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On the Brauer Class of Modular Endomorphism Algebras

Eknath Ghate, Enrique González-Jiménez,

and Jordi Quer

1 Introduction

In this paper we study the Brauer class of the endomorphism algebra Xf of the motive at-

tached to a primitive elliptic modular cusp form fwithout complex multiplication (CM).

Our study includes the case of forms of weight 2, where the associated motive is an

abelian variety.

It is a fundamental fact that Xf has a natural crossed product structure. This

was proved by Ribet [8] and Momose [6] in the case of weight 2, and extended to forms of

higher weight in [2] subject to an injectivity constraint, which we remove here. It follows

that Xf is a central simple algebra over a subfield F of the Hecke field of f. Moreover Xf

is 2-torsion when considered as an element of the Brauer group of F. Thus Xf is isomor-

phic to a matrix algebra over F, or a matrix algebra over a quaternion division algebra

over F. Ribet has remarked in [8] that it seems difficult to distinguish these cases by pure

thought. His remark pertains to the case of weight 2, but is equally relevant in higher

weight. The chief motivation of this paper (and to a large extent [2]) is to give as com-

plete a picture as possible of the Brauer class of Xf.

In recent years the notion of slope has played an important role in the theory of

elliptic modular forms. For instance this notion is fundamental in parameterizing fami-

lies of elliptic modular cusp forms, as in the work of Hida (slope 0) and Gouvêa, Mazur,
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and Coleman (finite slope). Remarkably, the notion of slope turns out to be useful in

studying the Brauer class of modular endomorphism algebras as well. In fact our main

result is that at a finite place of F not dividing the level of f the ramification of Xf is essen-

tially completely determined by the parity of the (normalized) slope of fwhen this slope

is finite.

At places of F dividing the level our knowledge of the ramification of Xf is less

complete. However we show that it is still governed to some extent by the slopes of f,

at least at certain places where the underlying local representation is in the principal

series. On the other hand at places for which the local representation is of Steinberg type

one knows quite a bit about the ramification of Xf (see [2]). Predicting the ramification of

Xf at the remaining bad places (the supercuspidal places) is still an open problem.

We end this paper with tables of the Brauer class of Xf for all forms f of small

weight and level with F = Q.

2 Statement of results

We now give more precise statements of our results. Let f =
∑
anq

n be a primitive cusp

form of weight k ≥ 2, level N ≥ 1, and nebentypus ε. Here primitive means that f is

a normalized newform that is a common eigenform of all the Hecke operators. Let Mf

denote the abelian variety associated to f as constructed by Shimura when k = 2, and

let Mf denote the Grothendieck motive attached to f constructed by Scholl in [11] when

k > 2. Let End(Mf) be the ring of endomorphisms of Mf defined over Q. When k > 2, we

work modulo cohomological equivalence. Set Xf := End(Mf) ⊗ Q.

The first result is that Xf has a natural structure of a crossed product algebra. To

state this result more precisely we need some notation. Let E = Q(an) denote the Hecke

field of f. Then E is either a totally real or a CM number field. Assume from now on that

f does not have CM. A pair (γ, χγ) where γ ∈ Aut(E) and χγ is an E-valued Dirichlet char-

acter is said to be an extra twist for f if aγ
p = ap · χγ(p) for all but finitely many primes

p. Let Γ denote the set of γ ∈ Aut(E) such that f has a twist by (γ, χγ) for some E-valued

Dirichlet character χγ. In turns out that Γ is an abelian subgroup of Aut(E). For γ, δ ∈ Γ
set

c(γ, δ) =
G

(
χ−1

γ

)
G

(
χ

−γ
δ

)
G

(
χ−1

γδ

) , (2.1)

where G(χ) is the Gauss sum of the primitive Dirichlet character associated to χ. Then

c ∈ Z2(Γ, E×) is a 2-cocycle which turns out to be E×-valued. Let X denote the crossed

product algebra associated to c. For the reader’s convenience we recall the definition of
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X. For each γ ∈ Γ let xγ denote a formal symbol. Then as an E-vector space X is finite-

dimensional with basis given by the symbols xγ:

X =
⊕
γ∈Γ

Exγ, (2.2)

and as an algebra X has structure given by the relations

xγ · e = γ(e)xγ,

xγ · xδ = c(γ, δ)xγδ,
(2.3)

where e ∈ E and γ, δ ∈ Γ .

If k = 2, then it is a result of Ribet [8, Theorem 5.1] and Momose [6, Theorem 4.1]

that Xf is isomorphic to X. On the other hand if k > 2, then Xf contains a subalgebra

isomorphic to X (see [6] and [2, Theorem 1.0.1]). Here, building on the above results, we

prove the following.

Theorem 2.1. Let k ≥ 2. Then Xf is isomorphic to X. �

Let F be the number field contained in E which is the fixed field of Γ . Then X is

isomorphic to a central simple algebra over F which is easily seen to be 2-torsion when

considered as an element of the Brauer group of F. As a result, X is either a matrix al-

gebra over F or a matrix algebra over a quaternion division algebra over F. We wish to

distinguish these cases.

Recall that by global class field theory there is an injection

Br(F) ↪→ ⊕v Br
(
Fv

)
, (2.4)

where v runs through the places of F and Fv is the completion of F at v. Thus to study the

Brauer class of X it suffices to study its image Xv = X⊗F Fv for each place v of F under the

above map. Since X is 2-torsion in the Brauer group of F, the algebra Xv is a fortiori either

a matrix algebra over Fv or a matrix algebra over a quaternion division algebra over Fv.

As far as the infinite places are concerned, the field F is easily seen to be totally

real, and it follows from a result of Momose [6, Theorem 3.1(ii)] (see also [2, Theorem

3.1.1]) that X is totally indefinite if k is even or totally definite if k is odd.

Now suppose that v is a finite place of F of residue characteristic pwith p coprime

toN. Then a2
pε(p)

−1 ∈ F. Set

mv :=
[
Fv : Qp

] · v(a2
pε(p)

−1
) ∈ Z ∪ {∞}, (2.5)
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where v is normalized so that v(p) = 1. We will show that the structure ofXv is essentially

determined by the parity of mv when it is finite. If w is a place of E lying over v, then

w(ap) = (1/2)v(a2
pε(p)

−1) is called the slope of f at p (with respect to w). Thus we show

that there is a close connection between the ramification of Xv away from the level and

the parity of (normalized) slopes. More precisely we have the following theorem.

