
CONJUNTOS Y NÚMEROS

Grado en Matemáticas Curso 2022–23

Examen 16-1-2023

Apellidos, Nombre: _

Razonar debidamente las respuestas

3 horas

1. Demuestra por inducción que para todo $n \ge 2$ se tiene:

$$\frac{7}{12} \le \sum_{k=1}^n \frac{1}{n+k} \,.$$

- 2. Estudia si las siguientes afirmaciones son verdaderas o falsas. Justifica razonadamente tu respuesta:
- a) Si $k \equiv \pm 4 \pmod{9}$ entonces $x^3 + y^3 + z^3 = k$ no tiene solución con $x, y, z \in \mathbb{Z}$.
- b) Dado un cuerpo K. Existen polinomios no nulos $f(x), g(x) \in K[x]$ tales que $f(x) \cdot g(x) = 0 \in K[x]$.
- c) Existe $n \in \mathbb{N}$ cuya expresión decimal termina en 9 y además $n^3 + 3^n$ es divisible por 5.
- **3.** Sean A y B dos conjuntos disjuntos.
- a) Sean R y S relaciones de equivalencia en A y en B respectivamente. Determina si la siguiente relación definida para $x, y \in A \cup B$ también es de equivalencia o no:

$$x \sim y \quad \Leftrightarrow \quad (x, y \in A \land xRy) \lor (x, y \in B \land xSy).$$

b) Determina si la siguiente relación definida para $x, y \in A \cup B$ es de orden o no:

$$x \sim y \quad \Leftrightarrow \quad (x = y) \lor (x \in A \land y \in B).$$

- **4.** Determina <u>correctamente</u> (debes definir explícitamente las funciones y comprobar las propiedades de las mismas que te permitan concluir tus afirmaciones) la cardinalidad de los siguientes conjuntos:
- a) Sea $A = \{(x, y, z) \in \mathbb{R} \times \mathbb{N} \times \mathbb{N} : \exists n \in \mathbb{N}, x + y + z = n\}.$
- b) Sea L el conjunto de todas las rectas no verticales que pasan por el punto (0,1).
- **5.** Factoriza en polinomios irreducibles el polinomio $f(x) = x^4 7x^2 + 1$ sobre $\mathbb{Q}[x]$, $\mathbb{R}[x]$, $\mathbb{C}[x]$, $\mathbb{F}_2[x]$ y $\mathbb{F}_3[x]$.