
2.

First assume that S is equivalent to the arithmetic progression −1, 0, 1.
Then x = 0 and y2 = −27D3, and since y ∈ Q we have D = −3 and y = 27,
that corresponds to the point (0, 3

√
−3) ∈ E(Q(

√
−3))[3]. Now assume that

S is the constant arithmetic progression. Then we have y = 0 since (9D2 −
y
√

D)3 = (9D2 + y
√

D)3. That is, S correspond to the point (3, 0) ∈ E(Q)[2].
Therefore we have proved that if P ∈ ED(Q) is a non-torsion point, then
ϕ−1 ◦ φ(x, y) gives a non-trivial arithmetic progression of three cubes over
Q(

√
D). To finish the proof just mind that a Weierstrass model for X0(36) is

y2 = x3 + 1, therefore by Proposition 5 the proof is done. !

Corollary 7. Let d be a squarefree positive integer coprime with 6 and

Ad =
∑

(m,n,k)∈S

(−1)n where S =





(m,n, k) ∈ Z3

∣∣∣

m2 + n2 + k2 = d
m ≡ 1 (mod 3)
n ≡ 0 (mod 3)
m + n ≡ 1 (mod 2)





.

(a) Assuming the Birch and Swinnerton-Dyer conjecture, if Ad = 0 then
there is a non-trivial arithmetic progression of three cubes over Q(

√
−d).

(b) If Ad $= 0 then there is no non-trivial arithmetic progression of three
cubes over Q(

√
−d).

Proof. Barthel [1] and Frey [7] found independently a modular form Φ ∈
S3/2(144, 1) such that its image by the Shimura correspondence is the modular
form f ∈ S2(36, 1) attached to the elliptic curve F : y2 = x3 + 1. Note that
F = X0(36). That is, if we denote by Sh the Shimura correspondence [13] that
maps a weight 3/2 modular form to a weight 2 modular form then Sh(Φ) = f .
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Now, the q-expansion of Φ is

Φ(q) =
∑

n≥1

Anqn.

Applying Waldspurger’s results [16] to the elliptic curve F , they show that if
d is a squarefree positive integer coprime with 6 then

L(F−d, 1) = 0 if and only if Ad = 0.

Therefore, if Ad $= 0 we have that L(F−d, 1) $= 0 and by Kolyvagin [11] the
rank of F−d(Q) is equal to zero. This proves (b), by Theorem 6. Assuming the
Birch and Swinnerton-Dyer conjecture it follows that if Ad = 0 then F−d(Q)
is infinite. Again by Theorem 6, we have (a). !
Corollary 8. Let D be a squarefree integer and ε ∈ {±1}.
(a) There is a non-trivial arithmetic progression of three cubes over Q(

√
D)

if:
(i) D = εp where p > 3 is a prime such that p ≡ 3 (mod 4).
(ii) Assuming the Birch and Swinnerton-Dyer conjecture:

• D > 0 and D even coprime with 3.
• D < 0 and D ≡ 1, 5 (mod 12).

(b) There is no non-trivial arithmetic progression of three cubes over Q(
√

D)
if:
(i) D such that if a prime p divides D then p ≡ 5 (mod 12) or p = 3.
(ii) D = −p where p is a prime such that p ≡ 1 (mod 12) and x4 + 3 = 0

has not solution over Fp.

Proof. This corollary is basically a translation of the results of Barthel [1]
and Frey [7] on the study of the rank of the D-quadratic twist of the elliptic
curve y2 = x3 +1 to our context using the Theorem 6. Note that Barthel only
treated the case of D negative and she only used Waldspurger’s results and
Shimura’s correspondence à la Tunnell [15] to obtain her results. Meanwhile,
Frey treated also the positive case. He used several techniques like Heegner
points, 2-descent and the above method used by Barthel too.

Frey [7, Proposition 5] proved that if p is a prime >3 such that p ≡ 3 (mod 4)
then rankF εp(Q) = 1. This implies (a)(i).

Barthel showed that the functional equation of L(FD, s) satisfies that
L(FD, 1) = 0 if D > 0 and D even coprime with 3 or D < 0 and D ≡
1, 5 (mod 12). Therefore assuming the Birch and Swinnerton-Dyer conjecture,
we have that for the above values of D, the rank of FD(Q) is positive. This
proves (a)(ii).

By [7, Proposition 3 and Bemerkung p. 82] we have that if all the prime
divisors of D are 5 modulo 12 then the rank of FD(Q) is zero. Now let D be
with the above condition. Then applying the equality (1) to the elliptic curve
F−3 and −D and taking into account that F−3 is Q-isogenous to F 1 we have
that

rankF 3D(Q) = rankF−D(Q) = 0,

which proves (b)(i).
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Table 1.

D P = (x, y) ∈ ED(Q) with ordP = ∞
−30 (−54, 756)
−26 (−26, 676)
−23 (987505/24336,−2386987127/3796416)
−21 (189, 2646)
−19 (−38, 361)
−11 (−6, 189)
−7 (7, 98)
−6 (9, 81)
2 (10, 28)
7 (1785/4, 75411/8)
10 (946/9, 28756/27)
11 (178849/400,−75621007/8000)
14 (217, 3185)
19 (1173649/2025, 1270868732/91125)
21 (126,−1323)
22 (22825/36,−3446443/216)
23 (4655599441/56851600,−201357032252761/428661064000)
26 (28249/100, 4697693/1000)

Finally, if p is a prime such that p ≡ 1 (mod 12) and x4 + 3 = 0 has not
solution over Fp then Ap $= 0 (cf. [1, Proposition 2] or [7, Korollar 2]) and then
by Corollary 7 the proof of (b)(ii) is finished. !

Remark 2. Frey [7, Satz 4, p. 73] states that if p is a prime such that p ≡
1 (mod 12) and it is not completely split over Q( 4

√
3ε), then rankF εp(Q) = 0.

He proved the case ε = −1 at Korollar 2. But the case ε = 1 is not true. For
example, for p = 37 we have that rankF 37(Q) = 2 and 37O = p1p2 is the ideal
prime factorization, where O is the ring of integers of Q( 4

√
3).

5.1. Computational results. Using the functionality mwrank on Sage, we may
compute the rank of ED(Q); if this rank is non-zero, we can also compute an
explicit arithmetic progression of three cubes over Q(

√
D): Let P = (x, y) ∈

ED(Q) of infinite order, then (9D2 + y
√

D)3, (3xD)3, (9D2 − y
√

D)3 is an
arithmetic progression over Q(

√
D). Table 1 lists explicit examples of such

progressions for the range |D| ≤ 30. At the first column indicates the value of
D and the second gives a point P = (x, y) ∈ ED(Q) of infinite order.

Example 1. Let P = (10, 28) be a generator of the free part of the Mordell–Weil
group E2(Q). The morphism φ : E2 → E applied to the point P gives

φ(10, 28) =
(
5, 7

√
2
)

∈ E(Q(
√

2)).
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Now, the isomorphism ϕ−1 : E → C gives

ϕ−1([5, 7
√

2, 1]) =

[
9 + 7

√
2

18
,
5
6
,
9 − 7

√
2

18

]
∈ C(Q(

√
2)),

that corresponds to the arithmetic progression (9 + 7
√

2)3, (15)3, (9 − 7
√

2)3

over Q(
√

2).
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