Theorem 2.2. Let p be a prime such that

(i) p does not divideN,

(ii) p �= 2 if F �= Q.

Also assume ap �= 0. Let v be a place of F lying over p. Then Xv is a matrix algebra over

Fv if and only if mv ∈ Z is even, except possibly in the exceptional case that p splits in

all the quadratic fields cut out by the extra twists of f, in which case Xv is necessarily a

matrix algebra over Fv. �

A result of this kind was proved in [2, Theorem 1.0.4] for cusp forms having qua-

dratic extra twists, or equivalently, real nebentypus character. That such a result might

be true in general became clear after extensive numerical computations were made by

the second author. The proof of the general case combines ideas from [2, 7].

If f is ordinary at v (i.e., v(a2
pε(p)

−1) = 0), then mv = 0, and it follows from the

theorem that Xv is a matrix algebra over Fv. This was already known even if p = 2 (see [9,

Theorem 6] for k = 2 and [2, Theorem 3.3.1] for k > 2). Thus the theorem above may be

considered as a generalization of these results.

For a more detailed explanation of the exceptional case mentioned in the state-

ment of the theorem the reader is referred to Theorem 4.3 below. It is also possible to deal

with the case ap = 0 (and p still coprime toN). In this casemv blows up but it may easily

be substituted for by a closely related (finite) integer (see Proposition 4.5). We point out

here that the above-mentioned results imply that X can only be ramified at the primes

dividing

2 ·N · disc(E) · ∞, (2.6)

where disc(E) is the discriminant of E and ∞ is the unique infinite place of Q (Corollary

4.7).

The proof of the theorem above is based on an explicit computation of symbols

appearing in a formula for the Brauer class of X. A more conceptual approach, based on

a study of the filtered (φ,N)-modules of Fontaine attached to the local Galois represen-

tations associated to f, is available. This approach has so far been more successful for

studying the ramification of X only when the slope is small compared to the weight (see,
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e.g., [2, Theorem 1.0.3]). However, it can be applied to study the ramification of X at some

bad places v | N (see [2, Theorems 1.0.5 and 1.0.6]). Here we push this approach further

and prove the following result.

Theorem 2.3. Suppose that p | N and that the power of p dividing N is the same as the

power of p dividing the conductor of ε. Let v be a place of F lying over p. Let α ∈ Q be such

that 0 ≤ α < (k − 1)/2 and α has odd denominator. If for each place w of E lying over v

either

w
(
ap

)
= α or w̄

(
ap

)
= α, (2.7)

then Xv is a matrix algebra over Fv. �

If the power of p dividing N is larger than the power of p dividing the conductor

of ε, our knowledge of Xv is less complete, except in the very special case when p ||N and

the conductor of ε is prime to p (the Steinberg case). In this last case it turns out that the

ramification of Xv is related to the parity of the weight k of f. For more precise statements

see the end of [2, Section 3].

3 Crossed product structure

In this section we prove that Xf is isomorphic to the crossed product algebra X (Theorem

2.1). In view of the work of Ribet and Momose we will assume in this section that k > 2.

Let � be a prime and letM� denote the �-adic realization ofMf. Recall thatM� is a

Q�-vector space with an action of Gal(Q/Q). For a subgroupH of Gal(Q/Q) let EndH(M�)

denote the endomorphisms ofM� which commute withH. An endomorphism ofMf gives

rise to an endomorphism of each of its realizations. One therefore obtains a map

α : End
(
Mf

) ⊗ Q� −→ EndH

(
M�

)
, (3.1)

whereH is a sufficiently deep finite index subgroup of Gal(Q/Q). In [2] it was shown that

Xf contains a subalgebra generated by certain twisting operators which is isomorphic

to the crossed product algebra X. Moreover it was shown that if α is injective, then Xf is

isomorphic toX because of dimension considerations. Indeed, by [8,Theorem 4.4] (whose

proof carries over to the case k > 2), the Q�-dimension of EndH(M�) is [E : F][E : Q], which

is also the Q�-dimension of X⊗ Q�.

So it suffices to prove that α is injective. To do this we work slightly more gener-

ally. Let X be a smooth irreducible projective variety over Q of dimension d. Let Z(X× X)

be the rational vector space generated by the irreducible subvarieties of X × X over Q of
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codimension d. Fix an embedding Q ↪→ C. Let H2d
B (X × X/C)(d) denote Betti cohomology

(with coefficients (2πi)dQ) and let cB : Z(X×X) → H2d
B (X×X/C)(d) be the cycle class map.

Let Zh(X× X) be the quotient

Zh(X× X) := Z(X× X)/ker
(
cB

)
= Z(X× X)/ ∼, (3.2)

where ∼ is the cohomological equivalence relation. Thus for Z ∈ Z(X × X) one has Z ∼ 0

if and only if the image of Z in H2d
B (X×X/C)(d) under cB is zero. Recall that Zh(X×X) has

a natural ring structure where multiplication is induced by the composition product of

correspondences. Let p ∈ Zh(X × X) be a projector. Let M = (X, p) be a motive, where X

and p are as above. Recall that by definition

End(M) :=

{
Z ∈ Zh(X× X) : Z ◦ p = p ◦ Z}

{
Z ∈ Zh(X× X) : Z ◦ p = p ◦ Z = 0

} . (3.3)

We show that in this setting the natural map

α : End(M) ⊗ Q� −→ End
(
M�

)
(3.4)

is injective. Note that α is equivariant for the action of Gal(Q/Q) on both sides.

Consider the cycle class map c� : Z(X× X) → H2d
� (X× X)(d) to �-adic cohomology.

