(16-11-2015) - 10:30

SOLUCIONES

1. Estudia si la siguiente afirmación es verdadera o falsa. Justifica tu repuesta.

(Recuerda que si la afirmación es verdadera hay que dar una demostración mientras que si la afirmación es falsa es suficiente con dar un contraejemplo):

Dado un grupo finito G existen grupos K y M tales que

- a) G es isomorfo a K,
- b) $K \leq M$,
- c) el mínimo conjunto que genera M tiene cardinal a lo sumo 2.

Solución: El Teorema de Cayley nos dice que existe un monomorfismo de G en S_G , el conjunto de biyecciones del conjunto G. En particular si G es finito de orden n entonces $S_G \simeq S_n$, el grupo de permutaciones de n elementos. Así, en este caso tenemos un homomorfismo de grupos $\phi: G \longrightarrow S_n$ inyectivo. Ahora gracias al Teorema de Isomorfía tenemos que $G \simeq \phi(G) = K \leq S_n$, ya que ϕ es inyectiva y por lo tanto $\operatorname{Ker}(\phi)$ es trivial. Por ultimo, tomando $M = S_n$ y aplicando el apartado (c) del ejercicio 2 concluimos que la afirmación es Verdadera.

2. Demuestra que para i=1,2,3 se tiene que $S_n=\langle B_i\rangle$, donde B_i es el conjunto definido por:

a)
$$B_1 = \{(12), (13), (14), \dots, (1n)\},\$$

Solución: Basta ver que (a b) = (1 a)(1 b)(1 a). Así obtenemos todas las transposiciones de S_n que sabemos que generan S_n .

b)
$$B_2 = \{(12), (23), (34), \dots, (n-1n)\},\$$

Solución: Veamos que con los elementos de B_2 podemos construir todos los de B_1 . Por inducción podemos ver la siguiente cadena de igualdades:

c)
$$B_3 = \{(12), (12 \dots n)\}.$$

Solución: Veamos que podemos generar B_2 a partir de $\sigma = (1 \ 2 \dots n)$ y $(1 \ 2)$. En primer lugar, observar que tenemos lo siguiente

$$\sigma^k = \begin{pmatrix} 1 & 2 & 3 & \dots & n \\ k & k+1 & k+2 & \dots & k-1 \end{pmatrix}$$

Así tenemos $\sigma^k(1\,2)\sigma^{-k}=(\sigma^k(1)\,\sigma^k(2))=(k\,k+1)$ para $k=1,\ldots,n$.

- **3.** Considera el grupo $G = \langle a, b \rangle \leq S_6$, con a = (123456) y b = (16)(25)(34).
- a) Demuestra que $N=\langle a\rangle$ es normal en G.

Solución: Hay que ver que para todo $g \in G$ se tiene que $gNg^{-1} \subseteq N$. Como $N = \langle a \rangle$ y $G = \langle a, b \rangle$ basta con ver que $b^n a^m b^{-n} = a^s$ para todo entero n, m y un entero s que depende de n y m. Ahora como |b| = 2, es suficiente ver que $ba^m b = a^s$. Además como $(bab)^m = ba^m b$, concluimos que el único cálculo que necesitamos hacer es ver si existe un entero k tal que $bab = a^k$. Como tenemos $bab = (654321) = a^{-1} = a^5$, concluimos que N es normal en G.

b) Calcula el orden de G/N.

Solución: Veamos cuantos clases de equivalencia hay en $G/N = \{gN \mid g \in G\}$. Si $g = a^k h$ o $g = ha^k$ para $h \in G$, obtenemos que gN = hN. Si repetimos este proceso obtenemos que $G/N = \{N, bN\}$. Por lo tanto, |G/N| = 2.

c) Demuestra que G es resoluble.

Solución: Tenemos un troceado de G formado por N y G/N. Como N es cíclico de orden 6 y G/N es de orden 2 (y por lo tanto cíclico) se tiene que G es resoluble.

d) Calcula el orden de G.

Solución: Por el Teorema de Lagrange se tiene |G/N| = |G|/|N|. De aquí se deduce $|G| = |N||G/N| = 6 \cdot 2 = 12$.