There is a comparison isomorphism

I� : H2d
B

(
X× X/C

)
(d) ⊗ Q�

∼= H2d
�

(
X× X/C

)
(d) ∼= H2d

� (X× X)(d), (3.5)

where the first isomorphism is (a twist of) the canonical comparison isomorphism be-

tween Betti and �-adic cohomology for smooth projective varieties over C (see [5, The-

orem 3.12]), and the second isomorphism is (again a twist of the one) induced by the

embedding Q ↪→ C via the proper base change theorem. The two cycle class maps cB and

c� are related via I�, that is, c� = I� ◦ (cB ⊗ 1) (see [3, page 21] or [4, page 58 ]). It follows

that the �-adic cycle class map factors through the cycles (Betti-) cohomologically equiv-

alent to zero, inducing a map Zh(X× X) ↪→ H2d
� (X× X)(d). (It also follows that Zh(X× X)

and hence End(M) is defined independently of the embedding Q ↪→ C fixed above.) Since

Betti cohomology gives a rational structure on �-adic cohomology, the induced map

Zh(X× X) ⊗ Q� ↪→ H2d
� (X× X)(d) (3.6)
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continues to be injective. This is the key observation that was missed in [2]. To deduce

from this that the map α in (3.4) is also injective is purely formal. We recall the argument

here for the sake of completeness. By the Künneth formula,

H2d
� (X× X)(d) =

2d⊕
q=0

Hq
� (X) ⊗ H2d−q

� (X)(d) =

2d⊕
q=0

End
(
Hq

� (X)
)
, (3.7)

where the last equality follows since H2d−q
� (X)(d) is dual to Hq

� (X). Let

Hq
� (X)(p) = Im

(
p : Hq

� (X) −→ Hq
� (X)

)
. (3.8)

By definition End(M�) =
⊕2d

q=0 End(Hq
� (X)(p)). Now, the map in (3.6) induces a map

{
Z ∈ Zh(X× X) : Z ◦ p = p ◦ Z} ⊗ Q� −→ End

(
Ml

)
. (3.9)

Let Z = Z ⊗ 1 ∈ Zh(X × X) ⊗ Q� belong to the kernel of (3.9). Thus we have Zp = pZ and

Z = 0 in End(M�). Write Z = Zp + Z(1 − p) and note that Z(1 − p) ◦ p = 0, so Z(1 − p) acts

as 0 on each Hq
� (X)(p). Thus Zp = Z−Z(1− p) acts as 0 on each Hq

� (X)(p). Since Zp clearly

acts as 0 on the spaces

ker
(
p : Hq

� (X) −→ Hq
� (X)

)
, (3.10)

we see that Zp = 0 in H2d
� (X× X)(d). By the injectivity of (3.6) we see that Zp = pZ = 0 in

Zh(X×X). It follows that the kernel of the map (3.9) is {Z ∈ Zh(X×X) : Z◦p = p◦Z = 0}⊗Q�.

Thus (3.9) induces an injective map End(M)⊗Q� ↪→ End(M�), which is precisely the map

α in (3.4). This proves Theorem 2.1.

4 Ramification and slopes

Let X ∼= Xf denote the endomorphism algebra ofMf. We now study the relation between

the ramification of X and the slopes of f.

Let G = Gal(Q/Q) and let GF = Gal(Q/F). We will sometimes consider Dirichlet

characters as characters ofG. In particular ε is a character ofG. For each g ∈ G, let
√
ε(g)

be a fixed square root of ε(g). Now, for every extra twist (γ, χγ) of f and every preimage

of γ inGF, which we again denote by γ, there is a unique primitive Dirichlet characterψγ
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of order 1 or 2 such that χγ(g) = ψγ(g) · √
ε(g)

γ−1
for all g ∈ G (cf. [6, Lemma 1.5] and

[7, Lemme 2]). Let Q(
√
tγ) be the quadratic field corresponding to ψγ (in the case that

it has order 2). We assume that tγ is also the discriminant of this field. The characters

{ψγ | γ ∈ GF} form an elementary 2-group. Fix once and for all a subset Γ0 ⊂ GF such that

{ψγ | γ ∈ Γ0} is a basis for this group. For each γ ∈ Γ0 choose square-free positive integers

nγ prime toN such that anγ �= 0, and such that for all γ ′ ∈ Γ0,

ψγ ′
(
nγ

)
=




−1 if γ ′ = γ,

1 if not.
(4.1)

Also, for a square-free integer nwhich is prime toN, set zn = a2
nε(n)−1 ∈ F.

Let [cε] denote the class of the cocycle cε ∈ Z2(GF,±1) defined by

cε(g, h) =
√
ε(g)

√
ε(h)

√
ε(gh)

−1
, (4.2)

for g, h ∈ GF (see [7, Section 2]).

The following result expressing the Brauer class of X in terms of symbols was

proved in [7, Théorème 3] in the case k = 2.

Theorem 4.1. Let k ≥ 2. Then

X =
[
cε

] ⊗ ⊗
γ∈Γ0

(
znγ , tγ

)
(4.3)

up to Brauer equivalence. �

Proof. We make some brief remarks which show that the proof given in [7] for the case

k = 2 continues to hold if k > 2.

Each g ∈ G acts naturally as an automorphism on X and this automorphism fixes

E since the elements of E are basically Hecke operators and so are defined over Q. By the

Skolem-Noether theorem the action of g on Xmust be given by inner conjugation by some

element e ∈ X, which is well defined modulo F×. Since E is its own commutant inX, we see

that e ∈ E. The association g 
→ e defines a continuous character α : G → E×/F×, where

the target has the discrete topology. Write α̃ : G → E× for any lift of α.

The first point to note is that the result [10, Theorem 5.6], which says that the

class of X in Br(F) is cut out by the 2-cocycle

(g, h) 
−→ α̃(g)α̃(h)
α̃(gh)

(4.4)
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for g, h ∈ GF, continues to hold if k > 2. Indeed, the class of X in Br(F) is the same as the

class of the cocycle c(g, h) ∈ Z2(GF, F̄
×), naturally obtained from the Jacobi sum cocycle

c(γ, δ) ∈ Z2(Γ, E×) in (2.1) by inflation. On the other hand by [9, Proposition 1], which is

easily seen to hold for k > 2, this last cocycle cuts out the same class in Br(F) as the

cocycle

(g, h) 
−→ χg(h), (4.5)

where χg = χγ for the image γ ∈ Γ of g ∈ GF, and χg is thought of as a character ofG. Now

using [9, Theorem 4], which says that α̃(h)g−1 = χg(h), we see that the cocycle (4.5) de-

fines the same class in Br(F) as the cocycle (g, h) 
→ α̃(h)g−1. The proof of [9, Theorem 4]

uses the Tate conjecture for the abelian variety attached to f. This is proved in [2, Corol-

lary 1.0.2] for the motive Mf when k > 2 subject to an injectivity hypothesis which we

have removed in Section 3. Finally, this last cocycle differs from the cocycle (4.4) by the

map

(g, h) 
−→ α̃(h)gα̃(g)
α̃(gh)

, (4.6)

which is a coboundary.

The second point to note is that the cocycle (4.4) is equal to cε·cd up to a cobound-

ary, where cd is the cocycle defined by

cd(g, h) =

(
α̃(h)√
ε(h)

)1−g

, (4.7)

for g, h ∈ GF (see the beginning of [7, Section 2]). The rest of the proof of the theorem,

which involves writing the class of cd as a product of symbols, proceeds exactly as in the

case k = 2without any change. This proves the theorem. �

Remark 4.2. A formula similar to that appearing in the theorem above was proved in [2,

Theorem 4.1.3] in the case that all the χγ are quadratic characters. This formula was

proved by directly computing quadratic Gauss sums.

We wish to evaluate the symbols that appear in the expression for X in Theorem

4.1. To do this we recall some general facts about symbols from [12]. Let F be an arbitrary

number field. Let v denote a place of F which is either finite or infinite. Let Fv denote the

completion of F at v. It is well known that

Br
(
Fv

)
∼= Q/Z (4.8)
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if v is finite (and is Z/2 if v is infinite and real, and is trivial if v is infinite and complex).

Now let a and b be nonzero elements of F. Then the symbol (a, b) determines an element

in Br(F)[2]. For each finite place v of F, let (a, b)v denote the induced element of Br(Fv)[2].

By (4.8) the symbol (a, b)v is completely specified by a sign +1 or −1. This sign can be

computed in terms of the v-adic valuations of a and b. There are two cases: the tame

case, v � 2, and the wild case, v | 2.

First assume that v is prime to 2. Fix a uniformizer πv of the ring of integers of Fv.

Write

a = πv(a)
v · a ′,

b = πv(b)
v · b ′,

(4.9)

where we consider v here to be normalized such that v(πv) = 1. In this section vwill refer

to a valuation which is normalized in this way unless explicitly stated otherwise. Then

one has

(a, b)v = (−1)(Nv−1)/2v(a)v(b) ·
(
b ′

v

)v(a)

·
(
a ′

v

)v(b)

. (4.10)

Here the symbol (c
v ) takes the values ±1 and is 1 exactly when the image of c is a square

in the residue field at v.

Now assume that v | 2. We will only treat the case F = Q so that v = 2. For a unit

u ∈ Q×
2 let ε(u) denote the residue of (u − 1)/2 in Z/2 and let ω(u) denote the residue of

(u2 − 1)/8 in Z/2. Then for units u, v in Q×
2 we have

(u, v)2 = (−1)ε(u)ε(v), (4.11)

(2, u)2 = (−1)ω(u). (4.12)

Note that these formulas completely determine (a, b)2 for a, b ∈ Q×
2 .

Now we return to our situation. Thus F is the center of X and contains a2
pε(p)

−1

for p prime to N. The usual local-global exact sequence for the Brauer group of F shows

that the Brauer class ofX is completely determined by the Brauer classes of theXv, which

are in turn completely determined by specifying a sign, one for each v. For notational

convenience we write Xv ∼ a for an integer a if the sign of the Brauer class of Xv is the

same as (−1)a.

Recall that by a result of Momose [6, Theorem 3.1] one knows Xv ∼ k if v is in-

finite. On the other hand if v | p is a finite place of F with p � N, we have Xv ∼ 0 if v is
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ordinary for f, that is, if v(a2
pε(p)

−1) = 0 (see [9, Theorem 6] for the case k = 2 and [2,

Theorem 3.3.1] for k > 2). The following theorem generalizes this result. To state it we

introduce a positive integer mv for each place v of F of residue characteristic p � N with

ap �= 0:

mv :=
[
Fv : Qp

] · v(a2
pε(p)

−1
)
. (4.13)

In the definition of mv we take the valuation v which is normalized such that v(p) = 1.

Then we have the following theorem (it is a more precise version of Theorem 2.2).

Theorem 4.3. Let p be a prime such that p � N and ap �= 0. Let v be a place of F lying over

p. If p �= 2, then

Xv ∼



0 if ψγ(p) = 1 ∀γ ∈ Γ0,
mv otherwise.

(4.14)

If p = 2, then the same conclusion holds if F = Q. �

Proof. The proof is similar to the proof of [2, Theorem 4.1.11], the main difference being

that we use Theorem 4.1 instead of [2, Theorem 4.1.3] to compute X locally.

Note [cε]v = 1 if and only if the local component εp of ε is even. Since p is prime

toN, εp is in fact trivial, so that [cε]v = 1. It follows from Theorem 4.1 that

Xv =
⊗
γ∈Γ0

(
znγ , tγ

)
v
. (4.15)

Since v is prime to N, we have v(tγ) = 0. First assume that p �= 2. Then v is prime

to 2 so that by (4.10) we have (znγ , tγ)v = ( tγ

v )v(znγ ). But ( tγ

v ) = ( tγ

p )fv since every element

of Fp has a square root over a quadratic extension of Fp. We conclude that

(
znγ , tγ

)
v

=

(
tγ

p

)fv·v(znγ )

. (4.16)

Thus if ψγ(p) = ( tγ

p ) = 1 for all γ ∈ Γ0, then Xv = 1 as desired.

Suppose on the other hand that the subset S− of the set {tγ | γ ∈ Γ0} consisting of

those tγ for which ( tγ

p ) = −1 is nonempty. Write the elements of S− as t1, t2, . . . ,tm with

m ≥ 1. Define distinct primes rj for j = 0, 1, . . . , rm−1 as follows: set r0 = p and define rj
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for j = 1, . . . ,m − 1 recursively by

(
ti

rj

)
= (−1)δij ·

(
ti

rj−1

)
∀i = 1, . . . ,m, (4.17)

(
tγ

rj

)
= 1 if tγ /∈ S−. (4.18)

We may and do assume that each arj
�= 0. This can be done for j = 0 since ap �= 0 by

hypothesis. For the other rj’s we simply note that if arj
= 0 for all rj defined by the con-

gruence conditions (4.17) and (4.18), then the set of primes p for which ap = 0 would

have a positive density contradicting Serre [13, Theorem 15].

Corresponding to ti ∈ S− set

ni =



ri−1 · ri if 1 ≤ i ≤ m − 1,

rm−1 if i = m.
(4.19)

Clearly the ni are square-free positive integers prime to the level satisfying ani
�= 0 since

Fourier coefficients are multiplicative on distinct primes and the rj were chosen so that

each arj
�= 0. Furthermore the ni satisfy the congruence conditions (4.1). Indeed suppose

that ti corresponds to γ ∈ Γ0. Assume first that i < m. Then

ψγ

(
ni

)
= ψγ

(
ri−1

)
ψγ

(
ri

)
= −1 (4.20)

since, by (4.17), ψγ(ri−1) and ψγ(ri) differ by a sign. Similarly if γ ′ corresponds to tj for

j �= i, then ψγ ′(ri−1) = ψγ ′(ri) by (4.17) again so that ψγ ′(ni) = 1. Finally if γ ′ corre-

sponds to some tγ ′ �∈ S−, then by (4.18)ψγ ′(ni) = 1. Now assume that i = m. Then for any

γ ′ ∈ Γ0,

ψγ ′
(
nm

)
= ψγ ′

(
rm−1

)
=

(
tγ ′

rm−1

)
. (4.21)

But (4.17) shows that

(
ti

rm−1

)
=




−

(
ti

p

)
= 1 if i ≤ m − 1,

(
ti

p

)
= −1 if i = m.

(4.22)

So this along with (4.18) shows that ψγ ′(nm) = −1 if and only if γ ′ = γ as desired.
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We are now ready to begin computing our symbols. Only those γ for which ti ∈
S− contribute to the sign of Xv in (4.15) since if tγ �∈ S−, then ( tγ

v ) = ( tγ

p ) = 1 and the

corresponding local symbol is trivial by (4.16). Now for ti ∈ S− we have zni
= a2

ni
ε(ni)−1

and ( ti

p ) = −1 so that by (4.16) we have

(
zni
, ti

)
v

∼ fv · v
(
a2

ni
ε
(
ni

)−1
)
. (4.23)

Substituting for ni from (4.19) above and multiplying over all i in {1, . . . ,m}, there is a

mod 2 telescoping effect, the result of which is

Xv ∼ fv · v(a2
pε(p)

−1
)
. (4.24)

If we take the v(p) = 1 normalization for v, then the right-hand side becomesmv, proving

the theorem in the case p �= 2.
Now assume that p = 2 and that F = Q. Write v2(znγ) for the power of 2 that

divides znγ and define z ′nγ
by znγ = 2v2(znγ ) · z ′nγ

. We have

(
znγ , tγ

)
2

=
(
2, tγ

)v2(znγ )
2

· (z ′nγ
, tγ

)
2
. (4.25)

SinceN is prime to p = 2, by hypothesis tγ must be odd. One can easily check that (2, tγ)2

is equal to (−1)ω(tγ) by (4.12) which may again be easily checked to be the same as ( tγ

2 )

using the fact 2 splits in Q(
√
tγ) if and only if tγ≡1mod 8. On the other hand (z ′nγ

, tγ)2 =1

by (4.11) since ε(tγ) ≡ 0mod 2. Thus

(
znγ , tγ

)
2

=

(
tγ

2

)v2(znγ )

. (4.26)

Now the argument proceeds as in the case p �= 2 proving the theorem in this case as well.

�

Remark 4.4. The assumption that F = Q when p = 2 could probably be removed if one

had formulas for wild symbols other than in the case F = Q.

As in [2] it is possible to treat the case ap = 0 (and p still prime toN)with minimal

effort. The structure of Xv is not determined by the parity of mv since mv = ∞. Thus

the notion of slope is not useful in measuring the ramification in this case. However as

we now show the structure of Xv is still determined by the v-adic valuation of a Fourier

coefficient at a prime p†, closely related to p.
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In fact we take p† to be any prime such that pp† ≡ 1modN and such that ap† �= 0.
Serre’s result, quoted above, guarantees that one can always find such a p†. Set

m†
v :=

[
Fv : Qp

] · v(a2
p†ε

(
p†

))
. (4.27)

Theorem 4.3 now has the following avatar when ap = 0.

Proposition 4.5. Let v be a place of F of residue characteristic p prime to N and assume

ap = 0. Letm†
v be as above. If p �= 2, then

Xv ∼



0 if ψγ(p) = 1 ∀γ ∈ Γ0,
m

†
v otherwise.

(4.28)

If p = 2, then the same conclusion holds if F = Q. �

Proof. Since pp† ≡ 1modN, we have

(
tγ

p

)
=

(
tγ

p†

)
(4.29)

so that the proof of Theorem 4.3 goes through replacing pwith p†. �

We record the following easy consequences of the above results.

Corollary 4.6. Let v be a place of F of residue characteristic pwith p � 2N. If v is unrami-

fied in E, then Xv is a matrix algebra over Fv. �

Proof. This is immediate from Theorem 4.3 and Proposition 4.5 since in this case the in-

teger mv or m†
v is necessarily even. It may also be proved directly by studying the for-

mula in Theorem 4.1. Indeed if v � 2N is a finite prime of F for which Xv is ramified, then

the normalized v-adic valuation of at least one of the entries in the symbols appearing

in that theorem must be odd. Since tγ | N for all γ ∈ Γ , the only possibility is that the

normalized valuation v(zq) must be odd for some prime q. One checks easily then that v

ramifies in F(aq) so that v ramifies in E. �

Corollary 4.7. If X is ramified at v, then vmust divide either the discriminant of the field

E, or 2N, or ∞. �

Proof. This is immediate from the previous corollary. �
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5 Bad places

In the previous section we showed how the ramification of X at the good places (v | p � N)

is essentially determined by the normalized slopes of f at p. In this section we continue

our investigation of the ramification of Xv at the bad places (v | p | N) that was begun in

[2]. We recall some notation introduced in that paper.

Assume now that p | N. Let Np be the exponent of the exact power of p that di-

vides N. Let C denote the conductor of ε and let Cp denote the exponent of the exact

power of p that divides Cp. NoteNp ≥ Cp andNp ≥ 1. We consider three cases:

(1) Np = Cp, in which case |ap| = p(k−1)/2 (ramified principal series),

(2) Np = 1 and Cp = 0, in which case a2
p = ε(p)pk−2 (Steinberg),

(3) Np �= Cp andNp ≥ 2, in which case ap = 0 (other).

In the second case the local factor at p in the automorphic representation corre-

sponding to f is the Steinberg representation or a twist of it by an unramified character.

This case is treated in [9, Theorem 3] in the case k = 2, and in [2] for higher weight forms

(see in particular [2, Theorems 3.4.6 and 3.4.8]). Almost nothing is known in the third

case, where ap = 0. This case includes twists of previous cases and also cases where the

local automorphic representation is supercuspidal. Here we will be concerned with the

first case, in which the local automorphic representation is in the ramified principal se-

ries. The following theorem contains [2, Theorems 3.4.1 and 3.4.2] as special cases, and

was stated without proof as [2, Theorem 3.4.4].

Theorem 5.1. Suppose p | NwithNp = Cp and let v be a place of F lying over p. Let α ∈ Q

be such that

0 ≤ α < k − 1

2
, (5.1)

and α has odd denominator. If for each place w of E lying over v either w(ap) = α or

w̄(ap) = α, then Xv is a matrix algebra over Fv. �

Proof. Let Mcrys,v denote the crystal attached to f and v. We recall the definition. Fix a

place w | v of E. The local Galois representation ρf|Gp : Gp → GL2(Ew) is potentially

crystalline. In fact if K = Q(µpr) where r = Np = Cp, then ρf|GK
is unramified. Let Dw =

Dst(ρf|GK
) be the associated filtered module. It is a free module of rank 2 over Ew. Set

Mcrys,v = ⊕w|vDw. This has dimension 2[E : F][Fv : Qp] over Qp. A study of the crystals

Dw now show that the crystalline Frobenius φ : Mcrys,v → Mcrys,v has characteristic
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polynomial

H(x) =
∏
w|v

NormEw/Qp

((
x − ap

)(
x − ε ′(p)āp

))
, (5.2)

where ε ′ is the prime-to-p part of ε. By hypothesis the Newton polygon of H(x) has two

distinct slopes, namely α and k− 1−α, each occurring with equal multiplicity, say n. Let

M̄crys,v = Mcrys,v ⊗Qp Qun
p . It follows that M̄crys,v

∼= Cn
α ×Cn

k−1−α where Cα and Ck−1−α are

the simple crystals over Qun
p of slopes α and k−1−α. Now dimQun

p
Cα = dimQun

p
Ck−1−α = s

where α = r/s as a fraction in lowest terms. It follows that

2[E : F]
[
Fv : Qp

]
= dimQun

p
M̄crys,v = 2sn. (5.3)

Now let V = Hom(Cα, M̄crys,v) = Hom(Cα, Cα)n. This is a left Xv-module of dimension

dimFv V =
s2n[
Fv : Qp

] = s[E : F]. (5.4)

Since s is odd, it follows from the representation theory of the algebra Xv that Xv must

split. �

6 Tables of QM-modular motives

In this section we give complete tables of the endomorphism algebras of all modular

motives of small weight (2 ≤ k ≤ 4) and small level (1 ≤ N ≤ 100) with F = Q. (For k = 5

see the version of this paper on the first author’s web page.) An entry appears in Tables

6.1, 6.2, and 6.3 only if the corresponding motive has quaternionic multiplication (QM),

that is, only if the class of X is nonzero in the Brauer group of Q.

Recall that twisting a form by a Dirichlet character does not change the Brauer

class of X (see [9, Proposition 3] for the weight 2 case; the proof there works in all

weights). In the interest of conserving space we do not list those entries that are ob-

tained from forms of smaller level by twisting.

ThatXf can have nontrivial Brauer class was discovered by Shimura: the example

in [14, page 166] appears as the fifth entry in Table 6.1.

We describe how the tables are labeled. The format is similar to that used in

the tables in the appendix of [1]. The first column contains Galois conjugacy classes of

primitive forms of given level, weight, and nebentypus. The ordering we use to list these

forms is described by a function which maps a primitive form f to a label of the formNXk
ε
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Table 6.1 Modular QM-abelian varieties of level ≤ 100.

Label ord(ε) E Extra twists Ramification Slope

28A[1,1] 6 Q
(√

−1,
√

3
)

[1,0], [1,5]
2 RPS

3 1

35A[1,3] 4 Q
(√

10,
√

−1
)

[0,3], [3,3]
2 1

5 RPS

44A[1,5] 2 Q
(√

2,
√

−3
)

[1,5], [1,0]
2 RPS

3 1

56B[1,1,3] 2 Q
(√

−1,
√

6
)

[1,1,0], [1,1,3]
2 RPS

3 1

57A[1,9] 2 Q
(√

2,
√

−5
)

[1,9], [0,9]
2 1

5 1

60A[0,1,1] 4 Q
(√

5,
√

−1
)

[0,0,3], [0,1,0]
2 ap = 0

5 RPS

63A[3,1] 6 Q
(√

−2,
√

6
)

[3,5], [0,5]
2 1

3 ap = 0

77B[3,5] 2 Q
(√

10,
√

−2
)

[0,5], [3,5]
2 1

5 1

80B[1,0,1] 4 Q
(√

−1,
√

3
)

[0,0,3], [1,0,3]
2 ap = 0

3 1

92A[1,11] 2 Q
(√

−1,
√

14
)

[0,11], [1,11]
2 RPS

7 1

93D[1,5] 6 Q
(√

2,
√

−3
)

[1,0], [1,25]
2 1

3 RPS

95A[1,3] 12 Q
(√

−1,
√

3
)

[3,15], [3,0]
2 1

3 1

95B[1,3] 12 Q
(√

−1,
√

3
)

[3,15], [3,0]
2 ∞
3 1

(e.g., 19B3
[9]), where N is the level of f, X is a letter or string of letters in {A,B, . . . , Z,AA,

BB, . . .}, ε is an encoding of the nebentypus of f (described in more detail below), and

k is the weight of f. When k = 2, we omit the superscript 2. To construct X assume

that k, N, and ε are fixed. To f =
∑
anq

n associate the infinite sequence of integers

tf = (TrE/Q a1,TrE/Q a2, . . .). ChooseX ∈ {A,B, . . . , Z,AA,BB, . . .} according to the position

of tf in the set {tg : g primitive of weight k, levelN, and nebentypus ε} sorted in increas-

ing dictionary order. Notice that tf determines the Galois conjugacy class of f. The above

ordering was introduced by J. Cremona in the case of trivial nebentypus and weight 2

and by W. Stein in the general situation.
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Table 6.2 Modular QM-motives of weight 3and level ≤ 100.

Label ord(ε) E Extra twists Ramification Slope

9A3
[1] 6 Q

(√
−3

)
[5] 3 RPS

10A3
[0,1] 4 Q

(√
−1

)
[3] 2 St

12A3
[1,0] 2 Q

(√
−3

)
[1,0] 3 St

15A3
[1,0] 2 Q

(√
−5

)
[1,0] 5 St

18A3
[0,3] 2 Q

(√
−2

)
[3] 2 St

19B3
[9] 2 Q

(√
−13

)
[9] 13 1

20A3
[0,1] 4 Q

(√
−1

)
[0,3] 2 ap = 0

21A3
[0,1] 6 Q

(√
−3

)
[0,5] 3 St

21B3
[0,1] 6 Q

(√
−3

)
[0,5] 3 St

21C3
[0,1] 6 Q

(√
−3

)
[0,5] 3 St

21A3
[0,3] 2 Q

(√
−3

)
[0,3] 3 St

21B3
[1,2] 6 Q

(√
−3,

√
15

)
[0,4], [1,4] 5 1

22A3
[0,5] 2 Q

(√
−2

)
[5] 2 St

24A3
[0,0,1] 2 Q

(√
−2

)
[0,0,1] 2 ap = 0

24C3
[0,1,1] 2 Q

(√
2,
√

−7
)

[0,0,1], [0,1,1] 2 RPS

25A3
[5] 4 Q

(√
−1,

√
6
)

[15], [5] 3 1

26A3
[0,3] 4 Q

(√
−1

)
[9] 2 St

28A3
[0,1] 6 Q

(√
−3

)
[0,5] 3 1

28A3
[0,3] 2 Q

(√
−6

)
[0,3] 3 1

30A3
[0,1,2] 2 Q

(√
2,
√

−17
)

[0,2], [1,0] 2 St

31A3
[5] 6 Q

(√
−3

)
[25] 3 1

31A3
[15] 2 Q

(√
−26

)
[15] 13 1

33A3
[1,0] 2 Q

(√
−11) [1,0] 11 St

35A3
[0,3] 2 Q

(√
−5

)
[0,3] 5 St

35B3
[0,3] 2 Q

(√
−5

)
[0,3] 5 St

35C3
[2,3] 2 Q

(√
10,

√
−1

)
[0,3], [2,3] 5 RPS

36A3
[1,2] 6 Q

(√
−3

)
[1,4] 3 RPS

38A3
[0,9] 2 Q

(√
−2

)
[9] 2 St

39C3
[1,6] 2 Q

(√
−35,

√
3
)

[1,6], [1,0] 7 1
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Table 6.2 Continued.

Label ord(ε) E Extra twists Ramification Slope

40A3
[0,0,1] 4 Q

(√
−1

)
[0,0,3] 2 ap = 0

42A3
[0,1,2] 6 Q

(√
−2,

√
6
)

[0,4], [1,4] 2 St

45A3
[0,1] 4 Q

(√
−1,

√
10

)
[3,0], [3,3] 5 RPS

45A3
[3,2] 2 Q

(√
7,
√

−2
)

[0,2], [3,2] 7 1

47A3
[23] 2 Q

(√
−78

)
[23] 13 1

48A3
[1,0,0] 2 Q

(√
−3

)
[1,0,0] 3 St

50A3
[0,5] 4 Q

(√
−1

)
[15] 2 St

54A3
[0,9] 2 Q

(√
−2

)
[9] 2 St

55D3
[2,5] 2 Q

(√
−21,

√
5
)

[2,0], [2,5] 3 1

56A3
[1,1,2] 6 Q

(√
−3

)
[1,1,4] 2 RPS

57A3
[0,9] 2 Q

(√
−3

)
[0,9] 3 St

60A3
[0,1,0] 2 Q

(√
−5

)
[0,1,0] 5 St

60A3
[0,1,2] 2 Q

(√
−1,

√
5
)

[0,0,2], [0,1,0] 5 RPS

60A3
[1,0,2] 2 Q

(√
−1,

√
3
)

[1,0,2], [1,0,0] 3 St

63E3
[0,1] 6 Q

(√
−3,

√
13

)
[3,5], [0,5] 3 ap = 0

64A3
[1,8] 2 Q

(√
−1,

√
3
)

[1,8], [1,0] 3 1

72A3
[0,0,3] 2 Q

(√
−2

)
[0,0,3] 2 ap = 0

72C3
[1,1,0] 2 Q

(√
10,

√
−6

)
[0,0,3], [1,1,0] 2 RPS

74A3
[0,9] 4 Q

(√
−1

)
[27] 2 St

74B3
[0,9] 4 Q

(√
−1

)
[27] 2 St

74C3
[0,9] 4 Q

(√
−1

)
[27] 2 St

75A3
[0,5] 4 Q

(√
−1,

√
6
)

[0,15], [0,5] 3 St

75B3
[0,5] 4 Q

(√
−1,

√
6
)

[0,15], [0,5] 3 St

75C3
[1,0] 2 Q

(√
−11

)
[1,0] 11 1

76A3
[0,9] 2 Q

(√
−29

)
[0,9] 29 1

77A3
[0,5] 2 Q

(√
−7

)
[0,5] 7 St

77A3
[2,5] 6 Q

(√
−3,

√
21

)
[4,5], [2,0] 7 RPS

78A3
[0,1,6] 2 Q

(√
2,
√

−5
)

[0,6], [1,0] 2 St

78B3
[0,1,6] 2 Q

(√
2,
√

−5
)

[0,6], [1,0] 2 St
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Table 6.2 Continued.

Label ord(ε) E Extra twists Ramification Slope

80B3
[1,0,2] 2 Q

(√
2,
√

−3
)

[0,0,2], [1,0,0] 2 ap = 0

84A3
[0,0,1] 6 Q

(√
−3

)
[0,0,5] 3 St

84A3
[0,0,3] 2 Q

(√
−3

)
[0,0,3] 3 St

84B3
[0,1,2] 6 Q

(√
−3,

√
15

)
[0,0,2], [0,1,4] 5 1

84C3
[0,1,2] 6 Q

(√
−3,

√
105

)
[0,0,4], [0,1,4] 5 1

84A3
[1,0,2] 6 Q

(√
−3

)
[1,0,4] 3 St

86A3
[0,21] 2 Q

(√
−2

)
[21] 2 St

90A3
[0,0,1] 4 Q

(√
−1

)
[0,3] 2 St

90B3
[0,0,1] 4 Q

(√
−1

)
[0,3] 2 St

90A3
[0,3,2] 2 Q

(√
2,
√

−1
)

[0,2], [3,2] 2 St

91A3
[3,4] 6 Q

(√
−3,

√
39

)
[0,4], [3,0] 13 RPS

91C3
[3,6] 2 Q

(√
26,

√
−1

)
[3,0], [3,6] 13 RPS

93A3
[0,15] 2 Q

(√
−3

)
[0,15] 3 St

96A3
[0,0,1] 2 Q

(√
−2,

√
3
)

[0,0,1], [1,0,0] 3 RPS

96B3
[0,0,1] 2 Q

(√
7,
√

−2
)

[0,0,1], [1,0,1] 7 1

99C3
[0,5] 2 Q

(√
−138,

√
−3

)
[3,0], [0,5] 23 1

100B3
[0,5] 4 Q

(√
−1,

√
6
)

[0,15], [0,5] 3 3

The encoding of the nebentypus ε : (Z/N)∗ → C∗ is done as follows. Let N =∏
pαn

n be the prime-ordered factorization of N. Then for each pn, there exists a unique

Dirichlet character εpn : (Z/pαn
n )× → C∗ such that ε =

∏
εpn . Fix p = pn momentarily

and write εp for εpn . If p is odd, let gp be the smallest positive integer that generates

(Z/pα)×, and if p = 2 and α ≤ 2, let gp = −1. In the above cases εp is determined by

the integer ep ∈ [0,ϕ(pα)) such that εp(gp) = e2πiep/ϕ(pα). If p = 2 and α > 2, then

(Z/2α)× ∼= Z/2 × Z/2α−2 where the first factor is generated by −1 and the second factor

by 5. Thus in this case ε2 is determined by a pair of integers e ′2 ∈ [0, 2), e ′′2 ∈ [0, 2α−2) such

that ε2(−1) = e2πie ′
2/2 and ε2(5) = e2πie ′′

2 /2α−2

. We denote the pair e ′2, e
′′
2 by e2. Finally we

denote ε by [epn : pn | N].

The middle columns are as follows: column 2 contains the order of ε, column 3

contains the Hecke field E (recall that F = Q), column 4 lists a generating set for the extra
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Table 6.3 Modular QM-motives of weight 4and level ≤ 100.

Label ord(ε) E Extra twists Ramification Slope

12A4
[1,1] 2 Q

(√
−5,

√
3
)

[0,1], [1,0]
3 RPS

5 1

21B4
[1,3] 2 Q

(√
−6,

√
102

)
[1,3], [0,3]

3 RPS

17 1

27C4
[0] 1 Q

(√
2
)

[9]
2 1

3 ap = 0

35A4
[1,3] 4 Q

(√
5,
√

−1
)

[0,3], [3,0]
2 3

5 RPS

36B4
[1,3] 2 Q

(√
30,

√
−2

)
[0,3], [1,0]

2 RPS

3 ap = 0

48B4
[1,0,1] 2 Q

(√
−2,

√
6
)

[1,0,0], [1,0,1]
2 ap = 0

3 RPS

56B4
[1,1,3] 2 Q

(√
−3,

√
21

)
[0,0,3], [1,1,3]

3 1

7 RPS

57B4
[1,9] 2 Q

(√
17,

√
−10

)
[1,9], [0,9]

5 1

17 1

63B4
[3,3] 2 Q

(√
−222,

√
−2

)
[3,0], [0,3]

2 3

3 ap = 0

72C4
[0,1,0] 2 Q

(√
22,

√
−10

)
[0,0,3], [0,1,0]

2 RPS

5 1

80B4
[1,0,1] 4 Q

(√
−1,

√
35

)
[1,0,0], [1,0,3]

2 ap = 0

7 1

100D4
[1,5] 4 Q

(√
11,

√
−1,

√
5
)

[1,10], [0,5], [1,5]
11 1

2 RPS

twists (encoded in a similar manner as described above for ε), and column 5 lists the

primes where the endomorphism algebra X ramifies.

The last column lists the numbers mv (normalized slope) if p is prime to N and

ap �= 0. If a (finite) integer occurs in this column, it is always odd as predicted by the

main result of this paper (Theorem 2.2). If ap = 0 and p is still prime to N, thenmv = ∞
and the ramification is controlled by Proposition 4.5. On the other hand if some p | N is

a prime of ramification, then we give some further information as follows. Recall that C
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denotes the conductor of ε, andNp and Cp denote the exponent of p of the exact power of

p diving N and C, respectively. If Np = Cp, we write RPS for ramified principal series. If

Np = 1 and Cp = 0, then we write St for Steinberg. Finally ap vanishes in the remaining

cases Np �= Cp. These include the cases which are twists of previous cases, in which

case the ramification can be sometimes explained, but also includes the cases where the

local representation is supercuspidal. In either case we simply write ap = 0. It is worth

mentioning that while ap can vanish both when p � N and p | N, in the former case it only

occurs once (see 95B[1,3] in Table 6.1) within the scope of the tables.

Corrections to [2]. We take this opportunity to correct some errors in [2]. The last two

errors do not occur in the electronic version of the paper.

(i) In page 1655, line 8,Np ≥ Cp ≥ 1 should beNp ≥ Cp ≥ 0.
(ii) In page 1669, line 12, (1/2)(u2 − 1) should be (u2 − 1)/8.

(iii) In the last few lines of page 1670, “supersingular primes” should read “primes

p for which ap = 0,” and the last phrase should read “for non-CM forms

the density of primes p for which ap = 0 is 0”.

(iv) In page 1672, line 9 from the bottom, “ordinary primes” should read “primes p

for which ap = 0”.
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the Chebotarev density theorem], Inst. Hautes Études Sci. Publ. Math. 54 (1981), 323–401

(French).

[14] G. Shimura, Class fields over real quadratic fields and Hecke operators, Ann. of Math. (2) 95

(1972), 130–190.

Eknath Ghate: School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road,

Mumbai 400 005, India

E-mail address: eghate@math.tifr.res.in
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